International Journal of Mathematical Archive-4(1), 2013, 212-219

On $\alpha g \delta$ -regular and $\alpha g \delta$ - normal spaces

A.I. EL-Maghrabi^{*.**} and F.M. AL-Rehili^{*}

*Department of Mathematics, Faculty of Science, Taibah University, P.O. Box, 344, AL-Madinah AL-Munawarah, K.S.A. **Departement of Mathematics, Faculty of Science, Kafr EL-Sheikh University Kafr EL-Sheikh, EGYPT

(Received on: 17-12-12; Revised & Accepted on: 23-01-13)

ABSTRACT

We introduce a new types of separation axioms say $\alpha \delta T_i$ - spaces, for i = 1/2, b and we study some of their properties. We define also the class of $\alpha g \delta$ -regular and $\alpha g \delta$ -normal spaces and show that $\alpha g \delta$ -regularity and $\alpha g \delta$ -normality are preserve under bijective continuous and pre- $\alpha g \delta$ -open mappings. Several properties of these spaces are discussed.

(2000) Math. Subject Classification: 54C05, 54C08, 54D10.

Keywords and Phrases: $\alpha \delta T_{1/2}$ -spaces, $\alpha \delta T_b$ -spaces, $\alpha g \delta$ -regular spaces and $\alpha g \delta$ -normal spaces.

1. INTRODUCTION

In 1998, Devi and et. al [3] defined the notion of αT_b -spaces, while in 2005, Nasef and EL-Maghrabi [11] introduced the notion of δT_b -spaces. The aim of this paper is to introduce and study some separation axioms, say $\alpha \delta T_i$ -spaces, for i = 1/2, b. Also, we construct the regularity and the normality of $\alpha g \delta$ -closed sets.

2. PRELIMINARIES

Throughout the present paper, spaces mean topological spaces (X, τ) (or simply, X) on which no separation axioms are assumed unless explicitly stated. $f:(X, \tau) \rightarrow (Y, \sigma)$ (or simply, $f: X \rightarrow Y$) denotes a mapping from a space (X, τ) into a space (Y, σ) . The closure (resp. the interior, the complement) of A for a space X are denoted by cl(A) (resp. int(A), X-A). Some definitions and results which will be needed in this paper are recalled in the following stated.

Definition 2.1. A subset A of a space X is said to be: (i) regular open [14] if A = int(cl(A)), (ii) α -open [10] if $A \subseteq int(cl(int(A)))$,

(iii) δ -open [15] if it is the union of regular open sets.

The complement of a regular open (resp. δ -open, α -open) set is said to be regular closed (resp. δ -closed, α -closed). The intersection of all regular closed (resp. δ -closed, α -closed) sets containing A is called the regular closure [14] (resp. δ -closure [15], α -closure [2]) of A and is denoted by r-cl(A) (resp. $cl_{\delta}(A)$, α -cl(A)). The family of all regular open (resp. δ -open, α -open) sets in a space (X, τ) is denoted by $RO(X, \tau)$ (resp. $\tau^{\delta}, \tau^{\alpha}$). It is known that $\tau^{\delta} \subseteq \tau \subseteq \tau^{\alpha}$ and τ^{α} , τ^{δ} forms a topology on X [10, 15].

Definition 2.2. A subset A of a space (X, τ) is called:

(i) a generalized closed (briefly, g-closed) [1,5] set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open,

(ii) a δ -dezilareneg-closed (briefly, δg -closed) [4] set if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open,

(iii) an δ - generalized -closed (briefly, αg -closed) [3] set if α - cl(A) \subseteq U whenever A \subseteq U and U is open,

(iv) a δ - generalized -closed (briefly, $g\alpha$ -closed) [7] set if α - $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open.

Definition 2.3. A subset A of a space (X, τ) is called generalized open (resp. δ - dezilareneg open, α - generalizedopen dezilareneg α - open) set if its complement X-A is g-closed (resp. δ g -closed, α g -closed, $g\alpha$ -closed) and denoted by g-open (resp. δ g -open, α g -open, $g\alpha$ -open)

Definition 2.4. A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called:

- (i) δ -continuous [13] if $f^{-1}(V)$ is an δ -open set in (X, τ) , for each open set V in (Y, σ) ,
- (ii) α -continuous [8] if $f^{-1}(V)$ is an α -open set in (X, τ) , for each open set V in (Y, σ) ,
- (iii) α irresolute [6] if $f^{-1}(V)$ is an α -open set in (X, τ) , for each α -open set V in (Y, σ) ,
- (iv) δ -open [9] if f(V) is an δ -open set in (Y, σ) , for each open set V in (X, τ) ,

