International Journal of Mathematical Archive-4(3), 2013, 123-127
 \$MA Available online through www.ijma.info ISSN 2229-5046

ON THE ZEROS OF A CERTAIN CLASS OF POLYNOMIALS

M. H. Gulzar*
P. G. Department of Mathematics, University of Kashmir, Srinagar 190006, India

(Received on: 20-02-13; Revised \& Accepted on: 11-03-13)

Abstract

In this paper we prove some results on the location of zeros of a certain class of polynomials. These results generalize some known results in the theory of the distribution of zeros of polynomials.

Mathematics Subject Classification: 30C10, 30C15.
Key-words and phrases: Polynomial, Disk, Zero.

1. INTRODUCTION AND STATEMENT OF RESULTS

Regarding the location of zeros of polynomials, B. A. Zargar [8], recently proved the following results:
Theorem A: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some real number $k \geq 1$,
$\operatorname{Max}_{|z|=1}\left|\left(k a_{n}-a_{n-1}\right)+\left(a_{n-1}-a_{n-2}\right) z+\ldots \ldots+\left(a_{1}-a_{0}\right) z^{n-1}+a_{0} z^{n}\right| \leq M$, then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the disk

$$
|z+k-1| \leq \frac{M}{\left|a_{n}\right|} .
$$

Theorem B: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some positive real numbers t and $k \geq 1$,

$$
\operatorname{Max}_{|z|=\frac{1}{t}}|H(z)| \leq M,
$$

where
$H(z)=\left(t k a_{n}-a_{n-1}\right)+\left(a_{n-1}-a_{n-2}\right) z+\ldots \ldots+\left(a_{1}-a_{0}\right) z^{n-1}+a_{0} z^{n}$, then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the disk

$$
|z+t(k-1)| \leq \frac{M}{\left|a_{n}\right|} .
$$

Theorem C: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some positive real numberst and $k \geq 1$,

$$
\operatorname{Max}_{|z|=R}|H(z)| \leq M,
$$

where
$H(z)=\left(t k a_{n}-a_{n-1}\right)+\left(t a_{n-1}-a_{n-2}\right) z+\ldots \ldots .+\left(t a_{1}-a_{0}\right) z^{n-1}+t a_{0} z^{n}$, then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the disk

$$
|z+t(k-1)| \leq \frac{M}{\left|a_{n}\right|} \text {, if } M \geq\left[k t+\left(\frac{1}{R}-t\right)\right]\left|a_{n}\right|
$$

and in

$$
|z| \leq t(2 k-1)+\left(\frac{1}{R}-t\right) \text {, if } \quad M<\left[k t+\left(\frac{1}{R}-t\right)\right]\left|a_{n}\right| .
$$

The aim of this paper is to give generalizations of the above mentioned results. More precisely, we prove the following results:

Theorem 1: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some real numbers $\mathrm{t}>0$ and $\rho \geq 0$,

$$
\operatorname{Max}_{|z|=R}|H(z)| \leq M
$$

where
$H(z)=\left\{t\left(\rho+a_{n}\right)-a_{n-1}\right\}+\left(t a_{n-1}-a_{n-2}\right) z+\ldots \ldots+\left(t a_{1}-a_{0}\right) z^{n-1}+t a_{0} z^{n}$, then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the disk

$$
\left|z+\frac{t \rho}{a_{n}}\right| \leq \frac{M}{\left|a_{n}\right|}, \text { if } M \geq t \rho+\frac{\left|a_{n}\right|}{R}
$$

and in

$$
|z| \leq \frac{1}{R}+\frac{2 t \rho}{\left|a_{n}\right|}, \text { if } \quad M<t \rho+\frac{\left|a_{n}\right|}{R} .
$$

Remark 1: For different values of the parameters R and t , we get many interesting results. Taking $\rho=(k-1) a_{n}$, Theorem 1 reduces to Theorem C.
Taking $R=\frac{1}{t}$, Theorem 1 gives the following result, which reduces to Theorem B by taking $\rho=(k-1) a_{n}$:

