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ABSTRACT 
In this paper we prove some results on the location of zeros of a certain class of polynomials. These results generalize 
some known results in the theory of the distribution of zeros of polynomials. 
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1. INTRODUCTION AND STATEMENT OF RESULTS 
Regarding the location of zeros of polynomials, B. A. Zargar [8], recently proved the following results: 
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The aim of this paper is to give generalizations of the above mentioned results. More precisely, we prove the following 
results: 
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Remark 1: For different values of the parameters R and t, we get many interesting results. Taking  nak )1( −=ρ , 
Theorem 1 reduces to Theorem C. 

Taking  
t
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=  , Theorem 1 gives the following result, which reduces to Theorem B by taking nak )1( −=ρ : 
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2. PROOFS OF THE THEOREMS 

 
Proof of Theorem 1: Let 
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Then we have 
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Thus for Rw ≤ , 
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This shows that all the zeros of G(z) lie in the region defined by 
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Since all the zeros of P(z) are also the zeros of F(z) , we conclude that all the zeros of P(z) lie in the disk 
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That proves Theorem 1. 
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