(v) pre- α -closed [3] if f(V) is an α -closed set in (Y, σ), for each α -closed set V in (X, τ),

Definition 2.5. A topological space (X, τ) is said to be:

- (i) a $T_{1/2}$ -space [5] if every g-closed set is closed,
- (ii) $1/2 T_{\alpha}$ -space [3] if every α g-closed set is α -closed,
- (iii) $\alpha T_{1/2}$ -space [7] if every g α -closed set is α -closed,
- (iv) αT_{h} -space [3] if every α g-closed set is closed,
- (v) δT_b -space [11] if every δ g-closed set is closed,
- (vi) α -regular space [3] if for each closed set F of X and each point $x \in X$ -F, there exist disjoint α -open sets U and V such that $F \subseteq U$ and $x \in V$,
- (vii) α -normal [12] if for any pair of disjoint closed sets F_1 and F_2 , there exist disjoint α -open sets U and V such that $F_1 \subseteq U$ and $F_2 \subseteq V$.

3. MAIN RESULTS

Definition 3.1. A subset A of a space (X, τ) is said to be:

(i) an α - generalized δ - closed (briefly, $\alpha g \delta$ -closed) set if α -cl(A) \subseteq U whenever A \subseteq U and U is δ -open,

(ii) an α - generalized δ - open (briefly, $\alpha g \delta$ -open) set if its complement X-A is $\alpha g \delta$ -closed.

 $\begin{array}{c} \delta \text{-closed} \to \delta g \text{-closed} \to g \text{-closed} \\ \downarrow \qquad & \ddagger & \swarrow & \alpha g \text{-closed} \\ \alpha \text{-closed} \to g \alpha \text{-closed} \end{array} \xrightarrow{} \alpha g \text{-closed} \to \alpha g \delta \text{-closed} \end{array}$

Definition 3.2. A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called:

- (i) $\alpha g \delta$ -continuous if $f^{-1}(V)$ is $\alpha g \delta$ -open in (X, τ) , for each open set V in (Y, σ) ,
- (ii) $\alpha g \delta$ -irresolute if $f^{-1}(V)$ is $\alpha g \delta$ -open, for each $\alpha g \delta$ -open set V in (Y, σ) ,
- (iii) $\alpha g \delta$ -closed if f(V) is $\alpha g \delta$ -closed in (Y, σ) , for each closed set V in (X, τ) ,
- (iv) pre- $\alpha g\delta$ -closed if f(V) is $\alpha g\delta$ -closed in (Y, σ) , for each $\alpha g\delta$ -closed set V in (X, τ) ,
- (v) pre- $\alpha g \delta$ -open if f(V) is $\alpha g \delta$ -open in (Y, σ) , for each $\alpha g \delta$ -open set V in (X, τ) ,
- (vi) α -generalized δ C homeomorphism if f is bijective, $\alpha g \delta$ -irresolute and pre $\alpha g \delta$ -open.

Theorem 3.1. If A is an $\alpha g \delta$ -closed set, then α -cl(A)-A contains no non empty δ -closed set.

Proof. Let F be a δ -closed subset of α -cl(A)-A. Then F $\subseteq \alpha$ -cl(A) (1)

Let $A \subseteq X$ -F, where X-F is δ -open. Since, A is $\alpha g \delta$ -closed, then α -cl(A) \subseteq X-F (2)

Hence, from (1), (2) we have $F \subseteq \alpha - cl(A) \cap (X - \alpha - cl(A)) = \phi$ and so, F is empty.

Theorem 3.2. If A is $\alpha g \delta$ -closed in X and if f: X \rightarrow Y is pre- α -closed and δ -continuous mapping, then f (A) is $\alpha g \delta$ -closed in Y.

Proof. Let A be an $\alpha g\delta$ -closed set in X and G be a δ -open set of Y such that $f(A) \subseteq G$. Then $A \subseteq f^{-1}(G)$. Hence, $\alpha - cl(A) \subseteq f^{-1}(G)$. Then $f(\alpha - cl(A)) \subseteq G$ and therefore $f(\alpha - cl(A))$ is $\alpha g\delta$ -closed set in Y which implies that $\alpha - cl(f(A)) \subseteq \alpha - cl(f(\alpha - cl(A))) \subseteq G$. Hence, f(A) is $\alpha g\delta$ -closed set in Y.

