FURTHER RESULTS ON HARMONIC MEAN GRAPHS

¹S. S. Sandhya* & ²S. Somasundaram

¹Department of Mathematics, Sree Ayyappa College for Women Chunkankadai; Kanyakumari-629807, India

²Department of Mathematics, Manonmaniam Sundaranar University Tirunelveli 627012, TamilNadu, India

(Received on: 06-12-12; Revised & Accepted on: 17-01-13)

ABSTRACT

A Graph G = (V, E) with p vertices and q edges is called a Harmonic mean graph if it is possible to label the vertices $x \in V$ with distinct labels f(x) from 1, 2, q+1 in such a way that when each edge e=uv is labeled with $f(uv) = \left[\frac{2f(u)f(v)}{f(u)+f(v)}\right](or)\left[\frac{2f(u)f(v)}{f(u)+f(v)}\right]$, then the edge labels are distinct. In this case f is called Harmonic Mean Labeling of

G. In this paper we prove that mC_n $mC_n \cup P_k$, $mC_n \cup P_k$, $mC_n \cup PC_k$, $nk_3 \cup PC_m$, $nk_3 \cup PC_m$, $P_m \times P_3$ are Harmonic mean graphs. Also we prove that the graph obtained by joining two copies of cycle C_n by a path of arbitrary length is a Harmonic mean graph.

Keywords: Graph, Harmonic mean graph, path, cycle, planar grid, union of graphs, mG.

1. INTRODUCTION

The graph considered here will be finite, undirected and simple. Terms not defined here are used in the sense of Harary [1]. The symbols V (G) and E(G) will denote the vertex set and edge set of a graph G. The square G^2 of a graph G has V (G^2) = V (G), with u, v adjacent in G^2 whenever $d(u,v) \le 2$ in G. The union of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is a graph $G = G_1 \cup G_2$ with vertex set $V = V_1 \cup V_2$ and edge set $E = E_1 \cup E_2$. The Cartesian product of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is a graph $G = (V, E) = G_1 \times G_2$ with $V = V_1 \times V_2$ and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are adjacent in $G_1 \times G_2$ whenever ($v_1 = v_1$ and v_2 is adjacent to v_2 or $v_2 = v_2$ and v_3 is adjacent to v_4 . The product v_4 is called a planar grid and v_6 in called ladder graph. v_6 denotes the disjoint union of v_6 copies of the graph v_6 . Let v_6 is a called path union of v_6 is a called path union of v_6 [7].

S. Somasundaram and R. Ponraj introduced Mean labeling of Graphs in [2]. We introduced Harmonic Mean labeling of Graphs in [3] and studied their behavior in [4] and [5]. In this paper we discuss Harmonic mean labeling behavior for union of two graphs like $C_m \cup P_n$, $mC_n \cup P_k$, $mC_n \cup P_k$ etc.

Here we shall use frequent reference to the following definition and theorems.

Definition 1.1: A Graph G with p vertices and q edges is called a harmonic mean graph if it is possible to label the vertices $x \in V$ with distinct labels f(x) from 1, 2....q+1 in such a way that when each edge e = uv is labeled with

$$f(e = uv) = \left\lceil \frac{2f(u)f(v)}{f(u) + f(v)} \right\rceil (or) \left\lfloor \frac{2f(u)f(v)}{f(u) + f(v)} \right\rfloor$$
then the edge labels are distinct. In this case f is called a Harmonic mean labeling of G.

Theorem 1.2[4]: nK_3 , $nK_3 \cup P_m$, m > 1, $nk_3 \cup C_m$, $m \ge 3$ are Harmonic mean graphs.

Theorem 1.3 [4]: mC_4 , $mC_4 \cup P_n$, n > 1, $mC_4 \cup C_n$, $n \ge 3$, $nk_3 \cup mC_4$ are Harmonic mean graphs.

Theorem 1.4 [3]: Ladders are Harmonic mean graphs.

Theorem 1.5 [6]: The graph $C_n^{(2)}$ is a Harmonic mean graph.

2. MAIN RESULT

Theorem 2.1: mC_n is a Harmonic mean graph.

Proof: Let the vertex set of mC_n be $V = V_1 \cup V_2 \cup ... \cup V_m$ where $V_i = \{v_i, v_i^2, v_i^3, ..., v_i^m\}$. Now define a function $f: V(mC_n) \rightarrow \{1, 2, ..., q+1\}$ by $f(v_i^j) = m(i-1)+j$, $1 \le i \le m$, $1 \le j \le n$. If a and a+1 are two integers, then the Harmonic mean lies between a and a+1, a $< \frac{2\pi(n+1)}{2n+1} < a+1$.

Consider a graph with vertices n_i -3, n_i -2, n_i -1, n_i .

