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ABSTRACT 

This paper analyzes an X
NM / GSOS / 1 / MV / SETUP / BD under N policy with active server breakdowns, vacation 

policy with two types of repairs facilities. The stationary probability generating function of the system size distribution 
is obtained using supplementary variable technique. Various system performance measures are discussed with 
numerical illustrations. 
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1. INTRODUCTION 
One of the fundamental objectives of vacation models is to investigate the optimal control of a system in which a cost 
structure is assumed. Lee and Srinivasan (1989) was the first to analyze the detail discussions concerning N policy MX / 
G / 1 queue with vacations. Later Lee et al (1994(a&b) &1995) analyzed an MX / G / 1 queue with N policy of multiple 
and single vacation respectively. 
 
Assume that the server on completion of service to the existing units continues to stay idle in the empty system waiting 
for the new arrivals. In such situations, the servers may be allowed to utilize their idle time for preventive maintenance 
work (or) to perform additional jobs and it is termed as server’s vacation. After returning from vacation if the server 
finds N (or) more customers in the system then, the server is turned on for the start up work of random length D and as 
soon as the server finishes the setup work and the busy period initiates. Vacations were analyzed by many authors 
including Zhang et al. (1997) and Kella (1986) studied the M / G / 1 queue, Doshi (1986), Takagi(1991), Fuhrmann and 
Cooper (1985) and  Choudhury (2000) analysed MX / G / 1 queue with N policy and vacation.  
 
In this paper, we have analyzed a batch arrival X

NM / GSOS / 1 / MV / SETUP / BD under N policy with active server 
breakdowns, vacation policy with two types of repairs. The stationary probability generating function of the system size 
distribution is obtained using supplementary variable technique. Various system performance measures with numerical 
illustrations are studied. 
 
2. MODEL DESCRIPTION 
The customers arrive according to a compound Poisson process where the arrival size X is a random variable. The 
server remains idle until the system size reaches or exceeds a predetermined value N (threshold). When the queue 
length reaches atleast N, the server immediately begins to serve the customers.  
 
During busy period, the server provides to each unit, two stages of heterogeneous services of which one is optional. 
That is the server provides First Essential Service (FES) to all the existing customers, according to the queue discipline 
First Come First Served (FCFS). After the completion of FES the customers may leave the system with probability (1 – 
r) or may opt for a Second Optional Service (SOS) in an additional channel by the same server with probability 
r (0 ≤ r ≤ 1). It is assumed that the service times of FES and SOS respectively follow heterogeneous general 
distributions Si(t), i = 1, 2 with density from si(x) and finite moments ( ) ,k

iE S  i, k = 1, 2. The server is subjected to 

breakdowns at any time while serving customers. It is assumed that the life time of the server follows exponential 
distribution of rate a1 in the first essential service and rate a2 in the second optional service. The breakdown server is 
immediately sent for repair in the repair facility and the customer just being served either waits for the server to return 
from repair facility to complete the remaining service or joins the head of the queue to repeat the FES. It is assumed 
that, the probability that the customers stays in the service facility to complete remaining service is (1 – q1) and the  
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probability of joining the queue to start a new FES is q1 (0 ≤ q1 ≤ 1).The corresponding repair times of the server follow 
heterogeneous general distributions Ri,c(t) and Ri(t) with density functions ri,c(t), ri(t) and finite moments ( ), ,k

i cE R  and 

( ) ,k
iE R  i, k = 1, 2. If the breakdowns occur during the SOS of a customer, then the customer will wait in the service 

facility and completes the remaining service after the server returns from the repair facility. The repair time of the 

server in this case follows a general distributions R2,c(t) with density functions r2,c(t) and finite kth moments ( )2, ,k
cE R  

k = 1, 2.once the server gets repaired, he is sent back to the service facility to resume the service. The server is turned 
off and leaves the system for a vacation of random length V1 as soon as the system empties. After returning from the 
vacation, if the server finds N or more customers in the system, then he immediately starts a setup operation of random 
length D. Otherwise, he takes repeated number of vacations V2, V3, ,until he finally finds atleast N customers 
accumulated in the system. The random variables V1, V2, are assumed to be independently and identically distributed 
with generic representation V. At the end of the setup operation, if the queue length is  ≥ N, then the server begins to 
serve the customers one by one exhaustively. Here the idle period is made up of vacation period, setup period. The 
vacation time (V) and setup time (D) assumed to follow the general distributions V(x) and D(x) with finite moments. 
The busy period and breakdown periods form a completion period and a completion period and an idle period 
constitute a cycle. 
 
