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ABSTRACT

In this paper a production inventory model for deteriorating items is developed and analyzed with the assumption that
the production rate is dependent on stock on hand. It is further assumed that lifetime of the commodity is random and
follows a three parameter Weibull distribution and demand rate is a function of both selling price and
time. Using the differential equations the instantaneous state of inventory is derived. With suitable cost considerations
the total cost function and profit rate function are obtained. By maximizing the profit rate function the optimal ordering
policies are derived. Through numerical illustrations the sensitivity analysis is carried. It is observed that the demand
rate parameters and stock dependent production rate parameters have significant influence on optimal production
scheduling and profit rate.

12000 Mathematics Subject Classification: Primary 90B05.

1. INTRODUCTION

Much work have been reported on inventory models for deteriorating items for varying assumptions on the demand
rate, production (replenishment) rate and lifetime of the commaodity. It is customary to consider that the replenishment
in many inventory models is having finite or infinite rate. Urban [28], Teng and Yang [24], Dye, et al. [2], Sana and
Chaudhuri [16] and others have studied inventory models having infinite production rate. Sana, et al. [17], Srinivasa
Rao and Begum [22], Manna and Chiang [9], Uma Maheswara Rao, et al. [27], Sarkar and Moon [18] and others
considered the finite rate of production. Two different rates of replenishment in one inventory system were also studied
[12, 19].

In classical inventory models demand rate is assumed to be a constant. Widyadana and Wee [30] developed an
economic production quantity (EPQ) model for deteriorating items where production, rework, deteriorating and
demand rate are assumed constant. In reality, the demand rate of any product may vary with time or with price or with
the instantaneous level of inventory displayed in a supermarket. Inventory problems involving time dependent demand
patterns have received the attention of several researchers in recent years. Ritchie [13], Giri, et al. [4], Manna, et al. [8],
Mahata and Goswami [7] and Skouri, et al. [20] are among those who studied inventory models for deteriorating items
having time dependent demand. Roy and Chaudhuri [14] and Sana [15] have studied inventory models with demand
rates depending on selling price of the item. It has been observed that for certain types of inventories, particularly
consumer goods, heaps of stock will attract customers. Taking due account to this fact, Venkata Subbaiah, et al. [29],
Dye, et al. [1], Panda, et al. [11], Mahata and Goswami [6], Lee and Dye [32] and others have developed inventory
models where demand rate is a function of on-hand inventory. Srinivasa Rao, et. al [23] developed a production
inventory system with demand rate a function of production quantity, Weibull decay and finite rate of production.

Inventory models for deteriorating items having multivariate demand functions were also studied by several authors.
You [31] and Tsao and Sheen [26] have dealt with time and selling price dependent demand. Models for deteriorating
items having stock level and selling price dependent demand rate were studied by Teng and Chang [25] and Khanra, et
al. [5]. Pal, et al. [10] considered a single deteriorating item with the demand rate dependent on displayed stock level,
selling price of an item and frequency of advertisement.

In all of the above models replenishment was assumed to be infinite or finite with a constant rate. Sridevi, et al. [21]
developed and analyzed an inventory model with the assumption that the rate of production is random and follows a
Weibull distribution and the demand is a function of selling price. Recently, Muluneh and Srinivasa Rao [3] develop an
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inventory model for deteriorating items with the assumption that the production rate is dependent on stock on hand and
demand is a power function of time. Very little work has been reported regarding EPQ models with stock dependent
production rate and demand as a function of both selling price and time which is a common phenomenon in many
production processes. Hence, in this paper we develop and analyze a production level inventory model for deteriorating
items with the assumption that the replenishment is a function of on-hand inventory and demand is a function of both
selling price and time.

Using the differential equations the instantaneous state of inventory is derived. With suitable cost considerations the
total cost function and profit rate function are derived. By maximizing the profit rate function the optimal ordering
policies of the model are obtained. The sensitivity of the model with respect to the parameters and costs is also
discussed. This model includes some of the earlier models as particular cases for specific and limiting values of the
parameters.

2. NOTATIONS AND ASSUMPTIONS

2.1. Notations

The following notations are used to develop the model under study.
I(t) = Inventory level at any time t

R(t) = Production rate at any time t

D(s,t)= Demand rate at any time t

Q = Total production quantity

TC = Total cost of the system per unit time
TP = Total profit per unit time of the system

A = Set up cost of the item
P = Per unit production cost of the item

h = Inventory holding cost per unit per unit time
C, = Shortage cost per unit per unit time

T = Length of the cycle

(0, B, ) = Deterioration rate parameters
(t, ¢, m, n) = Demand rate parameters
(¢, ©) = Production rate parameters

2.2. Assumptions
The model under study is based on the following assumptions.

i. Lifetime of the commaodity is random and follows a three parameter Weibull distribution with probability density
function of the form

1 —alt—7)?
ft)=aft-y) e a, >0 t>y
where, « is scale parameter, Ba is shape parameter and y is location parameter.