Theorem 3.3. The inverse image of each $\alpha g \delta$ -closed set is $\alpha g \delta$ -closed under bijective $\alpha g \delta$ -irresolute and δ -open mappings.

Proof. Let B be an $\alpha g\delta$ -closed set in Y and $f^{-1}(B) \subseteq U$, where U is a δ -open set in X. Then f(U) is δ -open and hence $B \subseteq f(U)$. Since B is $\alpha g\delta$ -closed, hence α -cl(B) $\subseteq f(U)$. Then $f^{-1}(\alpha$ -cl(B)) $\subseteq U$. But, α -cl($f^{-1}(B)$) $\subseteq \alpha$ -cl($f^{-1}(\alpha$ -cl(B))) = $f^{-1}(\alpha$ -cl(B)) $\subseteq U$. Therefore, $f^{-1}(B)$ is $\alpha g\delta$ -closed.

4. $\alpha \delta T_{1/2}$ -spaces

Definition 4.1. A space (X, τ) is called $\alpha \delta T_{1/2}$ -space if every $\alpha g \delta$ -closed is α -closed.

Remark 4.1. By Definition 4.1, we have the following diagram.

 $\alpha \delta T_{1/2}$ -space $\rightarrow 1/2T_{\alpha}$ -space $\rightarrow \alpha T_{1/2}$ -space.

However, the converses of the above implications are not true in general as is shown by [3] and the following example.

Example 4.1. If X= {a, b, c} with the topology $\tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$, then (X, τ) is $1/2T_{\alpha}$ but it is not $\alpha \delta T_{1/2}$.

Theorem 4.1. For a space (X, τ) , the following are equivalent:

(i) $(\mathbf{X}, \boldsymbol{\tau})$ is $\alpha \delta T_{1/2}$,

(ii) for each $x \in X$, then $\{x\}$ is δ -closed or α -open.

Proof. (i) \Rightarrow (ii). Suppose that {x} is not δ -closed, for some $x \in X$. Since, X is the only δ -open set containing X-{x}. Then X-{x} is $\alpha g\delta$ -closed. But (X, τ) is $\alpha \delta T_{1/2}$, then X-{x} is α -closed. Hence, {x} is α -open.

(ii) \Rightarrow (i). Let A be $\alpha g \delta$ -closed with $x \in \alpha - cl(A)$. We consider the following two cases:

Case: 1. Let {x} be α -open. Since, $x \in \alpha - cl(A)$, then $\{x\} \cap A \neq \varphi$. This shows that $x \in A$.

Case: 2. Let {x} be δ -closed. If suppose that $X \notin A$. Then we would have $x \in \alpha - cl(A) - A$ which cannot happen according to Theorem 3.1. Hence, $x \in A$. So, in both cases we have $\alpha - cl(A) \subseteq A$. Hence, $\alpha - cl(A) = A$. Then A is α -closed and so, (X, τ) is $\alpha \delta T_{1/2}$.

Theorem 4.2. A space (X, τ) is $\alpha \delta T_{1/2}$ if and only if every subset of X is the intersection of all α -open sets and all δ -closed sets containing it.

Proof. Firstly. Let X be $\alpha \delta T_{1/2}$ with B \subseteq X arbitrary. Then B = {X - {x}: x \notin B} is the intersection of α -open and δ -closed by Theorem 4.1.

Secondly. For each $x \in X$, then X-{x} is the intersection of all α -open sets and δ -closed sets containing it. Thus X-{x} is either α -open or δ -closed and X is $\alpha \delta T_{1/2}$.

Proposition 4.1. For a mapping $f: (X, \tau) \to (Y, \sigma)$, then the following statement are equivalent (i) If X is an $\alpha \delta T_{1/2}$ -space, then the concept of α -continuous and $\alpha g \delta$ -continuous are coincident, (ii) If X, Y are $\alpha \delta T_{1/2}$ -spaces, then the concept of α -irresolute and $\alpha g \delta$ -irresolute are coincident.

Proof. (i) Let B any closed set in Y. Since, f is $\alpha g \delta$ -continuous, then $f^{-1}(B)$ is $\alpha g \delta$ -closed set in X. But X is $\alpha \delta T_{1/2}$ - space, then $f^{-1}(B)$ is α -closed which implies that f is α -continuous. (ii) Similar to (i).