3. STEADY STATE SYSTEM SIZE EQUATIONS 
To obtain the steady-state system size equations of the model using supplementary variable technique, we employ the 
remaining service time, the remaining setup time and the remaining vacation time and remaining repair times of the 
server as the supplementary variables. The following notations and probabilities are used to derive the steady-state 
equations of the  
            N  -             threshold  
 λ - group arrival rate 
 X - arrival size random variable 
 gk - Pr (X = k) 

αk (hk)  - Probability that k customers arrive during a vacation (setup time) (k = 0, 1, 2, . . . ) 
 X(z) - The probability generating function (PGF) of X 

 )i(
kg  - i-fold convolution of {gk} with itself and )0(

0g  = 1 
 ai - Poisson breakdown rate corresponding to the ith phase  i = 1, 2 
 N(t) - the system size including one in service at time t.  
 Z(t)       −              j denote the server is on jth vacation at time t, counting from the idle period initiation point  
                                           (j = 1, 2, . . . ) 
 
Y(t) ={The states 0,1,2,3,4,5and6 respectively denote the states when the server is on vacation ,busy with FES, down 
with a customer in FES ,down without a customer in FES ,busy with SOS, breakdown with the customer in SOS, setup 
state at time t} 
 
The state of the system at time t can be described by the Markov process 

K(t)  =  { (N(t), Y(t), )t(R0
1 , )t(D0 , )t(V0 , )t(S0

i , )t(R0
c ,i ; i = 1, 2, t ≥ 0 } 

Let 
Qn,j(x, t) dt = Pr [N(t) = n, x ≤ )t(V0 ≤ x + dt, Y(t) = 0, Z(t) = j], (n ≥ 0), (j ≥ 1) 

Pn,1(x, t) dt = Pr (N(t) = n, x ≤ )t(S0
1  ≤ x + dt, Y(t) = 1), n ≥ 1  

Pn,2(x, t) dt = Pr (N(t) = n, x ≤ )t(S0
2  ≤ x + dt, Y(t) = 4), n ≥ 1 

Bn,1,c(x, y, t) dt = Pr (N(t) = n, )t(S0
1 = x, y ≤ )t(R0

c ,1  ≤ y + dt, Y(t) = 2), n ≥ 1 

Bn,1(y, t) dt = Pr (N(t) = n, y ≤ )t(R0
1  ≤ y + dt, Y(t) = 3), n ≥ 1 

Bn,2,c(x, y, t) dt = Pr (N(t) = n,  )t(S0
2 = x, y ≤ )t(R0

c ,2 ≤ y + dt, Y(t) = 5), n ≥ 1 

Dn(x, t) dt = Pr (N(t) = n, x ≤ )t(D0 ≤ x + dt, Y(t) = 6), n ≥ N 
 
Under the steady state, the system size probabilities are assumed to be independent of time t and by defining the LST’s 
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The steady state equations are given by,  

 θ )(Q 1 ,0 θ∗  − Q0,1(0) = λ )(Q 1 ,0 θ∗  − P1(0) )(V θ∗
                                                                                                    (1) 

θ )(Q j ,0 θ∗  − Q0,j(0) = λ )(Q j ,0 θ∗  − Q0,j−1(0) )(V θ∗ , j ≥ 2                                                                                         (2) 

θ )(Q 1 ,n θ∗  − Qn,1(0) = λ )(Q 1 ,n θ∗  − λ )(Q 
n

1k
1 ,kn θ∑

=

∗
−  gk,  n ≥ 1                                                             (3)   

