FURTHER RESULTS ON HARMONIC MEAN GRAPHS ¹S. S. Sandhya* & ²S. Somasundaram ¹Department of Mathematics, Sree Ayyappa College for Women Chunkankadai; Kanyakumari-629807, India ²Department of Mathematics, Manonmaniam Sundaranar University Tirunelveli 627012, TamilNadu, India (Received on: 06-12-12; Revised & Accepted on: 17-01-13) #### **ABSTRACT** **A** Graph G = (V, E) with p vertices and q edges is called a Harmonic mean graph if it is possible to label the vertices $x \in V$ with distinct labels f(x) from 1, 2, q+1 in such a way that when each edge e=uv is labeled with $f(uv) = \left[\frac{2f(u)f(v)}{f(u)+f(v)}\right](or)\left[\frac{2f(u)f(v)}{f(u)+f(v)}\right]$, then the edge labels are distinct. In this case f is called Harmonic Mean Labeling of G. In this paper we prove that mC_n $mC_n \cup P_k$, $mC_n \cup P_k$, $mC_n \cup PC_k$, $nk_3 \cup PC_m$, $nk_3 \cup PC_m$, $P_m \times P_3$ are Harmonic mean graphs. Also we prove that the graph obtained by joining two copies of cycle C_n by a path of arbitrary length is a Harmonic mean graph. Keywords: Graph, Harmonic mean graph, path, cycle, planar grid, union of graphs, mG. ## 1. INTRODUCTION The graph considered here will be finite, undirected and simple. Terms not defined here are used in the sense of Harary [1]. The symbols V (G) and E(G) will denote the vertex set and edge set of a graph G. The square G^2 of a graph G has V (G^2) = V (G), with u, v adjacent in G^2 whenever $d(u,v) \le 2$ in G. The union of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is a graph $G = G_1 \cup G_2$ with vertex set $V = V_1 \cup V_2$ and edge set $E = E_1 \cup E_2$. The Cartesian product of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is a graph $G = (V, E) = G_1 \times G_2$ with $V = V_1 \times V_2$ and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are adjacent in $G_1 \times G_2$ whenever ($v_1 = v_1$ and v_2 is adjacent to v_2 or $v_2 = v_2$ and v_3 is adjacent to v_4 . The product v_4 is called a planar grid and v_6 in called ladder graph. v_6 denotes the disjoint union of v_6 copies of the graph v_6 . Let v_6 is a called path union of v_6 is a called path union of v_6 [7]. S. Somasundaram and R. Ponraj introduced Mean labeling of Graphs in [2]. We introduced Harmonic Mean labeling of Graphs in [3] and studied their behavior in [4] and [5]. In this paper we discuss Harmonic mean labeling behavior for union of two graphs like $C_m \cup P_n$, $mC_n \cup P_k$, $mC_n \cup P_k$ etc. Here we shall use frequent reference to the following definition and theorems. **Definition 1.1:** A Graph G with p vertices and q edges is called a harmonic mean graph if it is possible to label the vertices $x \in V$ with distinct labels f(x) from 1, 2....q+1 in such a way that when each edge e = uv is labeled with $$f(e = uv) = \left\lceil \frac{2f(u)f(v)}{f(u) + f(v)} \right\rceil (or) \left\lfloor \frac{2f(u)f(v)}{f(u) + f(v)} \right\rfloor$$ then the edge labels are distinct. In this case f is called a Harmonic mean labeling of G. **Theorem 1.2[4]:** nK_3 , $nK_3 \cup P_m$, m > 1, $nk_3 \cup C_m$, $m \ge 3$ are Harmonic mean graphs. **Theorem 1.3 [4]:** mC_4 , $mC_4 \cup P_n$, n > 1, $mC_4 \cup C_n$, $n \ge 3$, $nk_3 \cup mC_4$ are Harmonic mean graphs. **Theorem 1.4 [3]:** Ladders are Harmonic mean graphs. **Theorem 1.5 [6]:** The graph $C_n^{(2)}$ is a Harmonic mean graph. #### 2. MAIN RESULT **Theorem 2.1:** mC_n is a Harmonic mean graph. **Proof:** Let the vertex set of mC_n be $V = V_1 \cup V_2 \cup ... \cup V_m$ where $V_i = \{v_i, v_i^2, v_i^3, ..., v_i^m\}$. Now define a function $f: