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ABSTRACT 
We investigate the mathematical model of convective heat and mass transfer flow over a stretching sheet embedded in 
a porous medium under the influence of chemical reaction, radiation absorption and Soret effect. The governing 
fundamental equations are first transformed into system ordinary differential equations using self similarity 
transformation and they are then solved numerically by using Galerkin Finite Element method. Important features of 
flow, heat and mass transfer characteristic for different values of Schmidt number, Buoyancy ratio, chemical reaction, 
radiation absorption and Soret effect are analyzed and discussed. Favorable comparisons with previously published 
work on various special cases of the problem are obtained. Numerical results for velocity, temperature and 
concentration distributions for a prescribed various parameters as well as Nusselt number and Sherwood number with 
different parameters are reported graphically. 
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INTRODUCTION 
Recently, studies on the boundary layer flow and Heat and mass transfer problems on mixed convection flow due to 
stretching porous medium have received considerable attention because of numerous applications in geophysics and 
energy related engineering problems that include both metal and polymer sheets. For example, it occurs in the extrusion 
of a polymer sheet from a die or in the drawing of plastic films, which are then cooled in a cooling bath and during 
cooling reduction to both thickness and width takes place. The quality of the final product depends on the rate of heat 
transfer at the stretching surface and it occurs in the aerodynamic extrusion of polymer sheets, fiber and granular 
insulation materials, high performance insulation buildings, transpiration cooling, packed bed chemical reactors and 
continuous filament extrusion from a dye. Sakiadis [1] initiated the study of boundary layer flow over a continuous 
solid surface moving with a constant speed. Crane [2] gave an exact similarity solution in closed analytical form for 
steady boundary layer flow of an incompressible viscous fluid caused due to stretching of an elastic sheet which moves 
in its own plane with a velocity varying linearly with distance from a fixed point.  
 
In many practical applications mass transfer takes place by diffusive operations which involve the molecular diffusion 
of species in the presence of two types of chemical reactions namely, homogeneous and heterogeneous. Mixed 
convective heat and mass transfer problems with chemical reaction are of importance in many processes and have, 
therefore, received a considerable amount of attention in recent years. In processes such as drying, evaporation at the 
surface of a water body, energy transfer in a wet cooling tower and the flow in a desert cooler, heat and mass transfer 
occur simultaneously. Possible applications of this type of flow  
 
NOMENCLATURE 
 

u  velocity of the fluid in the x-direction 
v   velocity of the fluid in the y-direction 
x  flow directional coordinate along the stretching sheet 
y  distance normal to the stretching sheet 
T  temperature of the fluid 
Tm  mean fluid temperature 
Tw  stretching sheet temperature 
T∞  temperature far away from the stretching sheet 
C  concentration of the species 
cb  drag coefficient which is independent of viscosity 
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cp  Specific heat at constant pressure 
Dm  mass diffusion coefficient 
Ao  parameters of temperature distribution on the stretching surface 
A1  parameter of mass distribution on the stretching surface 
A*,B*  coefficients of space and temperature dependent heat source/sink 
b  stretching parameter 
B


  transverse magnetic field 
Bo  uniform transverse magnetic field 
E  electric field 
Ec  Eckert number 
Eo  uniform electric field 
E1  local electromagnetic parameter 
F*  local inertia-coefficient 
Grx  Grashof number 
g  acceleration due to gravity 
Ha  Hartmann number 
k  permeability of the porous medium 
k1  porous parameter 
kT  thermal diffusion ratio 
K  mean absorption coefficient 
Pr  Prandtl number 
Sr  Soret number 
Sc  Schmidt number 
q ′′′   non-uniform heat source/sink 
Rex  local Reynolds number 
Nux  local Nusselt number 
Shx  local Sherwood number 
 
Greek symbols 
θ  non-dimensional temperature parameter 
θr  constant, related to variable viscosity 
βT  co-efficient of thermal expansion 
η  similarity variable 
κ  is the thermal conductivity 
ν  kinematic viscosity 
ρ  density of the fluid 
σ  magnetic permeability 
λ  buoyancy parameter or mixed convection parameter 

 
can be found in many industries. For instance, in the power industry, among the methods of generating electric power is 
one in which electrical energy is extracted from a moving conducting fluid. We are interested in cases in which 
diffusion and chemical reaction occur at roughly the same speed. When diffusion is much faster than chemical reaction, 
then only chemical factors influence the chemical reaction rate; when diffusion is not much faster than reaction, the 
diffusion and kinetics interact to produce very different effects.In view of these applications, [3-8] have studied and 
reported the significance of chemical reaction. The study of heat generation or absorption effects in moving fluids is 
important in view of several physical problems, such as fluids undergoing exothermic or endothermic chemical 
reaction.  
 
