International Journal of Mathematical Archive-4(1), 2013, 63-68 IMA Available online through www.ijma.info ISSN 2229-5046

FURTHER RESULTS ON HARMONIC MEAN GRAPHS

${ }^{1}$ S. S. Sandhya* \& ${ }^{2}$ S. Somasundaram
${ }^{1}$ Department of Mathematics, Sree Ayyappa College for Women
Chunkankadai; Kanyakumari-629807, India
${ }^{2}$ Department of Mathematics, Manonmaniam Sundaranar University Tirunelveli 627012, TamilNadu, India

(Received on: 06-12-12; Revised \& Accepted on: 17-01-13)

Abstract

A Graph $G=(V, E)$ with p vertices and q edges is called a Harmonic mean graph if it is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1,2 \ldots q+1$ in such a way that when each edge $e=u v$ is labeled with $f(u v)=$ $\left\lceil\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rceil$ (or) $\left\lfloor\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rfloor$, then the edge labels are distinct. In this case f is called Harmonic Mean Labeling of G. In this paper we prove that $m C_{n}, m C_{n} \cup P_{k}, m C_{n} \cup C_{k}, m C_{n} \cup P C_{k}, n k_{3} \cup C_{m}, n k_{3} \cup P C_{m}, P_{m} \times P_{3}$ are Harmonic mean graphs. Also we prove that the graph obtained by joining two copies of cycle C_{n} by a path of arbitrary length is a Harmonic mean graph.

Keywords: Graph, Harmonic mean graph, path, cycle, planar grid, union of graphs, mG.

1. INTRODUCTION

The graph considered here will be finite, undirected and simple. Terms not defined here are used in the sense of Harary [1]. The symbols $V(G)$ and $E(G)$ will denote the vertex set and edge set of a graph G. The square G^{2} of a graph G has $V\left(G^{2}\right)=V(G)$, with u, v adjacent in G^{2} whenever $d(u, v) \leq 2$ in G. The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}\right.$, E_{2}) is a graph $G=G_{1} \cup G_{2}$ with vertex set $V=V_{1} \cup V_{2}$ and edge set $E=E_{1} \cup E_{2}$. The Cartesian product of two graphs $G_{1}=$ $\left(V_{1} E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is a graph $G=(V, E)=G_{1} \times G_{2}$ with $V=V_{1} \times V_{2}$ and two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ whenever ($u_{1}=v_{1}$ and u_{2} is adjacent to u_{2} or $u_{2}=v_{2}$ and u_{1} is adjacent to v_{1}). The product $P_{m} \times P_{n}$ is called a planar grid and $\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{2}$ in called ladder graph. mG denotes the disjoint union of m copies of the graph G . Let G_{1}, $\mathrm{G}_{2} \ldots \mathrm{G}_{\mathrm{n}} \mathrm{n} \geq 2$ be n copies of a fixed graph G . The graph obtained by adding an edge between G_{i} and $\mathrm{G}_{i+1}, i=1,2 \ldots . . \mathrm{n}-1$ is a called path union of G [7].
S. Somasundaram and R. Ponraj introduced Mean labeling of Graphs in [2]. We introduced Harmonic Mean labeling of Graphs in [3] and studied their behavior in [4] and [5]. In this paper we discuss Harmonic mean labeling behavior for union of two graphs like $C_{m} \cup P_{n}, \mathrm{mC}_{n} \cup \mathrm{P}_{\mathrm{k}}, \mathrm{mC}_{\mathrm{n}} \cup \mathrm{C}_{\mathrm{k}}, \mathrm{mC}_{\mathrm{n}} \cup \mathrm{PC}_{\mathrm{k}}$ etc.

Here we shall use frequent reference to the following definition and theorems.
Definition 1.1: A Graph G with p vertices and q edges is called a harmonic mean graph if it is possible to label the vertices $x \in \mathrm{~V}$ with distinct labels $\mathrm{f}(x)$ from $1,2 \ldots \mathrm{q}+1$ in such a way that when each edge $\mathrm{e}=\mathrm{uv}$ is labeled with
$\mathrm{f}(\mathrm{e}=\mathrm{uv})=\left\lceil\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rceil$ (or) $\left\lfloor\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rfloor$ then the edge labels are distinct. In this case f is called a Harmonic mean labeling of G.