The instantaneous failure rate (hazard rate) at time t is therefore,

h(®) = ()

1-F(t)
ii. Demand is a function of time and selling price. Let n be the demand pattern index and S be the unit selling price
t(]/n)*l
of the item. Then demand rate is assumed to have the functional form D(s,t) :r—(ps+77_|_—1/n, where,
n

7, @ and 7 are constants. This demand function includes several patterns for specific values of the parameters.

For example if n=0, this demand is a function of selling price. If ¢ ¢=0, this demand includes time dependent
demand. If ¢=0 and n=0 this demand includes constant rate.

iii.  Production rate is assumed to be finite and a linear function of the instantaneous inventory level at time t, 1(t)
ie.,

0-¢l(t), 0<t<t
R(t)=46, t, <t<T

0, otherwise
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where @ is a constant such that & >0, ¢ is the stock-dependent production rate parameter, 0 < ¢ <1. It is
assumed that R(t) > D(t) at any time where replenishment takes place. If $=0, then it includes the finite rate of

production.
iv. Shortages are allowed and completely backlogged.
\2 There is no repair or replacement of deteriorated items.

Vi. The planning horizon is infinite. Each cycle will have length T
vii. The inventory holding cost per unit per unit time h, the shortage cost per unit per unit time C,, the unit

production cost per unit time P and set up cost A per cycle are fixed and known,
3. MODEL FORMULATION

In this model the stock level for the item is initially zero. Then production starts at time t =0 and continues adding
items to stock until the on-hand inventory reaches its maximum level, Q, at time t=t . During the time (0O, )

production will continuously satisfy the current demand and the excess production will be accumulated in stock. At
time t =y deterioration of the item starts and stock is depleted by consumption and deterioration while production is

continuously adding to it. At t =1, production is stopped and stock will be depleted by deterioration and demand until
it reaches zero at time t =t,. As demand is assumed to occur continuously, at this point shortage begin to accumulate
until it reaches its maximum level of Q2 at t =t;. At this point production will resume meeting the current demand

and clearing the backlog. Finally, shortages will be cleared at time t =T . Then the cycle will be repeated indefinitely.

The schematic diagram representing the inventory system is shown in Fig. 1.

1) 21

[ T

Fig. 1. Schematic diagram representing the inventory level of the system

The differential equations governing the system in the cycle time [0, T] are:

d:j(t) (041 () - {r—¢s+%},ostsy @
d:j“) {0-p1(0)} - {eBt-7)"1(0)} - {r ¢s+%},msq @
% —{aBt-7)"" 1)} - {r (ps+%},ggtgtz )
%:—{T—(mﬁ%},tzﬁtﬁg (4)
%:0—{r—¢s+%},tSStST ()

with boundary conditions;

1(0 90, I(t,)=0and I(T)=0
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Solving the differential equations (1) to (5) after applying the boundary conditions given above, we get:

The instantaneous state of inventory at any time tin (0, y) is

t t
I(t)=e" {(6’— T+ ¢S)Ie"’“du —#I”wn)_lewdu}, O<t<y ©)
0 0

The instantaneous state of inventory at any time t in (y,t,) is
r /4 77 /4
I(t)=e """ 1@ -1+ ps) I e”du — — I u®M-ledu
0 nT 0

t

+I(0 7+ @s)e? U du— TV”-[

udmtgte N gyt y <t <t @)

The instantaneous state of inventory at any time tin (t,t,)is

t,
|(t) =e " {(r gos)_[e“(“ Y du+—L TJ/” J‘uw””e“(“”ﬁdu}, t <t<t, ®)

t
The instantaneous state of inventory at any time tin (t,,t,) is

t t
o I/ B R
1(t) =—(¢ ¢s)£du nT]/”tJ;u du, t, <t<t, ©)

And the instantaneous state of inventory at any time tin (t;,T)is

T T
(1) = (0~ +8)[du——T [u¥"du, £ <t<T (10)
t t

Since |(t) is continuous at t, evaluating (7) and (8) and equating | (t) at t =t, we get the equation.