θ )(Q j ,n θ∗  − Qn,j(0) = λ )(Q j ,n θ∗  − λ )(Q 
n

1k
j ,kn θ∑

=

∗
− gk  − )(Q 1j ,n θ∗

− )(V θ∗ ,   j ≥ 2,  1 ≤ n ≤ N−1               (4)   

θ )(Q j ,n θ∗  − Qn,j(0) = λ )(Q j ,n θ∗  − λ )(Q 
n

1k
j ,kn θ∑

=

∗
−  gk,  n ≥ N, j ≥ 2                                                                        (5) 

θ )(DN θ∗  − DN(0) = λ )(DN θ∗  − )0(Q 
1j

j N,∑
∞

=
)(D θ∗                                                                                               (6) 

θ )(Dn θ∗  − Dn(0) = λ )(Dn θ∗  − λ ∑
−

=

∗
− θ

Nn

1k
kn )(D gk  − ∑

∞

=1j
j n, )0(Q )(D θ∗ ,n ≥ N+1                        (7)  

θ )(P 1 ,1 θ∗  − P1,1(0) = (λ + a1) )(P 1 ,1 θ∗  − (1 − r) P2,1(0) )(S1 θ∗  

                    − P2,2(0) )(S1 θ∗  − 0) ,(B c 1, ,1 θ∗  − B1,1(0) )(S1 θ∗                                                     (8) 

θ )(P 1 ,n θ∗  − Pn,1(0) = (λ + a1) )(P 1 ,n θ∗  − (1 − r) Pn+1,1(0) )(S1 θ∗
  

  − Pn+1,2(0) )(S1 θ∗  − 0) ,(B c 1, ,n θ∗  − Bn,1(0) )(S1 θ∗  

                         − λ ∑
−

=

∗
− θ

1n

1k
1 ,kn )(P gk ,       2≤n≤N−1                                                                           (9) 

θ )(P 1 ,n θ∗  − Pn,1(0) = (λ + a1) )(P 1 ,n θ∗  − (1 − r) Pn+1,1(0) )(S1 θ∗  

  − Pn+1,2(0) )(S1 θ∗  − 0) ,(B c 1, ,n θ∗  − Bn,1(0) )(S1 θ∗  

                       − λ ∑
−

=

∗
− θ

1n

1k
1 ,kn )(P gk − Dn(0) )(S1 θ∗

, n≥N                                                  (10)                       

θ )(P 2 ,1 θ∗  − P1,2(0) = (λ + a2) 
)(P 2 ,1 θ∗  − r P1,1(0) )(S2 θ∗ + 0) ,(B c 2, ,1 θ∗

                                                              (11) 

θ )(P 2 ,n θ∗  − Pn,2(0) = (λ + a2) 
)(P 2 ,n θ∗  − r Pn,1(0) )(S2 θ∗  + 0) ,(B c 2, ,n θ∗

 
− λ ∑

−

=

∗
− θ

1n

1k
2 ,kn )(P gk, n≥2              (12)                   

θ1 ) ,(B 1
1  

c 1, n, θθ∗∗  − )0 ,(B c 1, n, θ∗ = λ ) ,(B 1
1  

c 1, n, θθ∗∗  − (1 − q1) a1 )(P 1 ,n θ∗ )(R 1
1 
c ,1 θ∗   

                                 − λ ∑
−

=

∗∗
− θθ

1n

1k
1

1  
c 1, k,n ) ,(B gk,   n ≥ 1                                                       (13)                                            

θ )(B 1
1 
1 n, θ∗  − Bn,1(0) = λ )(B 1

1 
1 n, θ∗  − a1 q1 )0(P 1 ,n

∗ )(R 1
1 

1 θ∗ − λ ∑
−

=

∗
− θ

1n

1k
1

1 
1 k,n )(B gk,    n ≥ 1                            (14) 

θ ) ,(B 1
1  

c 2, n, θθ∗∗ − )0 ,(B c 2, n, θ∗ =λ ) ,(B 1
1  

c 2, n, θθ∗∗ −a2 )(P 2 ,n θ∗ )(R 1
1 
c ,2 θ∗ −λ∑

−

=

∗∗
− θθ

1n

1k
1

1  
c 2, k,n ) ,(B gk, n≥1          (15)                     

 
Steady -State Solutions 
Let us define the following partial PGF’s for |z|≤1 to determine the system size distribution. 
 
