International Journal of Mathematical Archive-4(3), 2013, 25-31

INITIAL VALUE PROBLEM OF FIRST ORDER RANDOM DIFFERENTIAL EQUATION

P. V. Kulkarni

Department of Mathematics, Shri Madhavrao Patil College, Murum, Tq. Omerga Dist. Usmanabad (M.S.), India

D. S. Palimkar*

Department of Mathematics, Vasantrao Naik College, Nanded-431603, (M.S.), India

(Received on: 23-01-13; Revised & Accepted on: 08-03-13)

ABSTRACT

In this paper, we prove the existence of extremal solution for the first order initial value problem of random differential equation through random fixed point theory.

Keywords: Random differential equation, random solution, initial value problem, Carathe'odory condition.

2000Mathematics Subject Classifications: 60H25, 47H40, 47N20.

1. DESCRIPTION OF THE PROBLEM

Let R denote the real line and let J = [0,T] be a closed and bounded interval in R. let $C^1(J,R)$ denote the class of real - valued functions defined and continuously differentiable on J. Given a measurable space (Ω, A) and for a given measurable function $q_0 : \Omega \to R$, consider the initial value problem of first order ordinary random differential equation (in short RDE),

 $\begin{aligned} x'(t,\omega) &= f(t, x(t,\omega), \omega) \quad a.e.t \in J, \\ x(0,\omega) &= q_0(\omega), \\ \text{for all } \omega \in \Omega, \text{ where } f: J \times R \times \Omega \to R \end{aligned}$ (1.1)

By a random solution of the RDE. (1.1), we mean a measurable function $x: \Omega \to AC^1(J, R)$ that satisfies the equation in (1.1) where $AC^1(J, R)$ is the space of real valued functions defined and absolutely continuously differentiable on J.

The RDE (1.1) is not new to the theory random differential equations. When the random parameter ω is absent, the RDE (1.1) reduces to the classical RDE of first order ordinary differential equations (ODE),

$$\begin{aligned} x'(t) &= f(t, x(t)) \quad a.e.t \in J, \\ x(0) &= x_0, \\ \text{where } f: J \times R \to R. \end{aligned} \tag{1.2}$$

The classical ODE (1.2) has been studied in the literature by several authors for different aspects of the solutions. See for example, Heikkilä and Lakshikantham [7] and the references therein. In this paper, we discuss the RDE (1.1) for existence of extremal solution under suitable conditions of the non-linearity f which thereby generalize several existence results of the RDE (1.2) proved in the above papers, through non-linear alternative of Leray-Schauder type(Dhage[4,5] and an algebraic random fixed point theorem of Dhage[4] and also see D. S. Palimkar [10, 11].

Corresponding author: D. S. Palimkar* Department of Mathematics, Vasantrao Naik College, Nanded-431603, (M.S.), India

International Journal of Mathematical Archive- 4(3), March - 2013

2. AUXILIARY RESULTS

Theorem 2.1: (*Carath'eodory*) Let $Q: \Omega \times E \to E$ be a mapping such that Q(., x) is measurable for all $x \in E$ and $Q(\omega, .)$ is continuous for all $\omega \in \Omega$. Then the map $(\omega, x) \to Q(\omega, x)$ is jointly measurable.

The following lemma is useful in the study of first order initial value problems of ordinary random differential equations via fixed point techniques.

Lemma 2.1: For any function $h: J \to L^1(J, R)$, a function $x: J \to C^1(J, R)$ is a solution to the differential equation,

$$x'(t) = h(t)$$
 a.e. $t \in J$,
 $x(0) = q_0$, (2.1)

if and only if it is a solution of the integral equation.

$$x(t) = q_0 + \int_0^t h(s) ds$$
 (2.2)

3. EXISTENCE RESULTS

Definition 3.1: A Function $f: J \times R \times \Omega \rightarrow R$ is called random Carathe'odory, if the following conditions are satisfied:-

(i) the map $(t, \omega) \rightarrow (t, x, \omega)$ is jointly measurable for all $x \in R$, and

(ii) the map $x \to f(t, x, \omega)$ is continuous for all $t \in J$ and $\omega \in \Omega$.