Theorem 1.2[4]: $n K_{3}, \mathrm{nK}_{3} \cup \mathrm{P}_{\mathrm{m}}, \mathrm{m}>1, \mathrm{nk}_{3} \cup \mathrm{C}_{\mathrm{m}}, \mathrm{m} \geq 3$ are Harmonic mean graphs.
Theorem 1.3 [4]: $\mathrm{mC}_{4}, \mathrm{mC}_{4} \cup \mathrm{P}_{\mathrm{n}}, \mathrm{n}>1, \mathrm{mC}_{4} \cup \mathrm{C}_{\mathrm{n}}, \mathrm{n} \geq 3, \mathrm{nk}_{3} \cup \mathrm{mC}_{4}$ are Harmonic mean graphs.
Theorem 1.4 [3]: Ladders are Harmonic mean graphs.

${ }^{1}$ S. S. Sandhya* \& ${ }^{2}$ S. Somasundaram/ Further Results On Harmonic Mean Graphs/IJMA- 4(1), Jan.-2013.

Theorem 1.5 [6]: The graph $\mathrm{C}_{\mathrm{n}}{ }^{(2)}$ is a Harmonic mean graph.

2. MAIN RESULT

Theorem 2.1: mC_{n} is a Harmonic mean graph.
Proof: Let the vertex set of mC_{n} be $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots . . \cup \mathrm{V}_{\mathrm{m}}$ where $\mathrm{V}_{i}=\left\{\mathrm{v}_{i}, \mathrm{v}_{i}{ }^{2}, \mathrm{v}_{i}{ }^{3} \ldots . . \mathrm{v}_{i}^{\mathrm{m}}\right\}$. Now define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{mC}_{\mathrm{n}}\right) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by $\mathrm{f}\left(\mathrm{v}_{i}^{\mathrm{j}}\right)=\mathrm{m}(\mathrm{i}-1)+\mathrm{j}, 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$. If a and $\mathrm{a}+1$ are two integers, then the Harmonic mean lies between a and $\mathrm{a}+1, \mathrm{a}<\frac{2 a(\alpha+1)}{2 \alpha+1}<\mathrm{a}+1$.

Consider a graph with vertices $n_{i}-3, n_{i}-2, n_{i}-1, n_{i}$.

Figure: 1
For the edges joining the vertices $n_{i}-3$ and $n_{i}-2$ we may assign the edge label $n_{i}-3$. Similarly for the edge joining the vertices $n_{i}-2$ and $n_{i}-1$ we may assign the edge label $n_{i}-1$ and for the edge joining the vertices $n_{i}-1$ ad n_{i} we may assign the edge label n_{i}.

Since $n_{i}-3<\frac{2 n_{i}\left(n_{i}-a\right)}{2 n_{i}-a}<n_{i}$, we may assign the edge label $n_{i}-2$ for the edges joining the vertices $n_{i}-3$ and n_{i}. Since $m C_{n}$ has distinct edge labels, it is a Harmonic Mean graph.

Example 2.2: The following figure shows the Harmonic mean labeling of $3 \mathrm{C}_{6}$.

Figure: 2
Now we investigate Harmonic mean labeling of union of mC_{n} with path and cycle.
Theorem 2.3: $\mathrm{mC}_{\mathrm{n}} \cup \mathrm{P}_{\mathrm{k}}$ is a Harmonic mean graph for $\mathrm{m} \geq 1, \mathrm{n} \geq 3$ and $\mathrm{k}>1$.
Proof: Let the vertex set of mC_{n} be $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{m}}$
where
$\mathrm{V}_{i}=\left\{\mathrm{v}_{i}{ }^{1}, \mathrm{v}_{i}{ }^{2}, \mathrm{v}_{i}^{3} \ldots . . \mathrm{v}_{i}^{\mathrm{n}}\right\}$ and the edge set be $\mathrm{E}=\mathrm{E}_{1} \cup \mathrm{E}_{2} \cup \ldots \cup \mathrm{E}_{\mathrm{m}}$
where
$\mathrm{E}_{i}=\left\{\mathrm{e}_{i}{ }^{1}, \mathrm{e}_{i}^{2}, \mathrm{e}_{i}^{3} \ldots \ldots . \mathrm{e}_{i}^{\mathrm{n}}\right\}$. Let P_{k} be the path $\mathrm{u}_{1} \mathrm{u}_{2} \ldots . \mathrm{u}_{\mathrm{k}}$.
Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{mC}_{\mathrm{n}} \cup \mathrm{P}_{\mathrm{k}}\right) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$
by $\mathrm{f}\left(\mathrm{v}_{i}^{\mathrm{j}}\right)=\mathrm{n}(\mathrm{i}-1)+\mathrm{j}, 1 \leq i \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{k}}\right)=\mathrm{mn}+i, 1 \leq i \leq \mathrm{k}$.
Edge labels are shown below