Theorem 4.3. A space (X, τ) is $\alpha \delta T_{1/2}$ if and only if $\alpha O(X, \tau) = \alpha G \delta O(X, \tau)$.

Proof. Firstly. Let (X, τ) be $\alpha \delta T_{1/2}$ and $A \in \alpha G \delta O(X, \tau)$. Then X-A is $\alpha g \delta$ -closed. By hypothesis X-A is α -closed and thus $A \in \alpha O(X, \tau)$. Then $\alpha G \delta O(X, \tau) \subseteq \alpha O(X, \tau)$. Hence, $\alpha O(X, \tau) = \alpha G \delta O(X, \tau)$.

Secondly. Let $\alpha O(X, \tau) = \alpha G \delta O(X, \tau)$ and let A be $\alpha g \delta$ -closed. Then X-A is $\alpha g \delta$ -open. Hence, X-A ∈ $\alpha O(X, \tau)$. Thus A is α -closed which implies that (X, τ) is $\alpha \delta T_{1/2}$ - space.

Theorem 4.4. If a space (Y, σ) is $\alpha \delta T_{1/2}$ and $f: (X, \tau) \rightarrow (Y, \sigma)$ is bijective pre α -closed, α - irresolute and δ continuous mappings, then (X, τ) is $\alpha \delta T_{1/2}$.

Proof. Let A be an $\alpha g \delta$ -closed set of (X, τ) . Hence by Theorem 3.2. We have f(A) is $\alpha g \delta$ -closed. And by the assumption f(A) is α -closed and hence, A is α -closed in X. Therefore, (X, τ) is $\alpha \delta T_{1/2}$.

Theorem 4.5. If (X, τ) is an $\alpha \delta T_{1/2}$ -space and f: $(X, \tau) \rightarrow (Y, \sigma)$ is bijective $\alpha g \delta$ - irresolute, pre- α -closed and δ-open mappings, then (Y, σ) is $\alpha \delta T_{1/2}$ -space.

Proof. Let A be an $\alpha g\delta$ -closed set of (Y, σ) . Then by Theorem 3.3, $f^{-1}(A)$ is $\alpha g\delta$ - closed in (X, τ) . Since, (X, τ) is $\alpha \delta T_{1/2}$ -space, hence $f^{-1}(A)$ is α -closed and therefore A is α -closed. Hence, (Y, σ) is $\alpha \delta T_{1/2}$ -space.

5. αδT_b -spaces

Definition 5.1. A space (X, τ) is called $\alpha \delta T_{\rm b}$ -space if every $\alpha g \delta$ -closed set is closed.

Lemma 5.1. For a space (X, τ) , every $\alpha \delta T_{\rm b}$ -space is $\alpha T_{\rm b}$ -space.

The converses of above lemma need not be true as is shown by the following example.

Example 5.1. Let X= {a, b, c} with the topologies $\tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Then a space X is αT_b , but not $\alpha \delta T_{b}$, since {b} is $\alpha g \delta$ -closed but not closed

Theorem 5.1. If $f:(X,\tau) \to (Y,\sigma)$ is surjective closed and $\alpha g \delta$ -irresolute mappings, then (Y,σ) is $\alpha \delta T_{\rm b}$ -space, if (\mathbf{X}, τ) is $\alpha \delta T_{\rm b}$ -space.

Proof. Let B be an $\alpha g \delta$ -closed subset of (Y, σ) . Then $f^{-1}(B)$ is $\alpha g \delta$ -closed in (X, τ) . Since, (X, τ) is $\alpha \delta T_{\rm b}$ -space, then $f^{-1}(B)$ is closed in (X, τ) . Hence, B is closed in (Y, σ) and so, (Y, σ) is $\alpha \delta T_{\rm b}$ -space.

Corollary 5.1. A space (X, τ) is $\alpha \delta T_{\rm b}$ if and only if $\tau = \alpha G \delta O(X, \tau)$.

Proposition 5.1. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a $\alpha g\delta$ -closed mapping and (Y,σ) be $\alpha \delta T_b$ -space. Then $f:(X,\tau) \rightarrow (Y,\sigma)$ is closed. © 2013, IJMA. All Rights Reserved 215 **Theorem 5.2.** Let $f:(X,\tau) \to (Y,\sigma)$ be a mapping and (X,τ) be an $\alpha \delta T_b$ -space. Then f is continuous if one of the following conditions are hold: (i) f is $\alpha g \delta$ -continuous, (ii) f is $\alpha g \delta$ -irresolute.