Definition 3.2: A Carathe'odory function $f: J \times R \times \Omega \to R$ is called random L^1 -Carathe'odory, if for each real number r > 0 there is a measurable and bounded function $h_r: \Omega \to L^1(J, R)$ such that

 $\left| f(t, x, \omega) \right| \le h_r(t, \omega)$ a.e. $t \in J$

for all $\omega \in \Omega$ and $x \in R$ with $|x| \le r$. Similarly, a Carathe'odory function f is called random L_R^1 -Carath'eodory if there is a measurable and bounded function $h: \Omega \to L^1(J, \mathbb{R})$ such that

 $|f(t, x, \omega)| \le h(t, \omega)$ a.e. $t \in J$ for all $\omega \in \Omega$ and $x \in R$.

Definition 3.3: A closed set K of the Banach space E is called a cone if:

(i) $K + K \subseteq K$,

(ii) $\lambda K \subset K$ for all $\lambda \in R_{\perp}$, and

(iii)
$$\{K\} \cap K = \{\theta\}$$
,

where θ is the zero element of E. We introduce an order relation \leq in E with the help of the cone K in E as follows. Let $x, y \in E$, then we define

$$x \leq y \Leftrightarrow y - x \in K$$
.

A cone K in the Banach space E is called normal, if the norm $\|\cdot\|$ is semi-monotone on K i. e., if $x, y \in K$, then $\|x+y\| \le \|x\| + \|y\|$. Again a cone K is called a regular, if every non decreasing order buounded sequence in E converges in norm. The details of different types of cones and their properties appear in Deimling [3], Heikilla and Lakshmikantham [7].

Definition 3.4: An operator $Q: \Omega \times E \to E$ is called non-decreasing if $Q(\omega)x \le Q(\omega)y$ for all $\omega \in \Omega$ and for all $x, y \in E$ for which $x \le y$.

We use the following random fixed point theorem of Dhage [4, 5] in follows.

Theorem 3.1: (Dhage [4]) Let (Ω, A) be a measurable space and let[a,b] be a random order interval in the separable Banach space E.Let $Q: \Omega \times [a,b] \rightarrow [a,b]$ be a completely continuous and nondecreasing random operator. Then Q has a least fixed point x_* and a greatest random fixed point y^* in[a,b]. Moreover, the sequences $\{Q(\omega)x_n\}$ with $x_o = a$ and $\{Q(\omega)y_n\}$ with $y_o = a$ converges to x_* and y^* respectively.

We need the following definitions in the sequel.

Definition 3.6: A measurable function $a: \Omega \to C(J, R)$ is called a lower random solution for the PBVP (1.1) if $a'(t, \omega) \leq f(t, a(t, \omega), \omega)$ a.e. $t \in J$, $a(0, \omega) \leq q_0(\omega)$,

for all $\omega \in \Omega$. Similarly, a measurable function $b: \Omega \to C(J, R)$ is called an upper random solution for the IVP (1.1) if $b'(t, \omega) \ge f(t, b(t, \omega), \omega)$ a.e. $t \in J$, $b(0, \omega) \ge q_0(\omega)$, for all $\omega \in \Omega$.

Note that a random solution for the random RDE (1.1) is lower as well as upper random solution for the random RDE (1.1) defined on J.

Definition 3.7: A random solution r_M for the random RDE (1.1) is called maximal if for all random solutions of the random RDE (1.1), one has $x(t, \omega) \le r_M(t, \omega)$ all $t \in J$ and $\omega \in \Omega$. Similarly, a minimal random solution to the IVP (1.1) on J is defined.

Definition 3.8: A function $f: J \times R \times \Omega \rightarrow R$ is called random non-decreasing Carathe'odory if:

(i) The map $(t, \omega) \rightarrow f(t, x, \omega)$ is jointly measurable,

(ii) The map $x \to f(t, x, \omega)$ is continuous and non-decreasing for all $t \in J$ and $\omega \in \Omega$.

Definition 3.9: A function $f(t, x, \omega)$ is called random non-decreasing L^1 -Carathe'odory if for each real number r > 0there exists a measurable function $h_r : \Omega \to L^1(J, R)$ such that for for all $\omega \in \Omega$ $|f(t, x, \omega)| \le h_r(t, \omega)$ a.e. $t \in J$ for all $x \in R$ with $|x| \le r$.

We consider the following set of assumptions:

(A₁) The functions f is random Carathe'odory on $J \times R \times \Omega$.

