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ABSTRACT 
 

In this paper, we prove the existence of extremal solution for the first order initial value problem of random 
differential equation through random fixed point theory.  
 
Keywords: Random differential equation, random solution, initial value problem, Carathe’odory condition. 
 
2000Mathematics Subject Classifications: 60H25, 47H40, 47N20.       
 
 
1. DESCRIPTION OF THE PROBLEM 
Let R denote the real line and let [0, ]J T= be a closed and bounded interval in .R  let 1( , )C J R denote the class of 
real - valued functions defined and continuously differentiable on J . Given a measurable space ( , )AΩ and for a given 

measurable function 0 :q RΩ→ , consider the initial value problem of first order ordinary random differential 
equation ( in short RDE), 
 

0

'( , ) ( , ( , ), ) . . ,
(0, ) ( ) ,

x t f t x t a e t J
x q

ω ω ω
ω ω

= ∈
=

                                                                                                                     (1.1) 

for all ω∈Ω , where :f J R R× ×Ω→ . 

 
By a random solution of the RDE. (1.1), we mean a measurable function 1: ( , )x AC J RΩ→ that satisfies the 

equation in (1.1) where 1( , )AC J R is the space of real valued functions defined and absolutely continuously 
differentiable on J . 
 
The RDE (1.1) is not new to the theory random differential equations. When the random parameter ω is absent, the 
RDE (1.1) reduces to the classical RDE of first order ordinary differential equations (ODE), 
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x t f t x t a e t J
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=

                                                                                                                                    (1.2) 

where :f J R R× → . 
 
The classical ODE (1.2) has been studied in the literature by several authors for different aspects of the solutions. See 
for example, Heikkilä and Lakshikantham [7] and the references therein. In this paper, we discuss the RDE (1.1) for 
existence of extremal solution under suitable conditions of the non-linearity f  which thereby generalize several 
existence results of the RDE (1.2) proved in the above papers, through non-linear alternative of Leray-Schauder 
type(Dhage[4,5] and an algebraic random fixed point theorem of Dhage[4] and also see D. S. Palimkar [10, 11]. 
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2. AUXILIARY RESULTS 
Theorem 2.1: (Carath’eodory) Let :Q E EΩ× →  be a mapping such that (., )Q x is measurable for all x E∈  
and ( , .)Q ω  is continuous for allω∈Ω . Then the map ( , ) ( , )x Q xω ω→ is jointly measurable.  
 
The following lemma is useful in the study of first order initial value problems of ordinary random differential 
equations via fixed point techniques. 
 
Lemma 2.1: For any function 1: ( , )h J L J R→ , a function 1: ( , )x J C J R→  is a solution to the differential 
equation, 

( ) ( )'  . . ,x t h t a e t J= ∈
 

( ) 00 ,x q=                                                                                                                                                                    (2.1) 
 
if and only if it is a solution of the integral equation.  

( ) ( )0
0

  ds .       
t

x t q h s= + ∫                                                                                                                                    (2.2) 

 
3. EXISTENCE RESULTS 
Definition 3.1: A Function :f J R R× ×Ω→ is called random Carathe’odory, if the following conditions are 
satisfied:- 
(i) the map ( , ) ( , , )t t xω ω→ is jointly measurable for all x R∈ ,  and    

(ii) the map ( , , )x f t x ω→ is continuous for all  t J∈  and ω∈Ω . 
 
Definition 3.2: A Carathe’odory function :f J R R× ×Ω→ is called random 1L -Carathe’odory, if for each real 

number r > 0 there is a measurable and bounded function 1: ( , )rh L J RΩ→  such that 

( , , ) ( , )rf t x h tω ω≤         a.e. t J∈   
 
for all ω∈Ω  and x R∈  with x r≤ . Similarly, a Carathe’odory function f is called random 1

RL -Carath’eodory if 
there is a measurable and bounded function h : Ω → L1 (J, R) such that 
 

( , , ) ( , )f t x h tω ω≤       a.e. t J∈   

for all ω∈Ω  and x R∈  . 
 
Definition 3.3: A closed set K  of the Banach space E  is called a cone if: 
(i) K K K+ ⊆ , 

(ii) K Kλ ⊂  for all Rλ +∈ ,and 

(iii) { } { }K K θ∩ = , 

where θ  is the zero element of E . We introduce an order relation≤  in E  with the help of the cone K  in E  as 
follows. Let ,x y∈E, then we define 
x y y x K≤ ⇔ − ∈ . 
 