For  i = 1, 2

 
) ,z(Pi θ∗

  =  ,z )( P 
1n

n
i n,∑

∞
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∗ θ
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=1n

n
i n, z )0( P ,   
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1  
c i,B ∗∗ (z, θ, θ1)  =  ∑

∞

=

∗∗

1n

1  
c i, n,B (θ, θ1) zn,   ∗

c i,B (z, θ, 0)  =  ∑
∞

=

∗

1n
c i, n,B (θ, 0) zn,   

1
iB∗ (z, θ1)  =  ∑

∞

=

∗

1n

1 
i n,B (θ1) zn,    Bi(z, 0)  =  ∑

∞

=1n
Bn,i(0) zn,   

R(z)  =  ∑
−

=

1N

0n

n
n z R 

,
                                      ) ,z(Q j θ∗

   
=   ∑

∞

=

∗ θ
0n

 
j n, )(Q  zn,  

) ,z(D θ∗   =  ∑
∞

=

∗ θ
Nn

 
n )(D  zn,                Qj(z, 0)    =   ∑

∞

=0n
j n, )0(Q  zn,    (j ≥ 1), 

D(z, 0)   =   ∑
∞

=Nn
n )0(D 

 
zn 

 
Following the usual algebraic manipulation, the expression for the partial probability generating functions are obtained. 
The partial generating functions when the system is in breakdown state are obtained by using the equations (13) to (15) 
and are given by 

0) 0, ,z(B 1  
c ,1
∗∗  = 

)z(W
0) ,z(P )))z(W(R   (1 )q  (1 a

X

1X
1 
c 1,11

∗∗−−

                                                 (16) 
0) ,z(B 1 

1
∗  = a1 q1 0) ,z(P )))z(W(R   (1 1X

1 
1

∗∗−                                                             (17) 

0) 0, ,z(B 1  
c ,2
∗∗  = 

)z(W
 )))z(W(R   (1 0) ,z(P a

X

X
1 
c 2,22

∗∗ −

                                                            (18) 
 
The partial generating functions when the system is in busy period are obtained by using the equations (8) to (12) and 
are given by 

∗
1P (z, 0) =

 
)))z(W(H  z( )))z(W(h  ))z(W(R q (a

))z( )z( W(0)P ( 1)  ))z(W((z

XXaX
1 

111

N
RX1Xa

1

1

∗∗ −−

Ι−−Φ
                                          (19) 

0) ,z(P2
∗  = 

)))z(W(H  (z ))z(W(h

)z( )z( W)0(P ))z(W( ))))z(W(h(S  (1 r z

xxa

N
Rx1xaxa2

2

12

∗

∗

−

ΙΦ−

                                 (20) 
 
The partial generating functions when the system is in setup and vacation period are obtained by using the equations (1) 
to (7) and are given by 

∗Q (z, 0) = 
)z(W

))z(W( V 1

X

X
∗−

 










α−
β

∑
−

=

1N

0n 0

n
n

  1
z 

 P1(0)                                                                                (21) 

D*(z, 0) = 
)z(W

))z(W(D  1

X

X
∗−











+

α−
β

− ∑
−

=

∗
1N

0n 0

n
n

X 1  
  1
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  1)  ))z(W(V( P1(0)                                        (22)
 

 
Let PΙ(z) denote the partial PGF corresponding to the idle period is 
PΙ(z) = P1(0) )z(N

RΙ  

Thus )z(PMV
)N(  

= ∑
=

∗
2

1i
1 0) ,z(P  + ∑

=

∗∗
2

1i

1  
c i, 0) 0, ,z(B  + 0) ,z(B 1 

1
∗

 + PΙ(z)  gives the total PGF. 