7 7 Yy
~p-a(ly—y)’ _ g, M1 ¥/n)-14u _ utra(u-y)
e {(e r+¢s)je du nTﬂ/"I“ e*du+[(0-7+ps)e du
V4
t t,

—_ -|7_71/n J.u(l/n) 1e¢u+a(u 7)ﬁdu _efa(t1 7) (T ¢S)Iea(u 7) du_l_ -|7-71/n J‘u(]‘/n) lea(u 7)ﬂdu (11)

4

Let B be a positive integer. Equation (11) is evaluated using the Taylor series approximation of the exponential function
and ignoring terms of higher order and then taking the binomial expansion of (U — y)ﬂ . The equality in (11) is used to

establish the relationship between t; and t, . Also the maximum inventory level Q, = 1(t,) is

Q=g {(r ?9) (t [ —y)ﬂ”]]

n i tz(l/”)+i _tl(l/n)+j
- N 2
tom ! mz( ] T Gy (2

Similarly, since I(t) is continuous at t; evaluating I (t) at t =t, and equating (9) and (10) we get the equation.

(tl/n_tl/n) (@—7+@s)(T -t;) - 77[ :[I'WJ (13)

(7 —ps)(t; -
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This equality can be used to establish the relationship between t, and t;. Therefore we have,

tV"

t3:T—%(r—goS)(T —tz)—%[ j— f(s,t,), say (14)

The maximum shortage level Q, = 1(t,) is

Q,=—(r—@s)(t;-t,) + Tnﬁ(tsl/n _tzj/n ) (15)

Backlogged demand, B(t) is

t:l/n)l
B(t) = j{r (ps+’7TWn) dt

=(r- (05)(t3 - tz) ~Tyn (tsl/n _tzl/n ) (16)

Stock loss due to deterioration at any time t, L(t) is defined as

L(t) = j R(t)dt—.t[ D(t)dt -1 (t)

This implies

ot - ¢j|(t)d p¢j|(t)d t (7 —s)

1/
L(t) =16t — ¢j|(t)d t—¢j|(t)d t (- s)

A7)

0, elsewhere

Total Production in the cycle time (0,T) is

Q= f R(t)dt +th(t)dt +]R(t)dt

=0(t, +T -t,) —¢f I (t)dt —¢tj1 I (t)dt

Substituting the values of I(t) in equations (6) and (7), using the Taylor series approximation of the exponential
functions and ignoring terms of higher order, taking the binomial expansion of (U — y)ﬁ and then integrating we get

1/n
{tﬁ (r—gS)(T )+ 2 (tﬂ 1}}

_¢{(9—T+¢S) (e,¢},+¢7/_1)+ 77”7(]/n)+l [ 7/2¢2 N nyd _J}}

#° (n+DTY" | B3n+1) (2n+1)

_ ¢ = L+l
¢B{(t1 y)— (t1 -7 i l(l 7) }
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—¢(e—r+¢s){§aﬁ—ﬁ)—%(tf—f)—g 7"

I S o 220 _aZ(tl—wZ(jﬂ)}
B+l (B+D(B+2)  AB+1)

g g gt ) O 4 gy
TP+l Bn+D)  (2n+1) (n+1) (3n+1) (2n+1)
B (:I/n)+j+1)
+an2( ] y)F~
J
@/n)+j+2 U/n)+j+2
A Jor G ks
= (jn+2n+1) jn+l1 n+1
B
&

B @/n)+j+k+l _ (W/n)+j+k+1
S3{) J< N s
i=

tl(l/n)+1+l y

i

Un+DUn+n+D

(jn+D(jn+kn+n+1)
where,
(0 -1+ @s) no E(B P 7/(1/n)+1
B=——"+ -1+ J
; (e SV -y ) = ;[J (-7) il (19)

Total cost is the sum of setup cost per unit time, the production cost per unit time, inventory holding cost per unit time
and the shortage cost per unit time. Let TC ('(1,t2 ,S) be the total cost per unit time. Therefore we have:

TC(tl,tz,s)—A+pTQ+${'[I(t)dt+jI(t)dt+'[l(t)dt}+?{j I(t)dt+'[ I(t)dt} (20)

9}

Substituting the expressions for I(t) from equations (6) to (10) in equation (20), using the Taylor series expansion of the

exponential functions and neglecting higher order terms, using binomial expansion of (U — y)ﬂ and then integrating we
get