Figure: 1

For the edges joining the vertices n_{i} -3 and n_{i} -2 we may assign the edge label n_{i} -3. Similarly for the edge joining the vertices n_{i} -2 and n_{i} -1 we may assign the edge label n_{i} -1 and for the edge joining the vertices n_{i} -1 ad n_{i} we may assign the edge label n_{i} .

Since n_i -3 < $\frac{2n_i(n_i-1)}{2n_i-1}$ < n_i , we may assign the edge label n_i -2 for the edges joining the vertices n_i -3 and n_i . Since mC_n has distinct edge labels, it is a Harmonic Mean graph.

Example 2.2: The following figure shows the Harmonic mean labeling of 3C₆.

Figure: 2

Now we investigate Harmonic mean labeling of union of mC_n with path and cycle.

Theorem 2.3: $mC_n \cup P_k$ is a Harmonic mean graph for $m \ge 1$, $n \ge 3$ and k > 1.

Proof: Let the vertex set of mC_n be $V = V_1 \cup V_2 \cup ... \cup V_m$

where

$$V_i = \{v_i^1, v_i^2, v_i^3, \dots, v_i^n\}$$
 and the edge set be $E = E_1 \cup E_2 \cup \dots \cup E_m$

where

$$E_i = \{e_i^1, e_i^2, e_i^3, \dots, e_i^n\}$$
. Let P_k be the path $u_1 u_2, \dots, u_k$.

Define a function $f: V(mC_n \cup P_k) \rightarrow \{1, 2, ..., q+1\}$

by
$$f(v_i^j) = n(i-1)+j, 1 \le i \le m, 1 \le j \le n$$

 $f(u_k) = mn + i$, $1 \le i \le k$.

Edge labels are shown below

The set of labels of the edges of mC_n is $\{1, 2, 3... mn\}$ and the set of labels of the edges of P_k is $\{mn+1, mn+2... mn+k-1\}$.

Hence $mC_n \cup P_k$ is a Harmonic mean graph.

Example 2.4: A Harmonic mean labeling of 3C₅∪P₇ is given below

Figure: 3

Next we have

Theorem 2.5: $mC_n \cup C_k$ is a Harmonic mean graph for $m \ge 3$ and $k \ge 3$.

Proof: Let mC_n be m copies of the cycle C_n and C_k be cycle with k vertices. Let the vertex set of mC_n be $V = V_1 \cup V_2 \cup ... \cup V_m$

where $V_i = \{v_i^1, v_i^2, ..., v_i^n\}$ and the edge set be $E = E_1 \cup E_2 \cup ... \cup E_m$

where
$$E_i = \{ e_i^1, e_i^2, e_i^3, ..., e_i^n \}$$
.

Let $u_1u_2...u_ku_1$ be the cycle C_k .

Define a function f: V $(mC_n \cup C_k) \rightarrow \{1, 2... q+1\}$ by $f(v_i^j) = n(i-1)+j, 1 \le i \le m, 1 \le i \le m$

$$f(u_i) = mn + i, 1 \le i \le k.$$

Hence $mC_n \cup C_k$ is a Harmonic mean graph.

Example 2.6: Harmonic mean labeling pattern of $3C_5 \cup C_6$ is given in the following figure.

Figure: 4

The same argument as in Theorem 2.3 and Theorem 2.5 gives the following

Theorem 2.7: $mC_n \cup PC_k$ is a Harmonic mean graph for $n, k \ge 3$ and m, p > 1. Now we have

Theorem 2.8: $nK_3 \cup mC_p$, is a Harmonic mean graph for p > 3 and n, m > 1

Proof: Let the vertex set of nK_3 be $V = V_1 \cup V_2 \cup ... \cup V_n$ where $V_i = \{v_i^1, v_i^2, v_i^3\}$.

Let the vertex set of mC_p be $U = U_1 \cup U_2 \cup U_3 \cup ... \cup U_m$ where $U_k = \{u_k^1, u_k^2, ..., u_k^n\}$.

Define a function $f: V(nk_3 \cup mC_n) \to \{1, 2, ..., q+1\}$ by $f(v_i^j) = 3$ (i-1)+j, $1 \le i \le n$, $1 \le j \le 3$ and $f(u_k^j) = p(k-1)+3n+l$, $1 \le k \le m$, $1 \le l \le p$.

Hence nk₃∪mC_p is a Harmonic mean graph.

Example 2.9: Harmonic mean labeling of 4k₃∪2C₅ is given below

Figure: 5

Next we prove the following

Theorem 2.10: Two copies of cycle C_m sharing a common edge is a Harmonic mean graph.

Proof: Let the cycle C_m be $u_1u_2...u_mu_1$. Consider two copies of cycle C_m .

Let G be a graph obtained from two copies of cycle C_m sharing common edge. Then G has 2n-2 vertices and 2n-1 edges. Let us take $e = u_{m-1} u_m$ be the common edge between two copies of C_m .