Proof. (i) Let F be a closed set in (Y, σ) . Then $f^{-1}(F)$ is $\alpha g \delta$ -closed in (X, τ) . But (X, τ) is an $\alpha \delta T_b$ -space, then $f^{-1}(F)$ is closed. Hence, f is continuous. (ii) Obvious.

Theorem 5.3. Let $f:(X, \tau_X) \to (Y, \tau_Y)$ and $h:(Y, \tau_Y) \to (Z, \tau_Z)$ be two mappings and (Y, τ_Y) be an $\alpha \delta T_b$ -space. Then:

(i) $h \circ f$ is $\alpha g \delta$ -continuous if f and h are $\alpha g \delta$ -continuous,

(ii) $h \circ f$ is $\alpha g \delta$ -closed if f and h are $\alpha g \delta$ -closed.

Proof. (i) Let V be a closed set of (Z, τ_Z) . Then $h^{-1}(V)$ is $\alpha g\delta$ -closed in (Y, τ_Y) . But, (Y, τ_Y) is $\alpha \delta T_b$ -space, then $h^{-1}(V)$ is closed in (Y, τ_Y) . Since f is $\alpha g\delta$ - continuous, then $(h \circ f)^{-1}(V)$ is $\alpha g\delta$ -closed in (X, τ_X) . $h \circ f$ is $\alpha g\delta$ - continuous. (ii) Obvious.

Corollary 5.2. For a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ we have:

(i) f is pre- $\alpha g \delta$ -closed, if f is $\alpha g \delta$ -closed and (X, τ) is $\alpha \delta T_{\rm b}$ -space,

(ii) f is $\alpha g \delta$ -irresolute, if f is $\alpha g \delta$ -continuous and (Y, σ) is $\alpha \delta T_{\rm b}$ -space.

Theorem 5.4. A space (X, τ) is $\alpha \delta T_b$ if and only if, for each $x \in X$, $\{x\}$ is δ -closed or open.

Proof. Necessity. Suppose that for some $x \in X$, $\{x\}$ is not δ -closed. Since X is the only δ -open containing X- $\{x\}$. Then X- $\{x\}$ is $\alpha g\delta$ -closed. Hence, $\{x\}$ is open.

Sufficiency. Let A be $\alpha g \delta$ -closed with $x \in \delta - cl(A)$. If $\{x\}$ is open, $\{x\} \cap A \neq \phi$. Otherwise $\{x\}$ is δ -closed and $\phi \neq \delta - cl(\{x\}) \cap A = \{x\} \cap A$. In either case $x \in A$. Then $\delta - cl(A) \subseteq A$. Hence, $\delta - cl(A) = A$. Then A is δ -closed and so, X is $\alpha \delta T_{b}$.

Theorem 5.5. A space (X, τ) is $\alpha \delta T_b$ if and only if, every subset of X is the intersection of all open sets and all δ -closed sets containing it.

6. αgδ - regular spaces

Definition 6.1. A space (X, τ) is said to be $\alpha g \delta$ -regular if for each closed set F of X and each point $X \in X$ -F, there exist disjoint $\alpha g \delta$ -open sets U and V such that $F \subseteq U$ and $X \in V$.

Lemma 6.1. For a space (X, τ) every α -regular space is $\alpha g \delta$ -regular space.

The converse of the above lemma is not true as is shown by the following example.

Example 6.1. In Example 4.1, a space X is $\alpha g \delta$ -regular but it is not α -regular.

Remark 6.1. An $\alpha g \delta$ -regular and $\alpha \delta T_{1/2}$ -spaces is α -regular space.

Theorem 6.1. Let X be a space. Then the following are equivalent:

(i) X is $\alpha g \delta$ -regular,

(ii) For each $F \subseteq X$ and $p \in X$ -F, there exists an $\alpha g \delta$ -open set U such that $p \in U \subseteq \alpha g \delta$ -cl(U) $\subseteq X$ -F.

© 2013, IJMA. All Rights Reserved

A.I. EL-Maghrabi^{***} and F.M. AL-Rehili^{*}/On 0.2δ -regular and 0.2δ - normal spaces/IJMA- 4(1), Jan.-2013.