A pof, 1 n(t"
TC(t,t,,9) —?+?{t1 +5(T_§05)(T _t2)+5{-|-2]/n _lj}

_I_h—p¢{(9—r+¢)s)(e_¢y+¢y_1)+ nn},(l/n)ﬂ( 72¢2 . Ny _])}

T #* n+DT* { Bn+1) (2n+1)
(h—pg) $.2 o alt—p)*"
+TB{("1_J/)—E(I1 -7 )_T}

+@(e—r+¢s){§<tf—f)—g(tf—ﬁ)—g -7

_M(“l%z}r 2a(t, — )" _az(ti_y)z(:ﬂ)}
s+l 270 ) (B+D(B+D  AB+D

+.h(T;(0S) {tz +_“(tz 7)/3_4}{(5 ~t)- a{(tz -G 7)ﬂ+1}}

p+1 (B+D)
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1 2 2 a {tz (tz - 7)/”1 _tl(tl _7/)ﬂ+l}
_E(tz ) (B+1)

— 20 {(tz _7)'&2 -t - 7/)'8+2} N a’ {(‘[2 _7)2(ﬁ+1) —(t, - 7/)2([”1)}}

(B+D(B+2) 2Ap+1)°

+(h_p¢)77n tl(l/n)+1 ¢2t12 n gnty 1= Wn)ﬂ ¢ " gny 1
T 1+ (Bn+1) (2n+1) (n+1) (3n+1) (2n+1)

@/n)+j+l _  (Yn)+j+l
it yemit)

B-i
+an2[ ]( 7) (jn+D(jn+n+1)
B _ tl(l/”)+j+2_ @/n)+j+2
+05¢Z('B.j(—7)ﬁj( . ! ){1 + 1 J

i\ J (Jn+2n+1) Jn+1 n+1
BB _ t Wikl ) @)+ jrked
vy S| (—y)“-l-k(% i )
Do\ J LK (jn+D(jn+kn+n+1)

hn ﬂjt(l/n)ﬂ 3 _a{(t2_7)ﬁ+l_(t1_7)ﬁ+l}
+T‘””)”ﬂ a3 Jer (Jn+1)}[(tz " 5+

(s @)+ g W)+

(t @/n)+1 tl(1/n)+1) anzi B (—7/)’57" J-(tz Y )

n+l =\ (jn+D(jn+n+1)
2/n)+j+k+1 U/n)+j+k+1
s 3P gy L)
Do\ (jn+Y(jn+kn+n+1)

+(_:I_—2{%(r—(ps)(T )2 (t,,8)-T —t2)+%¢9(T —(t,,5))

T nt (ot
+77[f(t2,s)—n+1j+ T?/” (nil—f(tz,s)j} 1)

Let TR(t,,t,, S) be the total revenue per unit time. Then

T T
_3 _ n_ [+@n
TR(tl,tz,S)—T{_([(r ps)dt+— '([t dt}
This implies
ns
TR(tl,tz,S)=S(r—<os)+? (22)

Let TP(t,,t,, S) be the total profit per unit time. Therefore we have
TP(t,t,,8) =TR(t,,t,,5) -TC(t,,1,,5) (23)

where, TC(t,,t,,S) is as defined in (21)
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4. OPTIMAL POLICIES OF THE MODEL

The problem here is to find the optimal values of production down-time t;, time to begin shortages, t, and selling price s
that maximize the total profit TP(t,,t,,S) over (0,T). To obtain these values we differentiate TP(t,t,,s) in

equation (23) with respect to t;, t, and s and equate the resulting equations to zero.

Differentiating TP(t,,t,,S) with respect to t, and equating to zero we get

;;9 (h T|0¢) (1-gt,—alt,~ 7))

+ h‘TW {(9—7+§05){t1—%¢t12 —%cﬁz t*-alt -7) (tl +£¢H2)
NS W (LA L
o G Do (e
S 1) e

h n =] t2(l/n)+j +1 n
+T<1/n>+1{tz]/ ¥ Z( j 7’ m}[a(tl—y)ﬁ -1+t
— B-] Jt(l/n)+J 2 5 & IB ﬂ L \2B-j-k tl(l/n)+j+k

anz( ]( ) (in+1) az(‘ikZi i)k =) (in+1)

]

LNE=9s) {tz o= _7)&1}[0!01 -7 —l}rtl[l—a(tl —7)”]

T p+1
_ p+1 2 _ 20+1

Lat=n" a't-y) }:o 24)
p+1 p+1

Differentiating TP(t;,t,,S) with respect to t, and equating to zero we get

_p(z—ps)  put,t"M Nz~ gs) a (=) alt,-y)™
T nT W+ T (B+1) (B+1)

_ A+l _ _ p+1
+h(r¢s){[1+a(t2]/)ql(tztl)a{(tz ) T =t-7) }]

T p+1

J{Of(tzﬂ_—:/l)ﬁﬂ+t2 —1}[1—0[02 —]/)'ﬂ}

- i @i ay(t,—7)"" - -9
T(:/?”)ﬂﬂ: L Z[ j )ﬂ tz(/) }[(tztl) { Al }]
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L(B), L, it¥m & SRLLD
“”;U 7) (Jn+1)+“z§( j( }( 7) (Jn+1)}