Define a function $f: V(G) \rightarrow \{1, 2, ..., q+1\}$ by

$$f(u_i) = i, 1 \le i \le m-2$$

$$f(u_m) = m-1, f(u_{m-1}) = m$$

$$f(v_i) = i+1, m+1 \le i \le 2m-2.$$

Hence G is a Harmonic mean graph.

The following example illustrates the above theorem.

The labeling pattern of two copies of C_7 sharing a common edge is shown below.

Figure: 6

Now we investigate the Harmonic mean labeling of a planar grid for a particular case of n.

Theorem 2.11: The planar gird $P_m \times P_3$ is a Harmonic mean graph.

Proof: Let the vertex set of $P_m \times P_3$ be $V(P_m \times P_3) = \{a_{ij}: 1 \le i \le m, 1 \le j \le 3\}$ and the edge set be

$$E(P_m \times P_3) = (a_{i(i-1)} \ a_{ij}; 1 \le i \le m \ , \ 2 \le j \le 3 \} \cup \{ \ a_{(i-1)} \ a_{ij}; \ 2 \le i \le m, \ 1 \le j \le 3 \}$$

Define f: $V(P_m \times P_3) \rightarrow \{1, 2... q+1\}$

$$f(a_{ij}) = i, i=1, 1 \le j \le 3$$

$$f(a_{ij}) = f(a_{(i-1)3}) + 2 + j, 2 \le i \le m, 1 \le j \le n, 1 \le j \le 3$$

Edges are labeled with

$$f(a_{11} a_{21}) = 1$$

1 S. S. Sandhya* & 2 S. Somasundaram/ Further Results On Harmonic Mean Graphs/IJMA- 4(1), Jan.-2013.

$$f(a_{ij} \ a_{i(j+1)}) = 5 \ (i-1)+j+1, \ i=1, \ 1 \le j \le 2$$

$$f(a_{ij} a_{i(j+1)}) = 5 (i-1)+j, 2 \le j \le m, 1 \le j \le 2$$

$$f(a_{ij} \ a_{i(j+1)j}) = 5 \ (i-1)+j+2, \ 1 \le i \le m-1, \ 1 \le j \le 3$$

Here all the edges are labeled with distinct labels.

Hence $P_m \times P_3$ is a Harmonic mean graph for $m \ge 2$.

Example 2.12: Harmonic mean labeling of $P_4 \times P_3$ is shown in the following figure.

Figure: 7

Next we prove

Theorem 2.13: The graph obtained by joining two copies of cycle C_n by a path P_m is a Harmonic mean graph for all m and n

Proof: Let G be a graph obtained by joining two copies of cycle C_n by a path P_m Let $u_1u_2....u_n$ be the vertices of first copy of cycle C_n and $v_1v_2....v_n$ be the vertices of second copy of cycle C_n .

Let P_m be the path $w_1w_2....w_m$ with $u_1=w_1$ and $v_1=w_m$

Define a function $f:V(G) \rightarrow \{1,2,\ldots,q+1\}$ by

$$f(u_i) = i, 1 \le i \le n$$

$$f(v_1) = n + 3$$

$$f(v_i) = n+3+i, 2 \le i \le n$$

$$f(\mathbf{w}_1) = \mathbf{n}$$

$$f(w_i) = n+j-1, 2 \le j \le m$$

Hence G is a Harmonic mean graph

Example 2.14: The following example shows the graph G obtained by joining two copies of the cycle C_5 by a path P_4 .

Figure: 8

¹S. S. Sandhya* & ²S. Somasundaram/ Further Results On Harmonic Mean Graphs/IJMA- 4(1), Jan.-2013.

REFERENCES

- [1] Harary.F., 1988, Graph theory Narosa publishing House, New Delhi.
- [2] Somasundaram. S., and Ponraj. R., 2003, Mean labeling of Graphs, National Academy Science letters vol.26, p210-213.
- [3] Somasundaram S., Ponraj. R., and Sandhya. S.S., Harmonic Mean Labeling of Graphs, communicated.
- [4] Sandhya S.S., Somasundaram.S., and Ponraj. R., Some Results on Harmonic Mean Graphs, International journal of Contemporary Mathematical Sciences 7(4) (2012), 197-208.
- [5] Sandhya S.S., Somasundaram.S., and Ponraj. R., Some more Results on Harmonic Mean Graphs, Journal of Mathematics Research 4(1) (2012) 21-29.
- [6] Sandhya S.S., Somasundaram.S., and Ponraj. R., Harmonic Mean Labeling of Some Cycle Related Graphs, International Journal of Mathematical Analysis Vol.6 No.40, 1997-2007.
- [7] Vaidya S.K., and Kanani.K.K., Prime Labeling for Some Cycle Related Graphs, Journal of Mathematics Research 2(1) (2010), 98-103.

Source of support: Nil, Conflict of interest: None Declared