The effects of thermal-diffusion (Soret) of heat and mass transfer have been examined by chapman and cowling [9] and 
Hirshfelder et al., [10] from the kinetic theory of gases. Thedy explained the phenomena and derived the necessary 
formulae to calculate the thermal-diffusion coefficient and thermal-diffusion factor for monatomic gases or polyatomic 
gas mixtures. The heat and mass transfer simultaneously affecting each other that will cause the cross-diffusion effect. 
The mass transfer caused by temperature gradients is called Soret or thermal-diffusion effect. Thus Soret effect is 
referred to species differentiation developing in an initial homogeneous mixture submitted to a thermal gradient. The 
Soret effect, for example, has been utilized for isotope separation, and in mixture between gases with very light 
molecular weight (H2, He) and of medium molecular weight (N2, air). The previous studies are based on the constant 
physical parameters of the fluid. For most realistic fluids, the viscosity shows a rather pronounced variation with 
temperature. It is known that the fluid viscosity changes with temperature. Thus it is necessary to take into account the 
variation of viscosity with temperature in order to accurately predict the heat transfer rates. Ali [11] investigated the 
effect of variable viscosity on mixed convection heat transfer along a moving surface. Recently, Mondal et. al., [12] 
have studied MHD non-Darcy mixed convective diffusion of species over a stretching sheet embedded in a porous 
medium with non-uniform heat source/sink, variable viscosity and Soret effect. 
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The effect of the chemical reaction and radiation absorption on the unsteady MHD free convection flow past a semi 
infinite vertical permeable moving plate with heat source and suction investigate by Ibrahim and Elaiw et.al. [13]. 
Jafarunnisa [14] have studied the effect of radiation absorption on unsteady convective heat and mass transfer flow with 
chemical reaction. Naga Leela Kumari [15] have discussed effect of radiation absorption on unsteady hydromagnetic 
convective heat and mass transfer flow in a horizontal channel bounded flat walls with oscillatory flux. Indudara Reddy 
[16] have studied effect of radiation absorption on unsteady hydro magnetic convective heat and mass transfer flow 
through a porous medium past a semi infinite vertically porous plate. 
 
The motivation of this analysis is to investigate the effect of radiation absorption on convective heat and mass transfer 
flow of a chemically reacting viscous electrically conducting fluid with non-uniform heat source past a stretching sheet 
embedded in a porous medium. The flow characteristics are analyzed for different variations of chemical reaction, 
radiation absorption and buoyancy ration and Soret effect. The rate of heat and mass transfer are evaluated numerically. 
 
MATHEMATICAL ANALYSIS 
Consider two dimensional steady incompressible electrically conducting fluid flow over a vertical non linear stretching 
sheet embedded in non-Darcy porous medium with the plane y=0 of a co-ordinate system. The fluid properties are 
assumed to be isotropic and  

 
Fig-1: Boundary layer over stretching sheet 

 
constant, except for the fluid viscosity µ which is assumed to vary as be an inverse linear function of temperature T, in 
the form ( see Lai and Kulacki [17] ): 
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that for 0→γ  i.e. ∞= µµ  (constant) then ∞→rθ . It is also important to note that rθ  is negative for liquids and 
positive for gases. ∞T is free stream temperature. The flow region is exposed under uniform transverse magnetic fields 
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(see Fig.1). Since such imposition of electric and 
magnetic fields stabilizes the boundary layer flow. It is assumed that the flow is generated by stretching of an elastic 
boundary sheet from a slit by imposing two equal and opposite forces in such a way that velocity of the boundary sheet 

is of linear order of the flow direction. We know from Maxwell’s equation that 0. =∇ B