V(mC_n) \rightarrow \{1, 2, ..., q+1\}$ by $f(v_i^j) = m(i-1)+j$, $1 \le i \le m$, $1 \le j \le n$. If a and a+1 are two integers, then the Harmonic mean lies between a and a+1, a $< \frac{2\pi(n+1)}{2n+1} < a+1$. Consider a graph with vertices n_i -3, n_i -2, n_i -1, n_i . Figure: 1 For the edges joining the vertices n_{i} -3 and n_{i} -2 we may assign the edge label n_{i} -3. Similarly for the edge joining the vertices n_{i} -2 and n_{i} -1 we may assign the edge label n_{i} -1 and for the edge joining the vertices n_{i} -1 ad n_{i} we may assign the edge label n_{i} . Since n_i -3 < $\frac{2n_i(n_i-1)}{2n_i-1}$ < n_i , we may assign the edge label n_i -2 for the edges joining the vertices n_i -3 and n_i . Since mC_n has distinct edge labels, it is a Harmonic Mean graph. Example 2.2: The following figure shows the Harmonic mean labeling of 3C₆. Figure: 2 Now we investigate Harmonic mean labeling of union of mC_n with path and cycle. **Theorem 2.3:** $mC_n \cup P_k$ is a Harmonic mean graph for $m \ge 1$, $n \ge 3$ and k > 1. **Proof:** Let the vertex set of mC_n be $V = V_1 \cup V_2 \cup ... \cup V_m$ where $$V_i = \{v_i^1, v_i^2, v_i^3, \dots, v_i^n\}$$ and the edge set be $E = E_1 \cup E_2 \cup \dots \cup E_m$ where $$E_i = \{e_i^1, e_i^2, e_i^3, \dots, e_i^n\}$$. Let P_k be the path $u_1 u_2, \dots, u_k$. Define a function $f: V(mC_n \cup P_k) \rightarrow \{1, 2, ..., q+1\}$ by $$f(v_i^j) = n(i-1)+j, 1 \le i \le m, 1 \le j \le n$$ $f(u_k) = mn + i$, $1 \le i \le k$. Edge labels are shown below The set of labels of the edges of mC_n is $\{1, 2, 3... mn\}$ and the set of labels of the edges of P_k is $\{mn+1, mn+2... mn+k-1\}$. Hence $mC_n \cup P_k$ is a Harmonic mean graph. **Example 2.4:** A Harmonic mean labeling of 3C₅∪P₇ is given below Figure: 3 Next we have **Theorem 2.5:** $mC_n \cup C_k$ is a Harmonic mean graph for $m \ge 3$ and $k \ge 3$. **Proof:** Let mC_n be m copies of the cycle C_n and C_k be cycle with k vertices. Let the vertex set of mC_n be $V = V_1 \cup V_2 \cup ... \cup V_m$ where $V_i = \{v_i^1, v_i^2, ..., v_i^n\}$ and the edge set be $E = E_1 \cup E_2 \cup ... \cup E_m$ where $$E_i = \{ e_i^1, e_i^2, e_i^3, ..., e_i^n \}$$. Let $u_1u_2...u_ku_1$ be the cycle C_k . Define a function f: V $(mC_n \cup C_k) \rightarrow \{1, 2... q+1\}$ by $f(v_i^j) = n(i-1)+j, 1 \le i \le m, 1 \le i \le m$ $$f(u_i) = mn + i, 1 \le i \le k.$$ Hence $mC_n \cup C_k$ is a Harmonic mean graph. **Example 2.6**: Harmonic mean labeling pattern of $3C_5 \cup C_6$ is given in the following figure. Figure: 4 The same argument as in Theorem 2.3 and Theorem 2.5 gives the following **Theorem 2.7:** $mC_n \cup PC_k$ is a Harmonic mean graph for $n, k \ge 3$ and m, p > 1. Now we have **Theorem 2.8:** $nK_3 \cup mC_p$, is a Harmonic mean graph for p > 3 and n, m > 1 **Proof**: Let the vertex set of nK_3 be $V = V_1 \cup V_2 \cup ... \cup V_n$ where $V_i = \{v_i^1, v_i^2, v_i^3\}$. Let the vertex set of mC_p be $U = U_1 \cup U_2 \cup U_3 \cup ... \cup U_m$ where $U_k = \{u_k^1, u_k^2, ..., u_k^n\}$. Define a function $f: V(nk_3 \cup mC_n) \to \{1, 2, ..., q+1\}$ by $f(v_i^j) = 3$ (i-1)+j, $1 \le i \le n$, $1 \le j \le 3$ and $f(u_k^j) = p(k-1)+3n+l$, $1 \le k \le m$, $1 \le l \le p$. Hence nk₃∪mC_p is a Harmonic mean graph. **Example 2.9:** Harmonic mean labeling of 4k₃∪2C₅ is given below Figure: 5 Next we prove the following **Theorem 2.10:** Two copies of cycle C_m sharing a common edge is a Harmonic mean graph. **Proof:** Let the cycle C_m be $u_1u_2...u_mu_1$. Consider two copies of cycle C_m . Let G be a graph obtained from two copies of cycle C_m sharing common edge. Then G has 2n-2 vertices and 2n-1 edges. Let us take $e = u_{m-1} u_m$ be the common edge between two copies of C_m . Define a function $f: V(G) \rightarrow \{1, 2, ..., q+1\}$ by $$f(u_i) = i, 1 \le i \le m-2$$ $$f(u_m) = m-1, f(u_{m-1}) = m$$ $$f(v_i) = i+1, m+1 \le i \le 2m-2.