ON THE ZEROS OF A CERTAIN CLASS OF POLYNOMIALS

M. H. Gulzar*

P. G. Department of Mathematics, University of Kashmir, Srinagar 190006, India

(Received on: 20-02-13; Revised & Accepted on: 11-03-13)

ABSTRACT

In this paper we prove some results on the location of zeros of a certain class of polynomials. These results generalize some known results in the theory of the distribution of zeros of polynomials.

Mathematics Subject Classification: 30C10, 30C15.

Key-words and phrases: Polynomial, Disk, Zero.

1. INTRODUCTION AND STATEMENT OF RESULTS

Regarding the location of zeros of polynomials, B. A. Zargar [8], recently proved the following results:

Theorem A: Let $P(z) = \sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n. If for some real number $k \ge 1$,

 $Max_{|z|=1} \Big| (ka_n - a_{n-1}) + (a_{n-1} - a_{n-2})z + \dots + (a_1 - a_0)z^{n-1} + a_0z^n \Big| \le M$, then all the zeros of P(z) lie in the disk

$$\left|z+k-1\right| \leq \frac{M}{\left|a_{n}\right|}$$
.

Theorem B: Let $P(z) = \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n. If for some positive real numbers t and $k \ge 1$,

$$Max_{|z|=\frac{1}{z}}|H(z)| \leq M$$
,

where

$$H(z) = (tka_n - a_{n-1}) + (a_{n-1} - a_{n-2})z + \dots + (a_1 - a_0)z^{n-1} + a_0z^n, \text{ then all the zeros of P(z) lie in the disk}$$

$$\left|z + t(k-1)\right| \le \frac{M}{|a_n|}.$$

Theorem C: Let $P(z) = \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n. If for some positive real numbers t and $k \ge 1$,

$$Max_{|z|=R}|H(z)| \leq M$$
,

where

 $H(z) = (tka_n - a_{n-1}) + (ta_{n-1} - a_{n-2})z + \dots + (ta_1 - a_0)z^{n-1} + ta_0z^n$, then all the zeros of P(z) lie in the disk

$$|z+t(k-1)| \le \frac{M}{|a_n|}$$
, if $M \ge [kt + (\frac{1}{R}-t)]|a_n|$

and in

$$|z| \le t(2k-1) + \left(\frac{1}{R} - t\right)$$
, if $M < \left\lceil kt + \left(\frac{1}{R} - t\right) \right\rceil |a_n|$.

The aim of this paper is to give generalizations of the above mentioned results. More precisely, we prove the following results:

Theorem 1: Let $P(z) = \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n. If for some real numbers t>0 and $\rho \ge 0$,

$$Max_{|z|=R}|H(z)| \leq M$$
,

where

 $H(z) = \{t(\rho + a_n) - a_{n-1}\} + (ta_{n-1} - a_{n-2})z + \dots + (ta_1 - a_0)z^{n-1} + ta_0z^n \text{ , then all the zeros of P(z) lie in the disk}$

$$\left|z + \frac{t\rho}{a_n}\right| \le \frac{M}{|a_n|}$$
, if $M \ge t\rho + \frac{|a_n|}{R}$

and in

$$\left| z \right| \le \frac{1}{R} + \frac{2t\rho}{\left| a_n \right|}$$
, if $M < t\rho + \frac{\left| a_n \right|}{R}$.

Remark 1: For different values of the parameters R and t, we get many interesting results. Taking $\rho = (k-1)a_n$, Theorem 1 reduces to Theorem C.

Taking $R = \frac{1}{t}$, Theorem 1 gives the following result, which reduces to Theorem B by taking $\rho = (k-1)a_n$:

Theorem 2: Let $P(z) = \sum_{i=0}^{n} a_{i} z^{j}$ be a polynomial of degree n. If for some real numbers t>0 and $\rho \ge 0$,

$$Max_{|z|=\frac{1}{t}} |H(z)| \le M$$
 , where

 $H(z) = \{t(\rho + a_n) - a_{n-1}\} + (ta_{n-1} - a_{n-2})z + \dots + (ta_1 - a_0)z^{n-1} + ta_0z^n \text{ , then all the zeros of P(z) lie in the disk}$

$$\left|z + \frac{t\rho}{a_n}\right| \le \frac{M}{|a_n|}.$$

Taking t = 1 in Theorem 2, we get the following result, which reduces to Theorem A by taking $\rho = (k-1)a_n$:

Theorem 3: Let $P(z) = \sum_{i=0}^{n} a_{i} z^{j}$ be a polynomial of degree n. If for some real number $\rho \ge 0$,

$$Max_{|z|=1}|H(z)| \leq M$$
,

where

 $H(z) = \left\{ (\rho + a_n) - a_{n-1} \right\} + (a_{n-1} - a_{n-2})z + \dots + (a_1 - a_0)z^{n-1} + a_0z^n \text{"}, \text{ then all the zeros of P(z) lie in the disk}$

$$\left|z + \frac{\rho}{a_n}\right| \le \frac{M}{|a_n|}.$$

2. PROOFS OF THE THEOREMS

Proof of Theorem 1: Let

$$F(z) = (t-z)P(z)$$

$$= (t-z)(a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0)''$$

$$= -a_n z^{n+1} + (ta_n - a_{n-1})z^n + \dots + (ta_1 - a_0)z + a_0.$$

Then we have

$$G(z) = z^{n+1} F(\frac{1}{z})$$

$$= -a_n + (ta_n - a_{n-1})z + \dots + (ta_1 - a_0)z^n + ta_0 z^{n+1}$$

$$= -a_n - t\rho z + \{t(\rho + a_n) - a_{n-1}\}z + \dots + (ta_1 - a_0)z^n + ta_0 z^{n+1}$$

$$= -a_n - t\rho z + zH(z).$$

Since H(z) is analytic for $|z| \le R$ and $|H(z)| \le M$ for |z| = R, it follows by Maximum Modulus Theorem that $|H(z)| \le M$ for $|z| \le R$.