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is the Joule current. The viscous dissipation and velocity of the fluid far away from the plate are assumed to be 
negligible. We assumed that magnetic Reynolds number of the fluid is small so that induced magnetic field and Hall 
effect may be neglected. We take into account of magnetic field effect as well as electric field in momentum. Under the 
above stated physical situation, the governing boundary layer equations for momentum and energy for mixed 
convection under Boussinesq’s approximation are  
 
Conservation of mass: 
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Conservation of momentum: 
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Energy equation:  
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Mass diffusion of species equation: 
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Boundary conditions 
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where u and v are the velocity components in the x and y-directions respectively: Cw stands for concentration at wall, 
C∞ is the concentration far away from the stretching sheet, Dm is the mass diffusivity, Tm is the mean fluid temperature, 

kT is the thermal diffusion ratio, 1
1Q is the radiation absorption coefficient and 1γ is the chemical reaction coefficient. 

To solve the governing boundary layer equations (2)-(5), the following similarity transformations are introduced (see 
[18, 19]): 
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The non-uniform heat source/sink, q ′′′ (see [20,21]) is modeled as 
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where A* and B* are the coefficient of space and temperature dependent heat source/sink respectively. Here we make a 
note that the case A*>0, B*>0 corresponds to internal heat generation and that A*<0, B*<0 corresponds to internal heat 
absorption. 
 
Substitution of equation (7) and (8) into the governing equations (3)-(5) and using the above relations we finally obtain 
a system of non-linear ordinary differential equations with appropriate boundary conditions 
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The boundary condition (6) becomes  
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The local Nusselt number which are defined as 
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where wq  is the heat transfer from the sheet is given by 
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Using the non-dimensional variables (7), we get from equations (13) and (14) as 
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The physical quantity of interest is the local Sherwood number which are defined as  
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Where mq  is the mass transfer which is defined by 
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Using the non-dimensional variables (7) and (17), we get from equation (16) as 
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Finite Element Analysis 
The set of differential equations given in (9)-(11) are highly non-linear and therefore, cannot be solve analytically. 
Hence finite element method has been used for solving it. The finite element method is powerful technique for solving 
ordinary and partial differential equations. This method is so general that it can be applied to a wide variety of 
engineering problems including heat and mass transfer, fluid mechanics and solid mechanics, electrical systems, 
chemical processing. For the finite element method one can refers to Bathe [22] and Reddy [23]. 
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We define the error residuals as 
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where kkkf φθ &, are the values of , &f θ ϕ  in the arbitrary element ke . 
 
Variational formulation 
The variational form associated with equations (18)-(20) over a typical element ),( 1+ee ηη  is given by 

∫
+

=
1

1 0e

e

dEw k
f

η

η
η                                    (21) 

∫
+

=
1

2 0e

e

dEw kη

η θ η                                    (22) 

∫
+

=
1

3 0e

e

dEw kη

η φ η                                    (23) 

 
where 321 &, www  are arbitrary test functions and 31,321 tojwww k

j =Ψ=== . 
 
Finite Element Formulation 
The finite element approximations of kkkf φθ &,   are taken as, 
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For a typical element, the interpolation functions (Shaped functions) are given by 
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where kkk
321 &, ΨΨΨ  are Lagrange’s quadratic polynomials, 6&
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residual method and integrating (18)-(20), we obtain 
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Substituting kkkf φθ &,  in terms of local nodal values, the above equations (25)-(27) reduces to  
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Choosing k

jψ ’s corresponding to each element ek in the equations (28)-(30) yields a local stiffness matrix of order 

33× in the form 
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(31)-(33) in terms of local nodes in each element are assembled using inter element continuity and equilibrium 
conditions to obtain the coupled global matrices in terms of the global nodal values of φθ &,f . The whole domain is 
divided into a set of 100 line elements equations we obtain a matrix of order 201201× . This system of equations as 
obtained after assembly of the elements equations is non-linear therefore an iterative scheme has been used to solve it. 
The system is linearized by incorporating known functions. After applying the given boundary conditions only a 
system of 195 equations remains for the solution which has been solved using Gauss elimination method. Convergence 
is assumed when the ratio of every one of kkkf φθ &, for last 2 approximations differed from unity by less than 10-6 
at all values of η in 0<η<η∞. 
 