J:

+%{(T—¢s)[a —t) f'(t,,8) +t,— £ (4,,5)]-0(T = £ (t,,5)) f (1,,5)

77t Yn)-1 . tz(l/n)
et (t,— f(t,,9)+nf(t,9) 1_W =0 (25)

Differentiating TP(tl,tz, S) with respect to S and equating to zero we get

_l_

n ., ep(T-t,) oh-pg

T— 2(ps+_|_ T e (—¢y+¢7,_1)

_go(h—p(b) ¢;/_£ 2.2 _ _E 2 2 a(t, - 7/)ﬁ+l
T {e 2¢y Py 1}{(& 7) 2¢(t1 ks 5l }
(p(th@{ 6 -)-26 =)Lt

I L o 20 _aZ(tl—y)iM}
(6+1) BB+ Ap+D)

L {tz ,alt —y)ﬁ”} o, 1) “lE e

! p1 (B+D)
_ ) _ _\BH
B l(tzz - t12 ) + * I:tz (t2 7/) tl (tl 7) ]
(B+1)
_ 2a [(tz -7 - 7/)ﬂ+2] N a’ [(t2 i (= 7/)2(ﬂ+l)]
(B+1(B+2 Ap+1y

C, IERY: (T - (08) _1 §077(T _tz) t Wn)
_?{CD(T tz) ( 0 2)+ P (1 T(]/n)] 0 26)
where,

o (t.5) _ (r-9s)  nt,""”
at, 0 ngT @M

f'lt,,s)=+

The solutions tl*, t; and S~ of t,, t,and s respectively are obtained by solving the equations (24), (25) and (26) using
numerical methods. Substituting these optimal values of t;, t,and sin to equations (14), (12), (15), (18), (21) and
(23) we obtain the optimal values for t,, Q,, Q,, Q, TC(t,,t,,s) and TP(t,,t,,S) respectively.

5. NUMERICAL ILLUSTRATION

Consider the case of deriving an EPQ, production downtime and production uptime for a petrochemical industry viz.,
fertilizer manufacturing plant. Here the product is of a deteriorating type and has a random lifetime which is assumed to
follow a three parameter Weibull distribution. Records and discussions held with the production and marketing
personnel suggested the values of various parameters. The deterioration parameters o, p and y are estimated to vary
over 0.01 to 0.07, 1 to 4 and 0.2 to 0.8 respectively. Stock dependent production rate parameters ¢ and 6 vary over 0.3
to 0.6 and 60 to 90 respectively and demand parameters t, ¢, 1 and n vary over 50 to 80, 0.6 t0 0.9, 15 to 24 and 1 to 4
respectively. Let the values for other parameters be p=10, h=7, ¢,=3 and A=75 in appropriate units. The cycle length is
taken to be T=6 units and the values of the parameters are varied to observe the trend in the optimal policies. The
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optimal values of production downtime (t;), production uptime (t,), selling price (S) production quantity (Q) and
total profit (TP) are obtained and presented in Table 1.

Table 1: Optimal values of the decision variables for different values of parameters