$$ Hence G is a Harmonic mean graph. The following example illustrates the above theorem. The labeling pattern of two copies of C_7 sharing a common edge is shown below. Figure: 6 Now we investigate the Harmonic mean labeling of a planar grid for a particular case of n. **Theorem 2.11:** The planar gird $P_m \times P_3$ is a Harmonic mean graph. **Proof:** Let the vertex set of $P_m \times P_3$ be $V(P_m \times P_3) = \{a_{ij}: 1 \le i \le m, 1 \le j \le 3\}$ and the edge set be $$E(P_m \times P_3) = (a_{i(i-1)} \ a_{ij}; 1 \le i \le m \ , \ 2 \le j \le 3 \} \cup \{ \ a_{(i-1)} \ a_{ij}; \ 2 \le i \le m, \ 1 \le j \le 3 \}$$ Define f: $V(P_m \times P_3) \rightarrow \{1, 2... q+1\}$ $$f(a_{ij}) = i, i=1, 1 \le j \le 3$$ $$f(a_{ij}) = f(a_{(i-1)3}) + 2 + j, 2 \le i \le m, 1 \le j \le n, 1 \le j \le 3$$ Edges are labeled with $$f(a_{11} a_{21}) = 1$$ # 1 S. S. Sandhya* & 2 S. Somasundaram/ Further Results On Harmonic Mean Graphs/IJMA- 4(1), Jan.-2013. $$f(a_{ij} \ a_{i(j+1)}) = 5 \ (i-1)+j+1, \ i=1, \ 1 \le j \le 2$$ $$f(a_{ij} a_{i(j+1)}) = 5 (i-1)+j, 2 \le j \le m, 1 \le j \le 2$$ $$f(a_{ij} \ a_{i(j+1)j}) = 5 \ (i-1)+j+2, \ 1 \le i \le m-1, \ 1 \le j \le 3$$ Here all the edges are labeled with distinct labels. Hence $P_m \times P_3$ is a Harmonic mean graph for $m \ge 2$. **Example 2.12:** Harmonic mean labeling of $P_4 \times P_3$ is shown in the following figure. Figure: 7 Next we prove **Theorem 2.13:** The graph obtained by joining two copies of cycle C_n by a path P_m is a Harmonic mean graph for all m and n **Proof:** Let G be a graph obtained by joining two copies of cycle C_n by a path P_m Let $u_1u_2....u_n$ be the vertices of first copy of cycle C_n and $v_1v_2....v_n$ be the vertices of second copy of cycle C_n . Let P_m be the path $w_1w_2....w_m$ with $u_1=w_1$ and $v_1=w_m$ Define a function $f:V(G) \rightarrow \{1,2,\ldots,q+1\}$ by $$f(u_i) = i, 1 \le i \le n$$ $$f(v_1) = n + 3$$ $$f(v_i) = n+3+i, 2 \le i \le n$$ $$f(\mathbf{w}_1) = \mathbf{n}$$ $$f(w_i) = n+j-1, 2 \le j \le m$$ Hence G is a Harmonic mean graph **Example 2.14:** The following example shows the graph G obtained by joining two copies of the cycle C_5 by a path P_4 . Figure: 8 ## ¹S. S. Sandhya* & ²S. Somasundaram/ Further Results On Harmonic Mean Graphs/IJMA- 4(1), Jan.-2013. ### REFERENCES - [1] Harary.F., 1988, Graph theory Narosa publishing House, New Delhi. - [2] Somasundaram. S., and Ponraj. R., 2003, Mean labeling of Graphs, National Academy Science letters vol.26, p210-213. - [3] Somasundaram S., Ponraj. R., and Sandhya. S.S., Harmonic Mean Labeling of Graphs, communicated. - [4] Sandhya S.S., Somasundaram.S., and Ponraj. R., Some Results on Harmonic Mean Graphs, International journal of Contemporary Mathematical Sciences 7(4) (2012), 197-208. - [5] Sandhya S.S., Somasundaram.S., and Ponraj. R., Some more Results on Harmonic Mean Graphs, Journal of Mathematics Research 4(1) (2012) 21-29. - [6] Sandhya S.S., Somasundaram.S., and Ponraj. R., Harmonic Mean Labeling of Some Cycle Related Graphs, International Journal of Mathematical Analysis Vol.6 No.40, 1997-2007. - [7] Vaidya S.K., and Kanani.K.K., Prime Labeling for Some Cycle Related Graphs, Journal of Mathematics Research 2(1) (2010), 98-103. Source of support: Nil, Conflict of interest: None Declared