${ }^{1}$ S. S. Sandhya* \& ${ }^{2}$ S. Somasundaram/ Further Results On Harmonic Mean Graphs/IJMA- 4(1), Jan.-2013.

The set of labels of the edges of mC_{n} is $\{1,2,3 \ldots \mathrm{mn}\}$ and the set of labels of the edges of P_{k} is $(\mathrm{mn}+1, m n+2 \ldots m n+\mathrm{k}-$ $1\}$.

Hence $\mathrm{mC}_{\mathrm{n}} \cup \mathrm{P}_{\mathrm{k}}$ is a Harmonic mean graph.
Example 2.4: A Harmonic mean labeling of $3 \mathrm{C}_{5} \cup \mathrm{P}_{7}$ is given below

Figure: 3
Next we have

Theorem 2.5: $\mathrm{mC}_{\mathrm{n}} \cup \mathrm{C}_{\mathrm{k}}$ is a Harmonic mean graph for $\mathrm{m} \geq 3$ and $\mathrm{k} \geq 3$.
Proof: Let mC_{n} be m copies of the cycle C_{n} and C_{k} be cycle with k vertices. Let the vertex set of mC_{n} be $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \mathrm{~V}_{\mathrm{m}}$
where $\mathrm{V}_{i}=\left\{\mathrm{v}_{i}{ }^{1}, \mathrm{v}_{i}{ }^{2}, \ldots, \mathrm{v}_{i}^{\mathrm{n}}\right\}$ and the edge set be $\mathrm{E}=\mathrm{E}_{1} \cup \mathrm{E}_{2} \cup \ldots \mathrm{E}_{\mathrm{m}}$
where $\mathrm{E}_{i}=\left\{\mathrm{e}_{i}^{1}, \mathrm{e}_{i}{ }^{2}, \mathrm{e}_{i}^{3}, \ldots, \mathrm{e}_{i}^{\mathrm{n}}\right\}$.
Let $\mathrm{u}_{1} \mathrm{u}_{2} \ldots \mathrm{u}_{\mathrm{k}} \mathrm{u}_{1}$ be the cycle C_{k}.
Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{mC}_{\mathrm{n}} \cup \mathrm{C}_{\mathrm{k}}\right) \rightarrow\{1,2 \ldots \mathrm{q}+1\}$ by $\mathrm{f}\left(\mathrm{v}_{i}^{\mathrm{j}}\right)=\mathrm{n}(i-1)+\mathrm{j}, 1 \leq i \leq \mathrm{m}, 1 \leq i \leq \mathrm{m}$

$$
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{mn}+\mathrm{i}, 1 \leq i \leq \mathrm{k} .
$$

Hence $\mathrm{mC}_{\mathrm{n}} \mathrm{UC}_{\mathrm{k}}$ is a Harmonic mean graph.
Example 2.6: Harmonic mean labeling pattern of $3 \mathrm{C}_{5}{\cup C_{6}}$ is given in the following figure.