Proof. (i) \rightarrow (ii) Let X be an $\alpha g\delta$ -regular space, $F \subseteq X$ and $p \in X$ -F. Then there exist disjoint $\alpha g\delta$ -open sets U and V such that $p \in U$ and $F \subseteq V = X \cdot \alpha g\delta$ -cl(U). This implies that $\alpha g\delta$ -cl(U) $\subseteq X$ -F and hence, $p \in U \subseteq \alpha g\delta$ -cl(U) $\subseteq X$ -F.

(ii) \rightarrow (i). Let $p \in X$ and $F \subseteq X - \{p\}$ be a closed set. Then there exists an $\alpha g \delta$ -open set such that $p \in U \subseteq \alpha g \delta - cl(U) \subseteq X$ -F. Then $F \subseteq X - \alpha g \delta$ -cl(U) which is an $\alpha g \delta$ -open set and $U \cap (X - \alpha g \delta - cl(U)) = \varphi$. Hence, (X, τ) is an $\alpha g \delta$ -regular space.

Theorem 6.2. For an $\alpha g \delta$ -regular space, for any two points x, y of X, then either $\alpha g \delta$ -cl({x}) = $\alpha g \delta$ -cl({y}) or $\alpha g \delta$ -cl({x}) $\cap \alpha g \delta$ -cl({y}) = ϕ .

Proof. Suppose that $\alpha g\delta - cl(\{x\}) \neq \alpha g\delta - cl(\{y\})$, then either $x \notin \alpha g\delta - cl(\{y\})$ or $y \notin \alpha g\delta - cl(\{x\})$. Suppose that $y \notin \alpha g\delta - cl(\{x\})$. Since, X is $\alpha g\delta$ -regular, then there exist disjoint an $\alpha g\delta$ -open sets G and H such that $\alpha g\delta - cl(\{x\}) \subseteq G$ and $y \in H \subseteq X - G$, where X-G is $\alpha g\delta$ -closed this implies that $\alpha g\delta - cl(\{y\}) \subseteq X - G$. Therefore, $\alpha g\delta - cl(\{x\}) \cap \alpha g\delta - cl(\{y\}) \subseteq G \cap (X - G) = \phi$.

Theorem 6.3. Let f be $\alpha g \delta$ -irresolute, closed mappings and Y be an $\alpha g \delta$ -regular. Then X is $\alpha g \delta$ -regular space.

Proof. Let V be any closed set of X and $x \in X$ -V. Then f(V) is closed in Y and $f(x) \in Y$ -f(V). Then there exist disjoint $\alpha g\delta$ -open sets G and H such that $f(x) \in G$ and $f(V) \subseteq H$. Since, f is $\alpha g\delta$ -irresolute, then $f^{-1}(G)$ and $f^{-1}(H)$ is $\alpha g\delta$ -open in X. Then $x \in f^{-1}(G)$, $V \subseteq f^{-1}(H)$ and $f^{-1}(G) \cap f^{-1}(H) = \varphi$. Hence, X is $\alpha g\delta$ -regular.

The following theorems are shown that $\alpha g \delta$ -regular space is preserved under bijective continuous and pre- $\alpha g \delta$ -open.

Theorem 6.4. If f is a bijective continuous and pre- $\alpha g \delta$ -open map, then Y is $\alpha g \delta$ -regular, if X is $\alpha g \delta$ -regular space.

Proof. Let F be any closed set of Y and $y \in Y$ -F. Then $f^{-1}(F)$ is closed in X and $x \notin f^{-1}(F)$. Since, X is $\alpha g \delta$ -regular, then there exist disjoint $\alpha g \delta$ -open sets G and H such that $x \in G$ and $f^{-1}(F) \subseteq H$. Then $y \in f(G)$ and $F \subseteq f(H)$ and $f(G) \cap f(H) = \varphi$. Hence, Y is $\alpha g \delta$ -regular.

Theorem 6.5. The property of being $\alpha g \delta$ -regular space is a topological property.

Proof. Let a mapping $f: X \to Y$ be $\alpha g \delta$ C-homeomorphism from an $\alpha g \delta$ -regular space X into a space Y. Then f is bijective $\alpha g \delta$ -irresolute and pre - $\alpha g \delta$ -open. and hence f is bijective continuous and pre- $\alpha g \delta$ -open. then for Theorem 6.4, $\alpha g \delta$ -regular is a topological property.

7. $\alpha g \delta$ - normal spaces

Definition 7.1. A space (X, τ) is said to be $\alpha g \delta$ -normal if for any pair of disjoint closed sets F_1 and F_2 , there exist disjoint $\alpha g \delta$ -open sets U and V such that $F_1 \subseteq U$ and $F_2 \subseteq V$.