T |0 vin|¢g |0 |a Bly p |h|lc | A t t3 s” Q" TP*

50/0818]2/05(80]005]2]04[10|7 |3 |75 |2724|5.740 | 35.425 | 298.427 | 321.796
60 2.676 | 5.611 | 41.702 | 296.389 | 553.730
70 2.617 | 5.468 | 47.971 | 294.976 | 778.836
80 2.551 | 5.306 | 54.226 | 293.260 | 971.056
70/06|18|2|/05|80]005[2]04|10|7 |3 |75 |2612]|5.453|63.165 | 295.040 | 1311.761
0.7 2.614 | 5.460 | 54.489 | 294.969 | 1005.291
0.8 2.617 | 5.468 | 47.971 | 294.976 | 778.836
0.9 2.621 | 5.475 | 42.894 | 295.161 | 604.295
70/08|15|/2/05(80]005[2]04[10|7 |3 |75 |2624]|5.466 | 47.641 | 295.653 | 740.625
18 2.617 | 5.468 | 47.971 | 294.976 | 778.836
21 2.611 | 5.469 | 48.287 | 294.482 | 815.990
24 2.605 | 5.470 | 48.61 | 294.029 | 852.566
70108 |18 05|/80|005|/2|04]|10|7 |3 |75 | 2556|5419 | 48.038 | 289.461 | 775.366
2.617 | 5.468 | 47.971 | 294.976 | 778.836
2.643 | 5.486 | 47.936 | 298.078 | 783.448
2.657 | 5.496 | 47.922 | 299.974 | 786.658
03|80|005/2|04]10|7 |3 |75 |2815]5.690 | 47.214 | 270.284 | 968.600
0.4 2.695 | 5.528 | 47.684 | 281.748 | 837.473
0.5 2.617 | 5.468 | 47.971 | 294.976 | 778.836
0.6 2.697 | 5.534 | 47.969 | 332.430 | 868.651
70/08)18]2/05|60]005]/2]04[10|7 |3 |75 |2443]5.078|48.011 | 223.097 | 622.478
70 2.549 | 5315 | 47.985 | 258.017 | 726.789
80 2.617 | 5.468 | 47.971 | 294.976 | 778.836
90 2.665 | 5.574 | 47.934 | 333.336 | 801.985
70/08)18]2/05(80]001]2]04[10|7 |3 |75 |3.263]|5.562|47.632 | 368.731 | 867.613
0.03 2.980 | 5.497 | 47.782 | 338.953 | 802.127
0.05 2.617 | 5.468 | 47.971 | 294.976 | 778.836
0.07 2.162 | 5.394 | 48.345 | 250.679 | 690.339
70/08)18|2|05|80]0.05 04]110|7 |3 |75 | 3.355 | 5.625 | 47.568 | 377.521 | 931.259
3.263 | 5.562 | 47.632 | 368.731 | 867.613
2.955 | 5.469 | 47.783 | 332.500 | 759.390
2.025 | 5.246 | 48.653 | 245.444 | 423.521
02]10|7 |3 |75 | 2469 | 5459 | 48.066 | 260.212 | 774.835
0.4 2.617 | 5.468 | 47.971 | 294.976 | 778.836
0.6 2.742 | 5.473 | 47.888 | 327.871 | 778.368
0.8 2.846 | 5.476 | 47.834 | 358.486 | 777.620
70/08)18|2/05(80]005]/2]04|9 |7]3 |75 |2487|5.315]|47.908 | 307.111 | 579.876
10 2.617 | 5.468 | 47.971 | 294.976 | 778.836
11 2.686 | 5.636 | 48.011 | 307.009 | 919.575
12 2.646 | 5.786 | 48.162 | 289.707 | 986.162
70/0818]2]/05|80]005[2]04]10 3 |75 | 2654|5729 | 47.768 | 297.003 | 1058.934
2.617 | 5.468 | 47.971 | 294.976 | 778.836
2.483 | 5.283 | 48.167 | 292.619 | 476.508
2.372 | 5.570 | 48.289 | 289.663 | 221.045
75 | 2.687 | 5.461 | 47.882 | 305.174 | 896.673
2.617 | 5.468 | 47.971 | 294.976 | 778.836
2.547 | 5.471 | 48.055 | 285.532 | 660.454
2.475 | 5.472 | 48.157 | 276.473 | 540.918
50 | 2.617 | 5.468 | 47.971 | 294.976 | 783.002
75 | 2.617 | 5.468 | 47.971 | 294.976 | 778.836
100 | 2.617 | 5.468 | 47.971 | 294.976 | 774.669
125 | 2.617 | 5.468 | 47.971 | 294.976 | 770.502
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From Table 1, it is observed that as the values of the parameters n, ¢, 8, y and p increase, the optimal values of the
production downtime t;* and the production uptime t;* increase. The optimal values will decrease when the values of

the parameters 1, ¢, a, p and h increase.

The selling price s* increases when the values of the parameters v, t, ¢, a, B, p, 1 and ¢, and 4 increase and decrease if
the values of other parameters increase. The effect of the demand parameters is high as compared to other parameters.

Increasing the values of the parameters n, ¢, 6 and y increases the optimal production quantity Q@*. When the holding
cost /1 increases keeping other parameters fixed, the optimal value of Q is decreasing (production is discouraged).

The optimal value of total profit per unit time TP~ increases when the parameters v, n, 1, 6, y and p increase. Increasing

other parameters decreases the optimal profit. The effect of changes in the parameters ¢, p and f on the optimal profit
is very high as compared to the changes in other parameters. If ¢ increases, then the demand decreases and hence
revenue decreases, which ultimately decreases profit. The increase in the parameter values which increase the total
demand or decrease the hazard function or increase the production rate will increase the profit. In this regard increasing
T, v, ¥ and 0 increase the total profit and the increase in ¢, ¢, o and  decrease the total profit.