Table 1 
Comparison of Local Nusselt number )0(θ ′− for Ha=0, 0=λ , Q1=0, 0=γ  and various values of Pr with 
Ishak[25], Abel[27] and D.Pal[24]. 
 
Pr  Ishak[25] Abel[27]   D.Pal[24] Present result 
1.0  1.3333  1.3333   1.333333 1.332842 
3.0  2.50972 2.50972  2.509725 2.509695 
10  4.7969  4.7969   4.796873 4.801825 
 
Table 2 
Comparison of Local Nusselt Number )0(θ ′− for various values of Ec, Pr, A, B with Abel and D.Pal in absence of 
Hartmann number, porous parameter, chemical reaction and Radiation absorption. 
 
Ec Pr  A  B Abel[27] D.Pal[24] Present result 
0.02 4.0  0.3  0.3  2.68986 2.694002 2.700025 
 
RESULTS & DISCUSSION 
In this analysis we analyze the effect of chemical reaction, radiation absorption on non Darcy convective heat and mass 
transfer flow of viscous electrically conducting fluid over a stretching sheet in the presence of magnetic field. The 
results are presented graphically in figures (2)-(21) for different parametric variations. Comparisons of the present 
results with previously works are performed and excellent agreements have been obtained. The non-linear coupled 
differential equations are solved by Galerkin Finite Element analysis with 3 noded line segments. In the absence of 
chemical reaction and radiation absorption the results are compared with Dulal pal [24]. 
 
The variation of the actual velocity (u) is presented in figures (2)-(6) for different values of Schmidt number Sc, 
Buoyancy ratio N, Chemical reaction parameter γ, Radiation absorption parameter Q1 and Soret parameter Sr. Fig-(2) 
represents the variation of u with Sc. The analysis of the graph reveals that the effect of increasing the value of Sc is to  
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decrease the velocity distribution in the flow region. Physically, the increase of Sc means the decrease of the molecular 
diffusivity D, which results in decrease of the momentum boundary layer. Hence velocity of the species is large for 
smaller values of Sc and lesser for higher values of Sc.  Fig-(3) represents u with buoyancy ratio N. It is found that 
when the molecular buoyancy force dominates over the thermal buoyancy force the actual velocity enhances when the 
buoyancy forces act in the same direction and for the forces acting in opposite direction u depreciates in the flow 
region. Fig-(4) represents u with chemical reaction parameter γ. It is found that the velocity experiences an 
enhancement in the degenerating chemical reaction case and depreciates in the generating chemical reaction case. Fig-
(5) represents u with radiation absorption parameter Q1. We notice that an increase in Q1 enhances u in the flow region. 
The effect of thermo diffusion (Soret effect) on u is shown in fig-(6). It is found that an increase in the Soret parameter 
Sr results in a depreciation in the actual velocity. 
 
The non-dimensional temperature (θ) is shown in figures (7)-(11) for different variation of Sc, N, γ, Q1 and Sr. It is 
found that the temperature rises from its prescribed value 1 on the wall η=0 reaches the maximum at η =1.5 and then 
falls to  the prescribed value 0 far away from the boundary. Fig-(7) represents θ with Schmidt number Sc. It is found 
that lesser the molecular diffusivity smaller the actual temperature in the flow region. Fig-(8) represents θ with 
buoyancy ratio N. It is observed that when the molecular buoyancy force dominates over the thermal buoyancy force 
the temperature experiences a depreciation when the buoyancy forces act in the same direction and for the forces acting 
in opposite directions the temperature enhances in the flow region. Fig-(9) represents θ with chemical reaction 
parameter γ. It is found that temperature enhances in the degenerating chemical reaction case and depreciates in the 
generating chemical reaction case. Fig-(10) represents θ with radiation absorption parameter Q1. It is seen from this 
figure that the temperature distribution increases with increase in radiation absorption parameter Q1, more effectively 
near the surface of the stretching sheet with formation of the peak for higher values of Q1 > 2.0. Fig-(11) represents θ 
with Soret parameter Sr. It is seen from this figure that the temperature distribution increases with increase in Sr more 
effectively near the surface of the stretching sheet with formation of the peak at η =1.5 for any Sr far away from the 
boundary and the temperature depreciates in the flow region.  
 