Lemma 7.1. For a space (X, τ) , the following are hold

(i) Every α -normal space is $\alpha g \delta$ -normal,

(ii) Every $\alpha g \delta$ -regular space is $\alpha g \delta$ -normal.

Proof. (i) Let (X, τ) be an α -normal space. Then for any pair of disjoint closed sets F_1 and F_2 , there exist disjoint α -open sets U and V such that $F_1 \subseteq U$ and $F_2 \subseteq V$. Then by definition 3.1, there exist disjoint $\alpha g\delta$ -open sets U and V such that $F_1 \subseteq U$ and $F_2 \subseteq V$ and therefore (X, τ) is $\alpha g\delta$ -normal space.

(ii) Let F_1 , F_2 be two disjoint closed sets of X. Then for each $x \in F_1$ implies $x \notin F_2$. Since, X is $\alpha g \delta$ -regular, then there exist two disjoint $\alpha g \delta$ -open sets U and V_X such that $F_2 \subseteq U$ and $x \in V_X$. But, $x \in F_1$ and $x \in V_X$, then, $F_1 \subseteq V$ and $F_2 \subseteq U$ and $U \cap V = \varphi$. Therefore, (X, τ) is an $\alpha g \delta$ -normal space.

The converse of the above lemma is not true. as is shown by the following examples.

Example 7.1. Let $X = \{a, b, c\}$ with topologies $\tau_1 = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then

- (i) a space (X, τ_1) is $\alpha g \delta$ -normal but not α -normal. Since, {b}, {c} are disjoint closed sets while there are not exist disjoint α -open sets U and V such that {b} \subseteq U, {c} \subseteq V.
- (ii) a space (X, τ_2) is $\alpha g \delta$ -normal but not $\alpha g \delta$ -regular. Since, {c} is a closed set and $a \in X$ -{c} there are not exist disjoint $\alpha g \delta$ -open sets U and V such that {c} $\subseteq U$, $a \in V$.

Proposition 7.1. An $\alpha g \delta$ -normal and $\alpha \delta T_{1/2}$ spaces is α -normal space.

Theorem 7.1. For a space (X, τ) , then the following are equivalent:

- (i) X is $\alpha g \delta$ -normal,
- (ii) For any pair of disjoint closed sets F_1 , F_2 of X, there exists an $\alpha g \delta$ -open set H such that $F_1 \subseteq H$ and $\alpha g \delta$ -cl(H) disjoint of F_2 .
- (iii) For any closed set F of X and any open set U containing F, there exists an $\alpha g\delta$ open set H such that $F \subseteq H \subseteq \alpha g\delta$ -cl(H) \subseteq U.

Proof. (i) \rightarrow (ii). Let F_1 and F_2 be any non-empty disjoint closed sets of an $\alpha g \delta$ -normal space X. Then there exist two $\alpha g \delta$ -open sets H, W of X such that $F_1 \subseteq H$, $F_2 \subseteq W$ and $W \cap H = \varphi$. Then $\alpha g \delta$ -cl(X-W) \subseteq X- F_2 and $\alpha g \delta$ -cl(H) \subseteq X- F_2 . Hence, $F_1 \subseteq H$ and $\alpha g \delta$ -cl(H) \cap $F_2 = \varphi$.

(ii) \rightarrow (iii). Let F be any closed set and U be an open set containing F. Then by hypothesis, there exists an $\alpha g\delta$ -open set H such that $F \subseteq H$ and $\alpha g\delta$ -cl(H) \cap (X-U) = φ this implies that $F \subseteq H \subseteq \alpha g\delta$ -cl(H) $\subseteq U$.

(iii) \rightarrow (i). Let F_1 and F_2 be any disjoint closed sets of X. Then X- F_2 is an open set containing F_1 . Hence by hypothesis, there exists an $\alpha g \delta$ -open set H such that $F_1 \subseteq H \subseteq \alpha g \delta$ -cl(H) \subseteq X- F_2 . If we put V = X- $\alpha g \delta$ -cl(H), then H and V are disjoint $\alpha g \delta$ -open sets such that $F_1 \subseteq H$ and $F_2 \subseteq V$. Hence, X is $\alpha g \delta$ -normal.