6. SENSITIVITY ANALYSIS

In order to study how the parameters affect the optimal solution sensitivity analysis is carried out taking the values
t=70 ¢=08 v=18 n=2,60=80, ¢ =05 a=0.05 =2, y=04,p=10, h=7 and ¢, =3 in
appropriate units. Sensitivity analysis is performed by decreasing and increasing these parameter values by 5%, 10%
and 15%, first changing the value of one parameter at a time while keeping all the rest at their true values and then
changing the values of all the parameters simultaneously. The result of this analysis is given in Table 2. The
relationships between parameters, costs and the optimal values are shown in Figure 2.

From Table 2 we observe that the production downtime t;* is moderately sensitive to o and p and slightly sensitive to
the changes in other parameter values. The production uptime t;* is moderately sensitive to h and less sensitive to all
other parameters. The optimal production quantity Q* is highly sensitive to the production parameter 6 moderately
sensitive to the production rate parameter ¢ and deterioration distribution parameter o and less sensitive to others. For
example, decreasing 0 by 15% results in 16.921% decrease in the quantity produced.

The optimal selling price and the optimal total profit are highly sensitive to the demand parameters t and ¢. A 15%
decrease in T results in 13.733% and 30.381% decrease in s*and TP* respectively and a 15% decrease in ¢ results in
16.674% and 36.004% increase in s* and TP* respectively. The total profit is highly sensitive to the changes in p and h
also. For example profit will decrease by 40.586% if holding cost is increased by 15%.

Table 2. Sensitivity Analysis of the model without shortages

Percentage Change in the parameter Values
Parameter Values | Variable | -15% -10% -5% 0% +5% +10% | +15%
t, 2.678 2.659 2.639 2.617 2.595 2.572 2.548
ty 5.618 5.570 5.520 5.468 5.413 5.348 5.297
=70 s 41.383 43578 | 45.771 | 47.971 | 50.157 | 52.346 | 54.539
Q 296.369 | 295.814 | 295.387 | 294.976 | 294.929 | 295.736 | 295.404
TP 542.215 | 622.833 | 702.015 | 778.836 | 845.849 | 903.844 | 968.795
t, 2.614 2.615 2.616 2.617 2.619 2.620 2.621
ty 5.459 5.462 5.464 5.468 5.470 5.473 5.476
©=0.8 s 56.013 53.034 | 50.365 | 47.971 | 45.791 | 43.816 | 42.012
Q 295.026 | 295.019 | 295.015 | 294.976 | 295.111 | 295.110 | 295.109
TP 1045.250 | 954.731 | 861.569 | 778.836 | 703.562 | 635.611 | 573.880
t, 2.623 2.621 2.619 2.617 2.616 2.614 2.616
ty 5.467 5.467 5.467 5.468 5.468 5.468 5.471
v=18 s 47.673 47.770 | 47.867 | 47.971 | 48.079 | 48.158 | 48.361
Q 294524 | 295.341 | 295.159 | 294.976 | 294.927 | 294.787 | 294.980
TP 744,789 | 756.112 | 767.415 | 778.836 | 790.312 | 800.659 | 816.068
t, 2.605 2.609 2.614 2.617 2.621 2.624 2.627
n=2 t{ 5.458 5.461 5.465 5.468 5.470 5.473 5.475
s 47.979 47.973 | 47.966 | 47.971 | 47.960 | 47.956 | 47.953
Q 293.740 | 294.154 | 294.681 | 294.976 | 295.452 | 295.762 | 296.109
TP 776.836 | 777.046 | 778.013 | 778.836 | 778.938 | 779.877 | 780.387
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Table 2. Sensitivity Analysis of the model without shortages