Figure: 4
The same argument as in Theorem 2.3 and Theorem 2.5 gives the following
Theorem 2.7: $\mathrm{mC}_{\mathrm{n}} \cup \mathrm{PC}_{\mathrm{k}}$ is a Harmonic mean graph for $\mathrm{n}, \mathrm{k} \geq 3$ and $\mathrm{m}, \mathrm{p}>1$. Now we have
Theorem 2.8: $\mathrm{nK}_{3} \cup m C_{\mathrm{p}}$, is a Harmonic mean graph for $\mathrm{p}>3$ and $\mathrm{n}, \mathrm{m}>1$
Proof: Let the vertex set of $n K_{3}$ be $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ where $V_{i}=\left\{v_{i}{ }^{1}, v_{i}{ }^{2}, v_{i}^{3}\right\}$.
Let the vertex set of $m C_{p}$ be $U=U_{1} \cup U_{2} \cup U_{3} \cup \ldots \cup U_{m}$ where $U_{k}=\left\{u_{k}{ }^{1}, \mathrm{u}_{\mathrm{k}}{ }^{2}, \ldots, \mathrm{u}_{\mathrm{k}}{ }^{\mathrm{n}}\right\}$.
Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{nk}_{3} \mathrm{UmC}_{\mathrm{n}}\right) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by $\mathrm{f}\left(\mathrm{v}_{i}^{\mathrm{j}}\right)=3(\mathrm{i}-1)+\mathrm{j}, 1 \leq i \leq \mathrm{n}, 1 \leq \mathrm{j} \leq 3$ and $\mathrm{f}\left(\mathrm{u}_{\mathrm{k}}{ }^{\mathrm{j}}\right)=\mathrm{p}(\mathrm{k}-1)+3 \mathrm{n}+\mathrm{l}$, $1 \leq k \leq \mathrm{m}, 1 \leq l \leq \mathrm{p}$.

Hence $n k_{3} \cup m C_{p}$ is a Harmonic mean graph.

${ }^{1}$ S. S. Sandhya* \& ${ }^{2}$ S. Somasundaram/ Further Results On Harmonic Mean Graphs/IJMA- 4(1), Jan.-2013.

Example 2.9: Harmonic mean labeling of $4 \mathrm{k}_{3} \cup 2 \mathrm{C}_{5}$ is given below

Figure: 5
Next we prove the following
Theorem 2.10: Two copies of cycle C_{m} sharing a common edge is a Harmonic mean graph.
Proof: Let the cycle C_{m} be $u_{1} u_{2} \ldots u_{m} u_{1}$. Consider two copies of cycle C_{m}.
Let G be a graph obtained from two copies of cycle C_{m} sharing common edge. Then G has $2 n-2$ vertices and $2 n-1$ edges. Let us take $\mathrm{e}=\mathrm{u}_{\mathrm{m}-1} \mathrm{u}_{\mathrm{m}}$ be the common edge between two copies of C_{m}.

Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}, 1 \leq i \leq \mathrm{m}-2$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{m}}\right)=\mathrm{m}-1, \mathrm{f}\left(\mathrm{u}_{\mathrm{m}-1}\right)=\mathrm{m}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=i+1, \mathrm{~m}+1 \leq i \leq 2 \mathrm{~m}-2$.
Hence G is a Harmonic mean graph.
The following example illustrates the above theorem.
The labeling pattern of two copies of C_{7} sharing a common edge is shown below.