Theorem 7.2. If f: $(X, \tau) \rightarrow (Y, \sigma)$ is $\alpha g \delta$ -irresolute and closed mappings, then X is $\alpha g \delta$ -normal, if Y is $\alpha g \delta$ -normal.

Proof. Let F_1 and F_2 be any two disjoint closed sets of X. Then $f(F_1)$, $f(F_2)$ are disjoint closed sets of Y. By $\alpha g\delta$ -normality, there exists disjoint $\alpha g\delta$ -open sets G, H such that $f(F_1) \subseteq G$ and $f(F_2) \subseteq H$. Then $F_1 \subseteq f^{-1}(G)$, $F_2 \subseteq f^{-1}(H)$ and $f^{-1}(G) \cap f^{-1}(H) = \varphi$. Hence, X is $\alpha g\delta$ -normal.

Theorem 7.3. If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a bijective continuous and pre- $\alpha g \delta$ -open mappings, then Y is $\alpha g \delta$ -normal, if X is $\alpha g \delta$ -normal space.

Proof. Let A and B be any two disjoint closed sets of Y. Then $f^{-1}(A)$, $f^{-1}(B)$ are disjoint closed sets of X. By $\alpha g\delta$ -normality, there exists disjoint $\alpha g\delta$ -open set G, H such that $f^{-1}(A) \subseteq G$ and $f^{-1}(B) \subseteq H$. and by using a bijective pre- $\alpha g\delta$ -open mapping, we obtain $A \subseteq f(G)$, $B \subseteq f(H)$ and $f(G) \cap f(H) = \varphi$. Hence, Y is $\alpha g\delta$ -normal. © 2013, IJMA. All Rights Reserved 218

A.I. EL-Maghrabi *** and F.M. AL-Rehili * / On 0.2δ -regular and 0.2δ - normal spaces/IJMA- 4(1), Jan.-2013.

Theorem 7.4. The property of being $\alpha g \delta$ -normal space is a topological property.

Proof. Let a mapping $f : X \to Y$ be a $\alpha g \delta$ C-homeomorphism from an $\alpha g \delta$ -normal space X into a space Y. Then f is bijective $\alpha g \delta$ -irresolute and pre- $\alpha g \delta$ -open mapping. Then f is bijective continuous and pre- $\alpha g \delta$ -open. Therefore by using Theorem 7.3. $\alpha g \delta$ -normal space is a topological property.

REFERENCES

[1] C. E. Aull, Paracompact and countably paracompact subsets ,General Topology and its Relation to Modern Analysis and Algebra, Proc. Kanpur Topological Con., (1986),49-53.

[2] M. Caldas, A note on some applications of α - open sets, IJMMS, (2003), 125-130.

[3] R. Devi; K. Balachandran and H. Maki, Generalized α -closed maps and α -generalized closed maps, Indian J. Pure. Appl. Math., 29 (1) (1998), 37-49.

[4] J. Dontchev and M. Ganster, On δ -generalized closed sets and $T_{3/4}$ - spaces, Mem. Fac. Sci. Kochi Univ. Math., 17 (1996), 15-31.

[5] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89-96.

[6] S.N. Maheshwari and S.S. Thakur, On α-irresolute mappings, Tamking J. Math., (1980), 209-214.

[7] H. Maki; R. Devi and K. Balachandran, Generalized α -closed sets in topology, Bull. Fukuoka. Univ .Ed. Part III, 42(1993), 13-21.

[8] A.S. Mashhour, I. A. Hasanein and S.N.EL-Deeb, α -continuous and α -open mappings, Acta. Math.Hunga.41 (1983), 213-218.

[9] M. Mrsevic; I. Relly and M.K. Vamanamuthy, On semi-regularzation properties, J. Austral. Math. Soc.(Series A), 38(1985), 40-54.

[10] O. Najasted, On some classes of nearly open sets, Proc. Math., 15(1965), 691-970.

[11] A.A. Nasef and A.I EL-Maghrabi, Separation axioms associated with generalized closed sets, Proc. Math. Phys. Soc. Egypt., 83(2) (2005), 135-146.

[12] G.B. Navalagi, Some weak forms of normality (Unpublished).

[13] T. Noiri, On δ-continuous functions, J. Korean Math. Soc., (1980), 161-166.

[14] M.H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-381.

[15] N.V. Velicko, H-closed topological spaces, Amer .Math. Soc. Transl, 78 (1968), 103-118.

Source of support: Nil, Conflict of interest: None Declared