The non-dimensional concentration C is shown in figures (12)-(16) for different values of Sc, N, γ, Q1 and Sr. The 
concentration gradually depreciates from its prescribed value 1 on η=0 and attains the prescribed value 0 far away from 
the boundary. Fig-(12) represents concentration with Schmidt number Sc. It is notice from the analysis of the graph that 
an  

 
Fig-2: Velocity profile for different values of Sc 

 
Fig-3: Velocity profile for different values of N 

 
Fig-4: Velocity profile for different values of γ 

 
Fig-5: Velocity profile for different values of Q1 
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Fig-6: Velocity profile for different values of Sr 

 
Fig-7: Temperature profile for different values of Sc 

 
Fig-8: Temperature profile for different values of N 

 
Fig-9: Temperature profile for different values of γ 

 
Fig-10: Temperature profile for different values of Q1 

 
Fig-11: Temperature profile for different values of Sr 

 
Fig12: Concentration profile for different values of Sc 

 
Fig13: Concentration profile for different values of N 
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Fig14: Concentration profile for different values of γ 
 

 
Fig15: Concentration profile for different values of Q1 

 

Fig16: Concentration profile for different values of Sr 
 

 
Fig17: Effect of λ on Nusselt Number for different values 
of Sc 

 
Fig18: Effect of λ on Nusselt Number for various values 
of γ 

 
Fig19: Effect of λ on Nusselt Number for various values 
of Q1 

 
Fig20: Effect of λ on Sherwood number for various values 
of Sc 

Fig21: Effect of λ on Sherwood number for various values 
of γ 
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Fig22: Effect of λ on Sherwood number for various values of Q1 

 
increase in Sc is to decrease the concentration distribution. Physically, the increase of Sc means decrease in the 
molecular diffusivity which results in a decrease of concentration boundary layer. Hence the concentration is large for 
smaller values of Sc and lesser for higher values of Sc. Fig-(13) represent C with N. It is found that the concentration 
depreciates with N>0 when the buoyancy forces act in the same direction and for the forces acting in the opposite 
direction it enhances in the entire flow region. Fig-(14) represents C with chemical reaction parameter γ. It is found that 
the concentration distribution enhances in the degenerating chemical reaction case and depreciates in the generating 
chemical reaction case. Fig-(15) represents C with Q1. The concentration depreciates with increase in Q1 in the flow 
region. Fig-(16) represents C with Soret parameter Sr.  It is found that an increase in Sr depreciates the concentration 
distribution in the region 0≤ η ≤4 and enhances far away from the boundary. 
 
The rate of heat transfer at η =0 is shown in figures (17)-(19) for different values of Sc, γ and Q1. The variation of Nu 
with Schmidt number Sc is shown in fig-(17). It is found that an increase in Sc results an enhancement in the rate of 
heat transfer at η =0. The variation of Nu with chemical reaction parameter γ is shown in fig-(18). An increase in γ 
results in depreciation in the rate of heat transfer at η=0 fixing the other parameter. We notice that the depreciation in 
Nu reduces as we move from the surface of the stretching sheet. From fig-(19) we notice that an increase in the 
radiation absorption parameter Q1 is to decrease the rate of heat transfer at η =0. 
 
Figures (20)-(22) represents the Sherwood number (Sh) at the surface of stretching sheet at η=0. Fig-(20) represents the 
Sherwood number Sh with Schmidt number Sc. It is found that lesser the molecular diffusivity larger the rate of mass 
transfer at the wall. The variation of Sh with chemical reaction parameter γ is exhibited in fig-(21). From this analysis 
we conclude that the rate of mass transfer at the wall η=0 depreciates with increase in γ. Fig-(22) represents the 
Sherwood number Sh with radiation absorption Q1. An increase in radiation absorption parameter Q1 results in an 
enhancement in the rate of mass transfer at η=0. As Q1 increases the enhancement in Sh depreciates with higher values 
of Q1. 
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