Figure: 6
Now we investigate the Harmonic mean labeling of a planar grid for a particular case of n.
Theorem 2.11: The planar gird $P_{m} \times P_{3}$ is a Harmonic mean graph.
Proof: Let the vertex set of $P_{m} \times P_{3}$ be $V\left(P_{m} \times P_{3}\right)=\left\{\mathrm{a}_{\mathrm{ij}}: 1 \leq i \leq m, 1 \leq \mathrm{j} \leq 3\right\}$ and the edge set be
$\mathrm{E}\left(\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{3}\right)=\left(\mathrm{a}_{i(j-1)} \mathrm{a}_{\mathrm{ij}} ; 1 \leq i \leq \mathrm{m}, 2 \leq \mathrm{j} \leq 3\right\} \cup\left\{\mathrm{a}_{(\mathrm{i}-1)} \mathrm{a}_{\mathrm{ij}}: 2 \leq i \leq \mathrm{m}, 1 \leq \mathrm{j} \leq 3\right\}$
Define f: $\mathrm{V}\left(\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{3}\right) \rightarrow\{1,2 \ldots \mathrm{q}+1\}$
$\mathrm{f}\left(\mathrm{a}_{\mathrm{ij}}\right)=i, i=1,1 \leq \mathrm{j} \leq 3$
$\mathrm{f}\left(\mathrm{a}_{\mathrm{ij}}\right)=\mathrm{f}\left(\mathrm{a}_{(i-1) 3}\right)+2+\mathrm{j}, 2 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq 3$
Edges are labeled with
$f\left(a_{11} a_{21}\right)=1$
$\mathrm{f}\left(\mathrm{a}_{i j} \mathrm{a}_{i(\mathrm{j}+1)}\right)=5(\mathrm{i}-1)+\mathrm{j}+1, i=1,1 \leq \mathrm{j} \leq 2$
$\mathrm{f}\left(\mathrm{a}_{\mathrm{ij}} \mathrm{a}_{\mathrm{i}(\mathrm{j}+1)}\right)=5(\mathrm{i}-1)+\mathrm{j}, 2 \leq \mathrm{j} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq 2$
$\mathrm{f}\left(\mathrm{a}_{\mathrm{ij}} \mathrm{a}_{i(j+1) \mathrm{j}}\right)=5(\mathrm{i}-1)+\mathrm{j}+2, \quad 1 \leq i \leq \mathrm{m}-1,1 \leq \mathrm{j} \leq 3$
Here all the edges are labeled with distinct labels.
Hence $P_{m} \times P_{3}$ is a Harmonic mean graph for $m \geq 2$.
Example 2.12: Harmonic mean labeling of $\mathrm{P}_{4} \times \mathrm{P}_{3}$ is shown in the following figure.

Figure: 7
Next we prove
Theorem 2.13: The graph obtained by joining two copies of cycle C_{n} by a path P_{m} is a Harmonic mean graph for all m and n

Proof: Let G be a graph obtained by joining two copies of cycle C_{n} by a path P_{m} Let $u_{1} u_{2} \ldots . u_{n}$ be the vertices of first copy of cycle C_{n} and $v_{1} v_{2} \ldots . . v_{n}$ be the vertices of second copy of cycle C_{n}.

Let P_{m} be the path $\mathrm{w}_{1} \mathrm{w}_{2} \ldots . . \mathrm{w}_{\mathrm{m}}$ with $\mathrm{u}_{1}=\mathrm{w}_{1}$ and $\mathrm{v}_{1}=\mathrm{w}_{\mathrm{m}}$
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2 \ldots . \mathrm{q}+1\}$ by
$\mathrm{f}\left(\mathrm{u}_{i}\right)=i, 1 \leq i \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{1}\right)=\mathrm{n}+3$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+3+i, 2 \leq i \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{1}\right)=\mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=\mathrm{n}+\mathrm{j}-1,2 \leq \mathrm{j} \leq \mathrm{m}$
Hence G is a Harmonic mean graph
Example 2.14: The following example shows the graph G obtained by joining two copies of the cycle C_{5} by a path P_{4}.

Figure: 8
${ }^{1}$ S. S. Sandhya* \& ${ }^{2}$ S. Somasundaram/ Further Results On Harmonic Mean Graphs/IJMA- 4(1), Jan.-2013.

REFERENCES

[1] Harary.F., 1988, Graph theory Narosa publishing House, New Delhi.
[2] Somasundaram. S., and Ponraj. R., 2003, Mean labeling of Graphs, National Academy Science letters vol.26, p210-213.
[3] Somasundaram S., Ponraj. R., and Sandhya. S.S., Harmonic Mean Labeling of Graphs, communicated.
[4] Sandhya S.S., Somasundaram.S., and Ponraj. R., Some Results on Harmonic Mean Graphs, International journal of Contemporary Mathematical Sciences 7(4) (2012), 197-208.
[5] Sandhya S.S., Somasundaram.S., and Ponraj. R., Some more Results on Harmonic Mean Graphs, Journal of Mathematics Research 4(1) (2012) 21-29.
[6] Sandhya S.S., Somasundaram.S., and Ponraj. R., Harmonic Mean Labeling of Some Cycle Related Graphs, International Journal of Mathematical Analysis Vol. 6 No.40, 1997-2007.
[7] Vaidya S.K., and Kanani.K.K., Prime Labeling for Some Cycle Related Graphs, Journal of Mathematics Research 2(1) (2010), 98-103.

Source of support: Nil, Conflict of interest: None Declared