A cone K  in the Banach space E  is called normal,if the norm .  is semi-monotone on K  i. e., if ,x y∈ K ,then  

x y x y+ ≤ + .Again a cone K  is called a regular, if every non decreasing order buounded sequence in E
converges in norm.  The details of different types of cones and their properties appear in Deimling [3], Heikilla and 
Lakshmikantham [7].                                                                                                                                                       
 
Definition 3.4: An operator :Q E EΩ× →  is called non-decreasing if ( ) ( )Q x Q yω ω≤  for allω∈Ω  and for all 

,x y E∈  for which x y≤ .  
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We use the following random fixed point theorem of Dhage [4, 5] in follows. 
 
Theorem 3.1: (Dhage [4]) Let ( , )AΩ  be a measurable space and let[ , ]a b  be a random order interval in the 

separable Banach space E .Let : [ , ] [ , ]Q a b a bΩ× →  be a completely continuous and nondecreasing random 

operator. Then Q  has a least fixed point *x  and a greatest random fixed point *y in[ , ]a b . Moreover, the sequences 

{ ( ) }nQ xω  with ox a=  and { ( ) }nQ yω
 
with oy a=  converges to *x  and *y respectively. 

 
We need the following definitions in the sequel. 
 
Definition 3.6: A measurable function : ( , )a C J RΩ→  is called a lower random solution for the PBVP (1.1) if  

0

'( , ) ( , ( , ), ) . . ,
(0, ) ( ),

a t f t a t a e t J
a q

ω ω ω
ω ω

≤ ∈
≤

   

for all ω∈Ω . Similarly, a measurable function : ( , )b C J RΩ→  is called an upper random solution for the IVP 
(1.1) if        

0

'( , ) ( , ( , ), ) . . ,
(0, ) ( ),

b t f t b t a e t J
b q

ω ω ω
ω ω

≥ ∈
≥

  

for all ω ∈Ω .      
 
Note that a random solution for the random RDE (1.1) is lower as well as upper random solution for the random RDE 
(1.1) defined on .J  
 
Definition 3.7: A random solution Mr for the random RDE (1.1)  is called maximal if for all random solutions of the 

random RDE (1.1), one has ( , ) ( , )Mx t r tω ω≤  all t J∈ and ω∈Ω . Similarly, a minimal random solution to the IVP 

(1.1) on J  is defined. 
 
Definition 3.8: A function :f J R R× ×Ω→ is called random non-decreasing Carathe’odory if: 
(i) The map ( , ) ( , , )t f t xω ω→ is jointly measurable, 
(ii) The map ( , , )x f t x ω→  is continuous and non-decreasing for all t J∈ andω∈Ω .  
 
Definition 3.9: A function ( , , )f t x ω is called random non-decreasing 1L -Carathe’odory if for each real number r  > 0
there exists a measurable function 1: ( , )rh L J RΩ→  such that for for all ω∈Ω            

( , , ) ( , ) . .rf t x h t a e t Jω ω≤ ∈ for all x R∈  with x r≤ . 
 
We consider the following set of assumptions:  
(A1) The functions f  is random Carathe’odory on J R× ×Ω . 
 
(A2) There exists a measurable and bounded function 1: ( , )L J Rγ Ω→ and a continuous and non- decreasing   

         function : (0, )Rγ + → ∞  such that 

        
( , , ) ( , ) ( )f t x t xω γ ω ψ≤  a. e. t J∈  

        for all ω∈Ω  and x R∈ .Moreover, we assume that
( )C

dr
rψ

∞

= ∞∫  for all 0C ≥     

(A3) The function f is random non-decreasing Carathe’odory on J R× ×Ω .     
 
(A4) The RDE (1.1) has a lower random solution a  and upper random solution b  with a b≤ on .J  
 
(A5) The function :h J R+×Ω→ defined by  

        
( , ) ( , ( , ), ) ( , ( , ), )h t f t a t f t b tω ω ω ω ω= + is Lebesgue integrable in t  for allω∈Ω .  
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Remark 3.1: If the hypotheses (A3) and (A5) hold, then for eachω ∈Ω , 

( , ( , ), ) ( , )f t a t h tω ω ω≤
 

for all t J∈ and [ , ]x a b∈ and the map ( , )h tω ω→ is measurable onΩ . 
 