Theorem 2: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some real numbers $\mathrm{t}>0$ and $\rho \geq 0$,

$$
\operatorname{Max}_{|z|=\frac{1}{t}}|H(z)| \leq M, \text { where }
$$

$H(z)=\left\{t\left(\rho+a_{n}\right)-a_{n-1}\right\}+\left(t a_{n-1}-a_{n-2}\right) z+\ldots \ldots+\left(t a_{1}-a_{0}\right) z^{n-1}+t a_{0} z^{n}$, then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the disk

$$
\left|z+\frac{t \rho}{a_{n}}\right| \leq \frac{M}{\left|a_{n}\right|}
$$

Taking $t=1$ in Theorem 2, we get the following result, which reduces to Theorem A by taking $\rho=(k-1) a_{n}$:

Theorem 3: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some real number $\rho \geq 0$,

$$
\operatorname{Max}_{|z|=1}|H(z)| \leq M
$$

where
$H(z)=\left\{\left(\rho+a_{n}\right)-a_{n-1}\right\}+\left(a_{n-1}-a_{n-2}\right) z+\ldots \ldots+\left(a_{1}-a_{0}\right) z^{n-1}+a_{0} z^{n}$ ", then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the disk

$$
\left|z+\frac{\rho}{a_{n}}\right| \leq \frac{M}{\left|a_{n}\right|}
$$

2. PROOFS OF THE THEOREMS

Proof of Theorem 1: Let

$$
\begin{aligned}
\mathrm{F}(\mathrm{z}) & =(\mathrm{t}-\mathrm{z}) \mathrm{P}(\mathrm{z}) \\
& =(t-z)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots \ldots+a_{1} z+a_{0}\right)^{\prime \prime} \\
& =-a_{n} z^{n+1}+\left(t a_{n}-a_{n-1}\right) z^{n}+\ldots . .+\left(t a_{1}-a_{0}\right) z+a_{0} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
G(z) & =z^{n+1} F\left(\frac{1}{z}\right) \\
& =-a_{n}+\left(t a_{n}-a_{n-1}\right) z+\ldots \ldots+\left(t a_{1}-a_{0}\right) z^{n}+t a_{0} z^{n+1} \\
& \left.=-a_{n}-t \rho z+\left\{t\left(\rho+a_{n}\right)-a_{n-1}\right)\right\} z+\ldots \ldots+\left(t a_{1}-a_{0}\right) z^{n}+t a_{0} z^{n+1} \\
& =-a_{n}-t \rho z+z H(z)
\end{aligned}
$$

Since $H(z)$ is analytic for $|z| \leq R$ and $|H(z)| \leq M$ for $|z|=R$, it follows by Maximum Modulus Theorem that $|H(z)| \leq M$ for $|z| \leq R$.

Hence for $\quad|z| \leq R$,

$$
\begin{aligned}
|G(z)| & \geq\left|a_{n}+t \rho z\right|-|z| M \\
& >0
\end{aligned}
$$

if

$$
M|z|<\left|a_{n}+t \rho z\right|
$$

i.e. if

$$
\frac{M|z|}{\left|a_{n}\right|}<\left|1+\frac{t \rho z}{a_{n}}\right|
$$

Thus for $|z| \leq R,|G(z)|>0$ for $z \in A$,
where

$$
A=\left\{z ; \frac{M|z|}{\left|a_{n}\right|}<\left|1+\frac{t \rho z}{a_{n}}\right|\right\}
$$

We show if $w \in A$, then $|w| \leq R$ if

$$
M \geq t \rho+\frac{\left|a_{n}\right|}{R}
$$

Let $w \in A$, then

$$
\begin{aligned}
\frac{M|w|}{\left|a_{n}\right|} & <\left\lvert\, 1+\frac{t \rho w}{a_{n} \mid}\right. \\
& \leq 1+\frac{t \rho|w|}{\left|a_{n}\right|} .
\end{aligned}
$$

Which implies

$$
\left(\frac{M-t \rho}{\left|a_{n}\right|}\right)|w|<1
$$

or $\quad|w|<\frac{\left|a_{n}\right|}{M-t \rho}$
if

$$
\left|a_{n}\right| \leq M R-t \rho R
$$

or if

$$
M \geq t \rho+\frac{\left|a_{n}\right|}{R}
$$

Thus for $|w| \leq R$,

$$
|G(z)|>0 \text { if } \frac{M|z|}{\left|a_{n}\right|}<\left|1+\frac{t \rho z}{a_{n}}\right| .
$$