(A₂) There exists a measurable and bounded function $\gamma : \Omega \to L^1(J, R)$ and a continuous and non-decreasing function $\gamma : R_+ \to (0, \infty)$ such that

$$|f(t, x, \omega)| \le \gamma(t, \omega) \psi(|x|)$$
 a.e. $t \in J$

for all $\omega \in \Omega$ and $x \in R$. Moreover, we assume that $\int_{C}^{\infty} \frac{dr}{\psi(r)} = \infty$ for all $C \ge 0$

(A₃) The function f is random non-decreasing Carathe'odory on $J \times R \times \Omega$.

(A₄) The RDE (1.1) has a lower random solution a and upper random solution b with $a \le b$ on J.

(A₅) The function $h: J \times \Omega \to R_+$ defined by $h(t, \omega) = |f(t, a(t, \omega), \omega)| + |f(t, b(t, \omega), \omega)|$ is Lebesgue integrable in t for all $\omega \in \Omega$.

Remark 3.1: If the hypotheses (A₃) and (A₅) hold, then for each $\omega \in \Omega$,

$$|f(t, a(t, \omega), \omega)| \le h(t, \omega)$$

for all $t \in J$ and $x \in [a, b]$ and the map $\omega \to h(t, \omega)$ is measurable on Ω .

Remark 3.2: Hypothesis (A₃) is natural and used in several research papers on random differential and integral equations (see Dhage [4, 5] and the references given therein). Hypothesis (A₄) holds, in particular, if there exist measurable functions $u, v: \Omega \rightarrow C(J, R)$ such that for each $\omega \in \Omega$,

 $u(t,\omega) \le f(t,x,\omega) \le v(t,\omega)$

for all $t \in J$ and $x \in R$. In this case, the lower and upper random solutions to the random RDE(1.1) are given by

$$a(t,\omega) = q_0(\omega) + \int_0^t u(s,\omega) \, ds$$

and

$$b(t,\omega) = q_0(\omega) + \int_0^t u(t,s)v(s,\omega) \, ds$$

respectively. The details about the lower and upper random solutions for different types of random differential equations may be found in Ladde and Lakshmikantham [9]. Finally, hypothesis (A₅) remains valid if the function f is L^1 -Carathe'odory on $J \times R \times \Omega$.

Theorem 3.2: Assume that the hypothesis (A₁), (A₃) to (A₅) hold. Then the RDE (1.1) has a minimal random solution $r(\omega)$

and maximal random solution
$$y^{*}(\omega)$$
 defined on J . Moreover,
 $x_{*}(t,\omega) = \lim_{n \to \infty} x_{n}(t,\omega)$ and $y^{*}(t,\omega) = \lim_{n \to \infty} y_{n}(t,\omega)$

for all $t \in J$ and $\omega \in \Omega$, where random sequences $\{x_n(\omega)\}$ and $\{y_n(\omega)\}$ are given by,

$$x_{n+1}(t,\omega) = q_0(\omega) + \int_0^t x_n(s,\omega), \omega \, ds \, , n \ge 0 \quad \text{with } x_0 = a$$

and

$$y_{n+1}(t,\omega) = q_0(\omega) + \int_0^t y_n(s,\omega), \omega \, ds \, , n \ge 0 \quad \text{with } y_0 = b,$$

for all $t \in J$ and $\omega \in \Omega_{-}$.

Proof: Set E = C(J, R) and define a mapping $Q : \Omega \times [a, b] \rightarrow [a, b]$ by $Q(\omega)x(t) = q_0(\omega) + \int_0^t f(s, x(s, \omega), \omega) \, ds$ (3.1) for all $t \in J$ and $\omega \in \Omega$.

Now the map $t \to q_0(\omega)$ is continuous for all $\omega \in \Omega$. Again, as the indefinite integral is continuous on J, $Q(\omega)$ defines a mapping $Q: \Omega \times [a,b] \to [a,b]$.

We show that Q satisfies all the conditions of Theorem 3.1 on [a,b].

