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ABSTRACT
A simple graph G is called felicitous if there exists a 1 — 1 function f: V(G)- {0,1,2, . . ., q} such that the set of
induced edge labels f “(uv) = (f(u) + f(v)) (mod q) are all distinct. In this paper, cycle related graphs are shown to be
felicitous.

1. INTRODUCTION

The graphs we consider are simple. For notation and terminology, we refer to [1]. Lee, Schmeichel and Shee [2]
introduced the concept of a felicitous graph as a generalization of a harmonious graph. A graph G with g edges is called
harmonious if there is an injection f : V(G) — Z,, the additive group of integers modulo ¢ such that when each edge xy
of G is assigned the label (f(x) + f(y)) (mod q), the resulting edge labels are all distinct. A felicitous labeling of a graph
G, with g edges is an injection f : V(G) — {0,1,2, . .. ,q} so that the induced edge labels f (xy) = (f(x) + f(y)) (mod q)
are distinct.

2. DEFINITIONS & RESULTS

Definition 2.1: (Cs, Ky ) (M > 1) be the graph obtained by attaching K, , to one vertex of the cycle Cs.

Definition 2.2: (C3 * Ky m) (M > 1) be the graph by attaching K; , to any one vertex of Cs.

Definition 2.3: (C, 0 C,) , is a graph obtained by joining C,’s by an edge.

Remark 2.3: Let G be a (p, q) graph. Let f be a felicitous labeling. Define fi(uv) = f(u) + f(v) for every uv € E(G).
Then f*(uv) = f;(uv)(mod q).

Remark 2.4: [4] Let G be a graph with an odd number of edges and let f: V(G) — {0, 1, 2. .. q} be an odd edge
labeling of G. Then, fis a felicitous labeling for G.

3. MAIN RESULTS
Theorem 3.1: <C,,, K, > is a felicitous graph for any m.
Proof: Case (i) whenn = 3.
Let V(<Cs, Kim>) = {Ug Up U3 vy Vo, Vi) and E(<Cs, Kym>) = {(uiuy), (Upug), (Usu)}u {(upvi) : 1<i<m}.
Define f: V (<C3, Ky m>) — {0,1,2,...,q=m+3} by
f(uy) =0, f(uy) = 1, f(us) =2
f(vi)=2+i,1<i<m
The induced edge labels are:
fX(upup) =1, f*(ug u)) =2, F*(up ug) =3, f*(Up vi)) = 3+i,1<i<m

Clearly, f,(E(G)) ={1,2,3,...,m+ 3}.
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After taking (mod q), f*(E(G)) = fi(E(G)) (mod q) ={0, 1,2, ..., m+ 2} Hence, <Cs, Ky > is a felicitous graph
for any m.

For example, a felicitous labeling of <Cs, Ky 5> is shown in Figure 3.1.
i }

Fig. 3.1
Case (ii): <C,, Ky > is a felicitous graph when n > 5 and n = 1(mod 2).

Let V(<Cp, K> ) ={uis1<i<nandvj:1<j<m}and E(<Cp, Kim>) = {(Ui Uir): 1 <i<n=1} U {upu} w {unp vj:
1<j<m}.

Define f: V(<Cp, Kim>) — {0,1,2,...,q=m+n} by

n+

f(Uyn=i-1,1<i<
2i-1) 2
n-1

f(us) = f(un) +i, 1 <i <

N

f(v) =f(Up) +j+1,1<j<m

The induced edge labels are as follows:

n-1
1 (Ui Ujsg) = > +i,1<i<n-1
n-1
fi (Up uy) = e
n-1
fi (Un2 V) =3 +j,1<j<m
n-1 n-1 n-1 n-1 n-1 n-1
Clearly, f,(E(G)) ={ , +1, +2,..., +n-1, +n,..., +m+n-1} After
' 2 ' 2 2 2 2
n-1 n-1 n-1 n-1 -1
taking (mod q), F*(E(G)) = f1(E(G)) (mod q) = { , +1, +2,..., —/—+n-1, 0,
2 2 2 2
n-1
— -1}
2
Hence, <C,, Ky > is a felicitous graph when n > 5 and n = 1(mod 2).
For example, a felicitous labeling of <C;, Ky 4> is shown in Figure 3.2.
4
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Fig. 3.2
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Case (iii): whenn=14

Let V(<Cy4, K> ) = {Us, Uy, Uz Ug, V1, Vo, Vin} and E(<Cy, Kyn>) = {(u1Up), (U2 Us3), (Us Ug), (Us u)} © {(Usvy) @ 1<
<m}.