This shows that all the zeros of $\mathrm{G}(\mathrm{z})$ lie in the region defined by

$$
\frac{M|z|}{\left|a_{n}\right|} \geq\left|1+\frac{t \rho z}{a_{n}}\right| .
$$

Replacing z by $\frac{1}{z}$ and noting that $F(z)=z^{n+1} G\left(\frac{1}{z}\right)$, it follows that all the zeros of $F(z)$ lie in

$$
\left|z+\frac{t \rho}{a_{n}}\right| \leq \frac{M}{\left|a_{n}\right|} .
$$

Since all the zeros of $\mathrm{P}(\mathrm{z})$ are also the zeros of $\mathrm{F}(\mathrm{z})$, we conclude that all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the disk

$$
\left|z+\frac{t \rho}{a_{n}}\right| \leq \frac{M}{\left|a_{n}\right|} \text {, if } M \geq t \rho+\frac{\left|a_{n}\right|}{R} .
$$

Now, suppose that

$$
M<t \rho+\frac{\left|a_{n}\right|}{R} .
$$

Then, for $|z| \leq R$,

$$
\begin{aligned}
|G(z)| & =\left|-a_{n}-t \rho z+z H(z)\right| \\
& \geq\left|a_{n}\right|-[t \rho|z|+|z| \mid H(z)] \\
& \geq\left|a_{n}\right|\left[1-\frac{|z|(t \rho+M)}{\left|a_{n}\right|}\right] \\
& >\left|a_{n}\right|\left[1-\frac{|z|\left(t \rho+t \rho+\frac{\left|a_{n}\right|}{R}\right)}{\left|a_{n}\right|}\right] \\
& \left.=\left|a_{n}\right| \left\lvert\, 1-\frac{\left\lvert\, z\left(2 t \rho+\frac{\left|a_{n}\right|}{R}\right)\right.}{\left|a_{n}\right|}\right.\right] \\
& >0
\end{aligned}
$$

if

$$
|z|<\frac{\left|a_{n}\right|}{2 t \rho+\frac{\left|a_{n}\right|}{R}} .
$$

This shows that all the zeros of $\mathrm{G}(\mathrm{z})$ lie in the region

$$
|z| \geq \frac{\left|a_{n}\right|}{2 t \rho+\frac{\left|a_{n}\right|}{R}}
$$

Replacing z by $\frac{1}{z}$ and as before noting that $F(z)=z^{n+1} G\left(\frac{1}{z}\right)$, it follows that all the zeros of $F(z)$ and hence all the zeros of $\mathrm{P}(\mathrm{z})$ lie in

$$
\begin{array}{r}
\quad|z| \leq \frac{2 t \rho+\frac{\left|a_{n}\right|}{R}}{\left|a_{n}\right|} \\
\text { i.e. } \quad|z| \leq \frac{1}{R}+\frac{2 t \rho}{\left|a_{n}\right|} .
\end{array}
$$

That proves Theorem 1.

REFERENCES

[1] A. Aziz and Q. G. Mohammad, On the zeros of a certain class of polynomials and related analytic functions, J. Math. Anal.Appl. 75 (1980), 495-502.
[2] A. Aziz and W. M. Shah, On the zeros of polynomials and related analytic functions, Glasnik Mathematicki, 33 (1998), 173-189.
[3] A. Aziz and B. A. Zargar, Some extensions of Enestrom-Kakeya Theorem, Glasnik Mathematicki, 31(1996), 239244.
[4] K. K. Dewan and M. Bidkham, On the Enestrom-Kakeya Theorem, J. Math. Anal. Appl. 180(1993), 9-36.
[5] N. K. Govil and Q. I. Rahman, On the Enestrom-Kakeya Theorem, Tohoku Math.J. 20 (1968), 126-136.
[6] A. Joyal, G. Labelle and Q. I. Rahman, On the location of the zeros of polynomials, Canad. Math. Bull. 10 (1967), 53-63.
[7] M. Marden, Geometry of Polynomials, Math. Surveys No.3, Amer. Math. Soc. (R.I. Providence) 1996.
[8] B. A. Zargar, Some compact generalizations of Enestrom-Kakeya Theorem for polynomials, Advances in Inequalities and Applications, 1 (2012), 45-52.

Source of support: Nil, Conflict of interest: None Declared