Hence for $|z| \le R$,

$$|G(z)| \ge |a_n + t\rho z| - |z|M$$

> 0

if

$$M|z| < |a_n + t\rho z|$$

i.e. if

$$\frac{M|z|}{|a_n|} < \left|1 + \frac{t\rho z}{a_n}\right|.$$

Thus for $|z| \le R$, |G(z)| > 0 for $z \in A$,

where

$$A = \left\{ z; \frac{M|z|}{|a_n|} < \left| 1 + \frac{t\rho z}{a_n} \right| \right\}.$$

We show if $w \in A$, then $|w| \le R$ if

$$M \ge t\rho + \frac{\left|a_n\right|}{R}.$$

Let $w \in A$, then

$$\frac{M|w|}{|a_n|} < \left| 1 + \frac{t\rho w}{a_n} \right|$$

$$\leq 1 + \frac{t\rho|w|}{|a_n|}.$$

Which implies

$$\left(\frac{M-t\rho}{|a_n|}\right)|w|<1$$

or

$$\left|w\right| < \frac{\left|a_{n}\right|}{M - t\rho}$$

$$\leq R$$

if

$$\left|a_{n}\right| \leq MR - t\rho R$$

or if

$$M \ge t\rho + \frac{\left|a_n\right|}{R}.$$

Thus for $|w| \leq R$,

$$|G(z)| > 0 \text{ if } \frac{M|z|}{|a_n|} < 1 + \frac{t\rho z}{a_n}.$$

This shows that all the zeros of G(z) lie in the region defined by

$$\frac{M|z|}{|a_n|} \ge \left|1 + \frac{t\rho z}{a_n}\right|.$$

Replacing z by $\frac{1}{z}$ and noting that $F(z)=z^{n+1}G(\frac{1}{z})$, it follows that all the zeros of F(z) lie in $\left|z+\frac{t\rho}{a_n}\right|\leq \frac{M}{|a_n|}$.

Since all the zeros of P(z) are also the zeros of F(z), we conclude that all the zeros of P(z) lie in the disk

$$\left|z + \frac{t\rho}{a_n}\right| \le \frac{M}{\left|a_n\right|}, \text{ if } M \ge t\rho + \frac{\left|a_n\right|}{R}.$$

Now, suppose that

$$M < t\rho + \frac{\left|a_n\right|}{R}.$$

Then, for $|z| \le R$,

$$|G(z)| = |-a_n - t\rho z + zH(z)|$$

$$\ge |a_n| - [t\rho|z| + |z||H(z)|]$$

$$\ge |a_n| \left[1 - \frac{|z|(t\rho + M)}{|a|}\right]$$

$$> |a_n| \left[1 - \frac{|z|(t\rho + t\rho + \frac{|a_n|}{R})}{|a_n|} \right]$$

$$= \left| a_n \right| \left[1 - \frac{\left| z \right| (2t\rho + \frac{\left| a_n \right|}{R})}{\left| a_n \right|} \right]$$

$$> 0$$

if

$$\left|z\right| < \frac{\left|a_{n}\right|}{2t\rho + \frac{\left|a_{n}\right|}{P}}.$$

This shows that all the zeros of G(z) lie in the region

$$|z| \ge \frac{|a_n|}{2t\rho + \frac{|a_n|}{R}}.$$

M. H. Gulzar*/ On the Zeros of a Certain Class of Polynomials/IJMA- 4(3), March.-2013.

Replacing z by $\frac{1}{z}$ and as before noting that $F(z) = z^{n+1}G\left(\frac{1}{z}\right)$, it follows that all the zeros of F(z) and hence all the zeros of P(z) lie in

$$|z| \le \frac{2t\rho + \frac{|a_n|}{R}}{|a_n|}$$

i.e.

$$\left|z\right| \le \frac{1}{R} + \frac{2t\rho}{\left|a_{n}\right|}.$$

That proves Theorem 1.

REFERENCES

[1] A. Aziz and Q. G. Mohammad, On the zeros of a certain class of polynomials and related analytic functions, J. Math. Anal.Appl.75 (1980), 495-502.

[2] A. Aziz and W. M. Shah, On the zeros of polynomials and related analytic functions, Glasnik Mathematicki, 33 (1998), 173-189.

[3] A. Aziz and B. A. Zargar, Some extensions of Enestrom-Kakeya Theorem, Glasnik Mathematicki, 31(1996), 239-244.

[4] K. K. Dewan and M. Bidkham, On the Enestrom-Kakeya Theorem, J. Math. Anal. Appl. 180(1993), 9-36.

[5] N. K. Govil and Q. I. Rahman, On the Enestrom-Kakeya Theorem, Tohoku Math.J.20 (1968), 126-136.

[6] A. Joyal, G. Labelle and Q. I. Rahman, On the location of the zeros of polynomials, Canad. Math. Bull.10 (1967), 53-63.

[7] M. Marden, Geometry of Polynomials, Math. Surveys No.3, Amer. Math. Soc. (R.I. Providence) 1996.

[8] B. A. Zargar, Some compact generalizations of Enestrom-Kakeya Theorem for polynomials, Advances in Inequalities and Applications, 1 (2012), 45-52.

Source of support: Nil, Conflict of interest: None Declared