i.e. )z(PMV
)N(  = 

))z(W(H  z
)z( ))z(W(H 1)  (z (0)P 

X

N
RX1

∗

∗

−

Ι−

 
 

where ))z(W(H X
∗  =  ))))z(W(h(S r  r)  ((1 ))z(W( Xa2Xa 21

∗+−Φ
 

         
))z(W( Xa1

Φ =
))))]z(W(h(S  (1R q a  ))z(W(h[
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111Xa

XaXa1
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1ah (WX(z))  =  λ (1 − X(z)) + a1 (1 − (1 − q1) 

∗
c ,1R (WX(z))) 

         
))z(W(h Xa 2

= WX(z) + a2 (1 − 1 
c ,2R∗ (WX(z))   

 

)(

1
)0(1 NdP

R

Hρ−=    follows from the normalizing condition 1)1()( =PMV
N  , 

 
where ρH  =  λ E(X) E(H) 

 E(H) = 









 −
∗

∗

)q a(S q a
))q a(S  1(

11111

111 (1 + a1 (1 – q1) E(R1,c) + a1 q1 E(R1))  

 
Decomposition Property 
The system size distributions of the N-policy multiple vacation is decomposed into two random variables one of which 
is the system size of the classical. SOS model MX / GSOS / 1 / BD whose  generating function is 

)))z(W(H  z(
))z(W(H 1)  (z )  1( 

X

XH
∗

∗

−

−ρ−  and the other has generating function 
)1(
)z(

N
R

N
R

Ι

Ι which gives the PGF of the conditional system 

size distribution during the server idle period under the steady-state condition  ρH < 1.Thus the decomposition property 
is verified for the model 
 
PERFORMANCE MEASURES 

(i) The mean system size of the  L
MV
N model under consideration is given by 

MV
NL =

1z

MV
(N) )z(P

dz
d

=










  

        )(
)(

1 Nd
Nl

R

RL +=  ,   

where L1= H
H

22

  
)  (1 2

E(H) 1))  E(X(X   )E(H E(X)) (
ρ+

ρ−
−λ+λ  

   ℓR(N)  =  L0 + λ E(X) E(D) ∑
−

= λ
ψ1N

0n

n + ∑
−

= λ
ψ1N

0n

n n
 

 
         L0 =  λ E(X) (E(V2) / 2 + E(D2) / 2 + E(V) E(D)) 

   dR(N) =  







λψ++ ∑

−

=

1N

0n
n )(1/    E(D)  )V(E

  

(ii) Probability that the server is on vacation is 

1
10

0

( ) (0).
1

N n
V n

E V PP β
α

−

=
=

−∑
 

(iii)  Probability that the server is on setup state is  PSet  = P1(0) E(D)   

(iv) Probability that the server is busy is      Pbusy  =











+

−
∗

∗

)E(S r  
)q a(S q a

))q a(S  1(
2

11111

111 λ E(X) 

(v) Probability that the server is in breakdown state is  
     Pbr =λE(X)((a1 (1−q1)E(R1,c)+a1q1E(R1)) e(S1)+ra2E(S2) E(R2,c)) 
 
NUMERICAL ANALYSIS 
In this section, we present some numerical results for various performance measures of the model. For computation 
work, we assume that the batch arrival follows geometric distribution, setup time follows Erlang 3 type distribution and 
vacation time follows gamma 2 type distributions. 
 
The pictorial representation for figure 1 & 2 show that the mean system size increases with arrival rate  λ and decreases 
as the setup rateγ.               
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MV
NL ∗  with respect to  λ  for different  γ 
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Figure: 1 
                          

MV
NL ∗ with respect to  λ  for different  η 
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Figure: 2 
  
Figure 3 clearly explain that the mean system size increases when the probability (q1) with which the customers join the 
waiting line to repeat the service soon after the breakdown, increases. 
 

Mean system size vs. breakdown rate (a1) as q1 changes 

 
Figure: 3 
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CONCLUSION 
In this paper, we have analyzed a batch arrival X

NM / GSOS / 1 / MV / SETUP / BD under N policy with active server 
breakdowns, vacation policy and two types of repairs using supplementary variable technique. The pgf of the system 
size probabilities and various performance measures are discussed in closed form. The main objective of the work is to 
develop the analytical treatment of the models to obtain performance measures. 
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