Remark 3.2: Hypothesis (A3) is natural and used in several research papers on random differential and integral 
equations (see Dhage [4, 5] and the references given therein). Hypothesis (A4) holds, in particular, if there exist 
measurable functions , : ( , )u v C J RΩ→  such that for each ω∈Ω , 

( , ) ( , , ) ( , )u t f t x v tω ω ω≤ ≤  
for all t J∈ and x R∈ .In this case, the lower and upper random solutions to the random RDE(1.1) are given by 

0
0

( , ) ( ) ( , )
t

a t q u s dsω ω ω= + ∫  

and 

0
0

( , ) ( ) ( , ) ( , )
t

b t q u t s v s dsω ω ω= + ∫    

respectively. The details about the lower and upper random solutions for different types of random differential equations 
may be found in Ladde and Lakshmikantham [9].Finally, hypothesis (A5) remains valid if the function f  is 1L -

Carathe’odory on J R× ×Ω . 
 
Theorem 3.2: Assume that the hypothesis (A1),  (A3) to  (A5) hold. Then the RDE (1.1) has a minimal random solution 

*( )x ω
 and maximal random solution 

*( )y ω defined on J .Moreover, 

*( , ) lim ( , )nn
x t x tω ω

→∞
=  and 

*( , ) lim ( , )nn
y t y tω ω

→∞
=  

for all t J∈  and ω ∈Ω ,where random sequences { }( )nx ω and { }( )ny ω are given by,
                                          

1 0 0
0

( , ) ( ) ( , ), ) , 0 ,
t

n nx t q x s ds n with x aω ω ω ω+ = + ≥ =∫  

and 

1 0 0
0

( , ) ( ) ( , ), ) , 0 ,
t

n ny t q y s ds n with y bω ω ω ω+ = + ≥ =∫         

for all t J∈ andω∈Ω . 
 
Proof:  Set ( , )E C J R=  and define a mapping [ ] [ ]: , ,Q a b a bΩ× →  by  

0
0

( ) ( ) ( ) ( , ( , ), )
t

Q x t q f s x s dsω ω ω ω= + ∫                                                                                                          (3.1) 

 for all t J∈  and ω∈Ω . 
 
Now the map 0 ( )t q ω→  is continuous for all ω∈Ω . Again, as the indefinite integral is continuous   on J , ( )Q ω
defines a mapping [ ] [ ]: , ,Q a b a bΩ× → ,   
 
We show that Q  satisfies all the conditions of Theorem 3.1 on [ ],a b . 

First, we show that Q  is random operator on E . Since ( , , )f t x ω is random Carathe’odory, the map ( , , )f t xω ω→  
is measurable in view of Theorem 2.1 Similarly, the product ( , ( , ), )f s x s ω ω  of a continuous and a measurable 
function is again measurable. Further, the integral is a limit of a finite sum of measurable functions, therefore, the map 

0
0

( ) ( , ( , ), ) ( ) ( )
t

q f s x s ds Q x tω ω ω ω ω→ + =∫
 

 is measurable. As a result, Q  is a random operator on 

[ ] [ ]: , ,Q a b a bΩ× → .   
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Then, it is random non-decreasing 1L -Carathe’odory. First, we show that ( )Q ω is non-decreasing on [ ],a b .Let 

[ ], : ,x y a bΩ→  
be arbitrary such that x y≤  on Ω .Then, 

0
0

( ) ( ) ( ) ( , ( , ))
t

Q x t q f s x s dsω ω ω≤ + ∫  

                  
0

0

( ) ( , ( , ))
t

q f s y s dsω ω≤ + ∫                        

                  ( ) ( )Q y tω≤       
for all t∈J and ω ∈Ω .As a result, ( ) ( )Q x Q yω ω≤ for all ω∈Ω  and that Q  is non-decreasing random operator 
on [ ],a b . 

Secondly, by hypothesis 4( )H , 
( , ) ( ) ( )a t Q a tω ω≤   

               0
0

( ) ( , ( , ))
t

q f s a s dsω ω≤ + ∫    

              
0

0

( ) ( , ( , ))
t

q f s x s dsω ω≤ + ∫  

              ( ) ( )Q x tω≤  

              ( ) ( )Q b tω≤  

              
0

0

( ) ( , ( , ))
t

q f s b s dsω ω≤ + ∫  

              ≤ ( , )b t ω  
for all t∈J and ω∈Ω .As a result Q defines random  operator [ ] [ ]: , ,Q a b a bΩ× → . 
 
Next, since (A5) holds, the hypothesis (A2) is satisfied with ( , ) ( , )t h tγ ω ω=  for all ( , )t ω J∈ ×Ω  and  ( ) 1rψ =  
for all real number 0r ≥ .Now ,we show that the random operator ( )Q ω  is completely continuous on[ ],a b  

in to 
itself. 
 