First, we show that Q is random operator on E. Since $f(t, x, \omega)$ is random Carathe'odory, the map $\omega \to f(t, x, \omega)$ is measurable in view of Theorem 2.1 Similarly, the product $f(s, x(s, \omega), \omega)$ of a continuous and a measurable function is again measurable. Further, the integral is a limit of a finite sum of measurable functions, therefore, the map

$$\omega \to q_0(\omega) + \int_0^t f(s, x(s, \omega), \omega) \, ds = Q(\omega) x(t) \quad \text{is measurable. As a result, } Q \text{ is a random operator on} \\ Q: \Omega \times [a, b] \to [a, b].$$

© 2013, IJMA. All Rights Reserved

Then, it is random non-decreasing L^1 -Carathe'odory. First, we show that $Q(\omega)$ is non-decreasing on [a,b].Let $x, y: \Omega \to [a,b]$ be arbitrary such that $x \le y$ on Ω .Then,

$$Q(\omega)x(t) \le q_0(\omega) + \int_0^t f(s, x(s, \omega)) ds$$
$$\le q_0(\omega) + \int_0^t f(s, y(s, \omega)) ds$$
$$\le Q(\omega)y(t)$$

for all $t \in J$ and $\omega \in \Omega$. As a result, $Q(\omega)x \leq Q(\omega)y$ for all $\omega \in \Omega$ and that Q is non-decreasing random operator on [a,b].

Secondly, by hypothesis (H_4)

$$a(t,\omega) \leq Q(\omega)a(t)$$

$$\leq q_0(\omega) + \int_0^t f(s,a(s,\omega)) ds$$

$$\leq q_0(\omega) + \int_0^t f(s,x(s,\omega)) ds$$

$$\leq Q(\omega)x(t)$$

$$\leq Q(\omega)b(t)$$

$$\leq q_0(\omega) + \int_0^t f(s,b(s,\omega)) ds$$

$$\leq b(t,\omega)$$

for all $t \in J$ and $\omega \in \Omega$. As a result Q defines random operator $Q : \Omega \times [a,b] \rightarrow [a,b]$.

Next, since (A_5) holds, the hypothesis (A_2) is satisfied with $\gamma(t, \omega) = h(t, \omega)$ for all $(t, \omega) \in J \times \Omega$ and $\psi(r) = 1$ for all real number $r \ge 0$. Now , we show that the random operator $Q(\omega)$ is completely continuous on [a,b] in to itself.

Let *B* be a bounded subset of [a,b], then there is real number r > 0 such that $||x|| \le r$ for all $x \in B$. Next, we show that the random operator $Q(\omega)$ is continuous on *B*. let $\{x_n\}$ be a sequence of points in *B* converging to the point $x \in B$. Then it is enough to prove that $\lim_{n \to \infty} Q(\omega) x_n(t) = Q(\omega) x(t)$ for all $t \in J$ and $\omega \in \Omega$. By the dominated convergence theorem, we obtain,

$$\lim_{n \to \infty} Q(\omega) x_n(t) = q_0(\omega) + \lim_{n \to \infty} \int_0^t f(s, x_n(s, \omega), \omega) ds$$
$$= q_0(\omega) + \int_0^t \lim_{n \to \infty} [f(s, x_n(s, \omega), \omega)] ds$$
$$= q_0(\omega) + \int_0^t [f(s, x(s, \omega), \omega)] ds$$
$$= Q(\omega) x(t)$$

for all $t \in J$ and $\omega \in \Omega$. This shows that $Q(\omega)$ is a continuous random operator on [a, b].

Now, we show that $Q(\omega)$ is a totally bounded random operator on [a,b]. We prove that $Q(\omega)(B)$ is a totally bounded subset of [a,b] for each bounded subset B of [a,b]. To finish, it is enough to prove that $Q(\omega)(B)$ is a

uniformly bounded and equi-continuous set in E for each $\omega \in \Omega$. Since the map $\omega \to \gamma(t, \omega)$ is bounded, by hypothesis (A₁), there is a constant c such that $\|\gamma(\omega)\|_{L^1} \leq c$ for all $\omega \in \Omega$. Let $\omega \in \Omega$ be fixed. Then for any $x: \Omega \to B$, one has

$$\begin{aligned} \left| Q(\omega)x(t) \right| &\leq \left| q_0(\omega) \right| + \int_0^t \left| f\left(s, x(s, \omega), \omega \right) \right| ds \\ &\leq \left| q_0(\omega) \right| + \int_0^t \gamma(s, \omega) \psi\left(\left| x(s, \omega) \right| \right) ds \\ &\leq Q_0 + \int_0^T \gamma(s, \omega) \psi\left(\left\| x(s, \omega) \right\| \right) ds \\ &\leq Q_0 + \int_0^T \gamma(s, \omega) \psi(r) ds \\ &\leq Q_0 + \left\| \gamma(\omega) \right\|_{L^1} \psi(r) \\ &\leq K_1, \end{aligned}$$

for all $t \in J$, where $K_1 = Q_0 + c\psi(r)$. This shows that $Q(\omega)(B)$ is a uniformly bounded subset of [a, b] for each $\omega \in \Omega$.