Percentage Change in the parameter Values
Parameter Values | Variable | -15% -10% -5% 0% +5% +10% | +15%
t, 2.666 2.643 2.626 2.617 2.622 2.632 2.657
ty 5.504 5.485 5.473 5.468 5.471 5.479 5.500
¢=0.5 s 47.776 47.853 | 47916 | 47.971 | 48.048 | 48.008 | 48.001
Q" 284.193 | 287.102 | 290.575 | 294.976 | 301.268 | 308.693 | 316.814
TP 813.062 | 794.552 | 782.749 | 778.836 | 785.843 | 798.674 | 826.000
t, 2.532 2.565 2.593 2.617 2.638 2.657 2.673
ty 5.276 5.350 5.413 5.468 5.514 5.555 5.501
0=120 s 47.989 47.982 | 47972 | 47971 | 47.955 | 47.949 | 47.942
Q" 245.063 | 261.317 | 280.026 | 294.976 | 310.181 | 325.636 | 341.116
TP 706.222 | 734.221 | 762.052 | 778.836 | 790.598 | 799.258 | 804.853
t, 2.770 2.723 2.671 2.617 2.563 2.506 2.448
ty 5.479 5.477 5.472 5.468 5.462 5.455 5.448
a=0.05 s 47.878 47936 | 47.935 | 47.971 | 48.000 | 48.040 | 48.079
Q" 313.312 | 307.540 | 301.311 | 294.976 | 288.901 | 282.668 | 276.565
TP 787.789 | 786.957 | 782.823 | 778.836 | 773.003 | 766.202 | 758.149
t, 2.577 2.590 2.603 2.617 2.631 2.644 2.657
ty 5.466 5.466 5.467 5.468 5.468 5.469 5.469
y=0.5 s 48.020 47985 | 47.988 | 47.971 | 47.955 | 47.947 | 47.939
Q" 284.935 | 288.259 | 291.542 | 294.976 | 298.451 | 301.764 | 305.118
TP 779.182 | 778.315 | 778.765 | 778.836 | 778.371 | 778.636 | 778.347
t, 2.415 2.487 2.552 2.617 2.660 2.700 2.730
ty 5.246 5.315 5.389 5.468 5.551 5.632 5.716
p=10 s 47.865 47.908 | 47.941 | 47.971 | 47.983 | 48.011 | 48.071
Q" 288.226 | 290.377 | 293.209 | 294.976 | 294.808 | 291.481 | 287.784
TP 480.577 | 584.710 | 684.817 | 778.836 | 861.814 | 925.065 | 984.589
t, 2.690 2.671 2.646 2.617 2.571 2.523 2.477
ty 5.743 5.647 5.553 5.468 5.394 5.330 5.275
h=7 s 47.765 47.807 | 47.880 | 47.971 | 48.044 | 48.114 | 48.176
Q" 277.100 | 283.969 | 289.466 | 294.976 | 294.807 | 293.781 | 292.476
TP 1068.753 | 989.300 | 888.718 | 778.836 | 668.555 | 562.178 | 462.740
t, 2.650 2.639 2.628 2.617 2.607 2.597 2.586
ty 5.466 5.466 5.468 5.468 5.470 5.469 5.469
c,=3 s 47.943 47.938 | 47.951 | 47.971 | 48.065 | 47.990 | 48.004
Q" 299.651 | 298.096 | 296.480 | 294.976 | 293.492 | 292.710 | 290.709
TP 832.394 | 814.026 | 797.114 | 778.836 | 763.866 | 743.189 | 725.578
t, 2.790 2.721 2.664 2.617 2.580 2.550 2.513
ty 5.497 5.481 5.471 5.468 5.470 5.478 5.492
All Parameters s 47.107 47.400 | 47.685 | 47.971 | 48.234 | 48.496 | 48.777
Q" 247.455 | 262.476 | 278.326 | 294.976 | 312.728 | 331.337 | 348.769
TP 804.366 | 799.565 | 790.035 | 778.836 | 767.881 | 762.170 | 763.436
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Fig. 2. Sensitivity analysis of the system variables with respect to the parameters and costs

PARTICULAR CASE

In some other production processes shortages are not allowed. That is, the production starts as and when the inventory
level reaches zero. For this sort of situations an inventory system for deteriorating items having stock dependent
production rate and time and selling price dependent demand in which the lifetime of the commodity is random and
follows three parameter Weibull distribution may be deduced as a limiting case of the model developed in section 3

above when the cost of incurring shortages increases indefinitely (C, — o0) and t, — T . Then in this system the
inventory level changes during (0, 7) due to demand and production, during (7,t,) due to deterioration, demand and

production and during (t,,T) due to demand and deterioration.

7. CONCLUSIONS

Production inventory models play a dominant role in manufacturing and production industries like cement, food
processing, petrochemical, pharmaceutical and paint manufacturing units. In this paper, a production inventory model
for deteriorating items with stock dependent production rate, time and selling price dependent demand and Weibull
decay has been developed and analyzed in the light of various parameters and costs and with the objective of
maximizing the total system profit. The optimal production schedule is derived. The model was illustrated with
numerical examples and sensitivity analysis of the model with respect to costs and parameters was also carried out. It
can be concluded from the numerical examples and sensitivity analysis that the stock dependent nature of production
rate is having significant influence on the optimal production quantity and profit rate and the demand parameters
tremendously influence the optimal values of the unit selling price, production quantity and profit rate. This model also
includes the exponential decay model as a particular case for specific values of the parameters. The proposed model can
further be enriched by incorporating salvage of deteriorated units, inflation, quantity discount, and trade credits etc. It
can also be extended to a multi-commodity model with constraints on budget, shelf space, etc., These models may also
be formulated in fuzzy environments.
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