Let B be a bounded subset of [ ],a b , then there is real number 0r >  such that x r≤  for all x B∈ . Next, we show 

that the random operator ( )Q ω  is continuous on .B  let { }nx be a sequence of points in B  converging to the point 

x B∈ .  Then it is enough to prove that  ( ) ( ) ( ) ( )n
n

Q x t Q x tlim ω ω
→∞

=  for all t J∈ and ω∈Ω . By the 

dominated convergence theorem, we obtain,   

 0
0

( ) ( ) ( ) ( , ( , ), )lim
t

n n
nn

Q x t q f s x s dslim ω ω ω ω
→∞→∞

= + ∫  

                                 [ ]0
0

( ) ( , ( , ), )lim
t

n
n

q f s x s dsω ω ω
→∞

= + ∫
 

                                 
[ ]0

0

( ) ( , ( , ), )
t

q f s x s dsω ω ω= + ∫     

                                 ( ) ( )Q x tω=      
                                                  
 for all  t J∈  and ω∈Ω . This shows that ( )Q ω  is a continuous random operator on [ ],a b . 
 
Now, we show that ( )Q ω  is a totally bounded random operator on [ ],a b . We prove that ( )( )Q Bω is a totally 

bounded subset of [ ],a b  for each bounded subset B of[ ],a b . To finish, it is enough to prove that ( )( )Q Bω is a 
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uniformly bounded and equi-continuous set in E  for eachω∈Ω . Since the map ( , )tω γ ω→  is bounded, by 

hypothesis (A1) , there is a constant c  such that 1( )
L

cγ ω ≤  for all ω∈Ω . Letω∈Ω  be fixed. Then for any 

:x BΩ→ , one has  

 ( )0
0

( ) ( ) ( ) , ( , ),
t

Q x t q f s x s dsω ω ω ω≤ + ∫  

                      ( )0
0

( ) ( , ) ( , )
t

q s x s dsω γ ω ψ ω≤ + ∫      

                      ( )0
0

( , ) ( , )
T

Q s x s dsγ ω ψ ω≤ + ∫      

                      0
0

( , ) ( )
T

Q s r dsγ ω ψ≤ + ∫   

                      10 ( ) ( )
L

Q rγ ω ψ≤ +   

                      1,K≤  

for all t J∈ , where 1 0 ( )K Q c rψ= + . This shows that ( )( )Q Bω  is a uniformly bounded subset of [ ],a b  for each   

ω∈Ω  . 
 
Next, we show that ( )( )Q Bω is an equi-continuous set in [ ],a b . Let x B∈  be arbitrary. Then, for any 1 2,t t J∈ , 
one has 

( ) ( )
1 2

1 2
0 0

( ) ( ) ( ) ( ) , ( , ), , ( , ),
t t

Q x t Q x t f s x s ds f s x s dsω ω ω ω ω ω− ≤ −∫ ∫  

                                             
1

20

( , ( , ), ) ( , ( , ), )
tT

t

f s x s ds f s x s dsω ω ω ω≤ +∫ ∫  

                                             

1

20

( , ) ( , ) ( , ) ( , )
tT

t

s x s ds s x s dsγ ω ψ ω γ ω ψ ω≤ +∫ ∫
     

                                             
1 1 2( ) ( ) ( , ) ( , )

L
r p t p tγ ω ψ ω ω≤ + −    

                                             1 2( ) ( , ) ( , )c r p t p tψ ω ω≤ + −                                                                                     (3.2) 

for all ω∈Ω , where
0

( , ) ( , ) ( ) .
t

p t s r dsω γ ωψ= ∫  

Hence, for all 1 2,t t J∈ , 
 

1 2( ) ( ) ( ) ( ) 0Q x t Q x tω ω− →  as 1 2t t→ , 
 
uniformly for all x B∈ and ω∈Ω  . Therefore, ( )( )Q Bω is an equi-continuous set in[ ],a b . As ( )( )Q Bω  is 

uniformly bounded and equi-continuous, it is compact by the Arzela-Ascolli theorem for each ω∈Ω . Consequently,
( )Q ω is a completely continuous random operator on B .  

 

Thus, the random operator 
( )Q ω satisfied all the conditions of Theorem3.1and so the random operator equation 

( ) ( )Q x xω ω= has a least and a greatest random solution in
 [ ],a b . 

 
Consequently, the RDE(1.1) has a minimal and a maximal random solution defined on J 
 
This completes the proof.
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