Next, we show that $Q(\omega)(B)$ is an equi-continuous set in [a,b]. Let $x \in B$ be arbitrary. Then, for any $t_1, t_2 \in J$, one has

$$\begin{aligned} \left| Q(\omega)x(t_1) - Q(\omega)x(t_2) \right| &\leq \left| \int_0^{t_1} f\left(s, x(s, \omega), \omega\right) ds - \int_0^{t_2} f\left(s, x(s, \omega), \omega\right) ds \right| \\ &\leq \left| \int_0^T f\left(s, x(s, \omega), \omega\right) ds \right| + \left| \int_{t_2}^{t_1} f\left(s, x(s, \omega), \omega\right) ds \right| \\ &\leq \int_0^T \gamma(s, \omega) \psi \left| x(s, \omega) \right| ds + \int_{t_2}^{t_1} \gamma(s, \omega) \psi \left| x(s, \omega) \right| ds \\ &\leq \left\| \gamma(\omega) \right\|_{L^1} \psi(r) + \left| p(t_1, \omega) - p(t_2, \omega) \right| \\ &\leq c \psi(r) + \left| p(t_1, \omega) - p(t_2, \omega) \right| \end{aligned}$$
(3.2)

for all $\omega \in \Omega$, where $p(t, \omega) = \int_{0}^{1} \gamma(s, \omega) \psi(r) ds$.

Hence, for all $t_1, t_2 \in J$,

$$|Q(\omega)x(t_1) - Q(\omega)x(t_2)| \rightarrow 0 \text{ as } t_1 \rightarrow t_2,$$

uniformly for all $x \in B$ and $\omega \in \Omega$. Therefore, $Q(\omega)(B)$ is an equi-continuous set in [a,b]. As $Q(\omega)(B)$ is uniformly bounded and equi-continuous, it is compact by the Arzela-Ascolli theorem for each $\omega \in \Omega$. Consequently, $Q(\omega)$ is a completely continuous random operator on B_{\perp} .

Thus, the random operator $Q(\omega)$ satisfied all the conditions of Theorem3.1and so the random operator equation $Q(\omega)x = x(\omega)$ has a least and a greatest random solution in [a,b]

Consequently, the RDE(1.1) has a minimal and a maximal random solution defined on J

This completes the proof.

© 2013, IJMA. All Rights Reserved

REFERENCES

- 1. T. Bharucha-Reid, On the theory of random equations, Proc.Symp.Appl.16th, (1963), 40-69, Ame. Soc., Providence, Rhode, Island, (1964).
- 2. A.T. Bharucha-Reid, Random Integral Equations, Academic Press, New York, 1972.
- 3. K. Deimling, Multi-valued Differential Equations, De Gruyter, Berlin, 1998.
- 4. B. C. Dhage, Some algebraic and topological random fixed point theorems with applications to nonlinear random integral equations, Tamkang J. Math. 35(2004), 321-345.
- 5. B. C. Dhage, A random version of a Schaefer type fixed point theorem with ap-plications to functional random integral equations, Nonlinear Funct. Anal. Appl 9 (2004), 389-403.
- 6. B. C. Dhage, Monotone iterative technique for Carath'eodory theory of nonlinear functional random integral equations, Tamkang J. Math. 35 (2004), 321-345.
- 7. S. Heikkila and V. Lakshmikantham, Monotone iterative technique for discontinuous onlinear differential equations, Pure and Applied Maths., Marcel Dekker, New York, 1994.
- 8. S. Itoh, Random fixed point theorems with applications to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261-273.
- 9. G. S. Ladde and V. Lakshmikantham, Random Differential Inequalities, Academic Press, New York, 1980.
- 10. D. S. Palimkar, Existence theory of second order random differential equation, Global Journal of Mathematics and Mathematical Sciences, Vol. 2, No.1, 2012, 7-15.
- 11 D.S. Palimkar, Existence Theory of Random Differential Equations, International Journal of Scientific and Research Publications, Vol. 2, No. 7, 2012".

Source of support: Nil, Conflict of interest: None Declared