Define f: V(<Cy, Kym>) — {0,1,2, ..., q=m+4} by

f(us) = 0, f(uz) = 2, f(us) = 1, f(us) =4
f(vi)=i+4,1<i<m

The induced edge labels are:

fi(upup) =2, f1 (Uaug) =3, f; (Uzug) =5, Fy (Usug) =4
fi(usv)) =i+5,1<i<m

Clearly, f,(E(G)) ={2, 3, 4, ..., m+5}. After taking (mod q), f*(E (G)) = f,(E(G)) (mod q)={0,1,2,..., m+3}.
Hence, <C,4, Ky > is a felicitous graph for any m.

For example, a felicitous labeling of <C,4, Ky 4> is shown in Figure 3.3.

Fig. 3.3

Case (iv) : <Cynes, Ky m> is a felicitous graph when n > 1.

Let V(<Coneay Kim>) ={ui:1<i<nandvj:1<j<m}and E(<Cona, Kim> ) = {(Ui Uiza) :1<i<n-1} U {uaup v
{UxizVvjil<j<m}

Define f: V(<Cones, Kim>) — {0,1,2, ..., q=m+2n+4} by

f(u2i_1)=i—1,1SiSn+2

_ n+1+i, 1<i<n+1
f(u2i) = 3n+4 i=n+2
_ 2n+3+j, 1<j<n
f(vi) - {2n+4+j, n+1<j<m
The induced edge labels are as follows :
n+1+i 1<i<2n+2
Y — 4n + 5, i=2n+3
f1 (Ui Ujra) 3n+ 4
_ 3n+4+j, 1<j<n
f1 (U2n+3Vj) = {3n+5+j, n+1<j<m
Clearly, f{(E(G))={n+2,n+3,n+4, ...,3n+3,3n+4,3n+5,...,4n+4,4n+5,4n+6, ...,3n+m+ 5},

After taking (mod q), f*(E(G)) = f((E(G)) (mod q) ={n+2,n+3,...,3n+3,3n+4,...,4n+4,4n+5,... , n+1}

Hence, <Cyn+4, Ky > is a felicitous graph, whenn> 1.
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For example, a felicitous labeling of <Cg, Ky 4> is shown in Figure 3.4.

12 11 9

Fig. 3.4
In all cases, the edge values are distinct and so <C,, Ky > admits felicitous labeling.
Theorem 3.2: <C,* Ky > is a felicitous graph for any m.
Proof: Case (i): whenn=3

Let V(<C3 * K11m> ) = {Uly Uo, U3} U {Vi :0<i< m}, where U3 =V and let E(<C3 * K11m>) = {(Ul Uz), (U2 Ug), (U3 Ul)}
U{(vV) : 1<i<m}

Define f: V(<Cs * Kim>) — {0,1,2,...,q=m+3} by

f(uy) =0, f(uz) =2, f(uz) =3, f(vo) = 1
flv)=3+i,2<i<m

The induced edge labels are

fi(upup) =2, f (s ug) =3, f1 (Upug) =5, 1 (Vo Vi) =4,
fi(Vov)=i1+4,2<i<m

Clearly, f,(E(G)) ={2, 3,4, ..., m+ 4}
After taking (mod q), f*(E(G)) = fi(E(G)) (mod q) ={0,1,2,..., m+2}.
Hence, <C;* Ky > is a felicitous graph for any m.

For example, a felicitous labeling of <C; * Ky s> is shown in Figure 3.5.

Fig. 3.5

Case (ii) : whenn=4

Let V(<C4 * K11m> ) ={U11 Uy, Us, U4} U {Vi :0<i< m}, where Us3=Vy and let E(<C4 * K11m>) = {(U1 Uz), (U2 U3), (U3 U4),
(usudtu{(vovy) : 1<i<m}

Define f: V(<Cy * Kim>) — {0,1,2,...,q=m+4} by

f(u1)= 0, f(Up)= 3F(Us)= 1f(Us) = 5, F(vg) = 2
flv)=4+i,2<i<m

The induced edge labels are

i (upup) =3, fy (U ug) =4, f; (Uz ug) =6, 1 (Ug Ug) =5,
fi(Vov)=i1+4,2<i<m
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Clearly, fi(E(G)) ={3,4,5, ..., m+6}.
After taking (mod q), f*(E (G)) =f; (E(G)) (mod q) ={1,2,3,..., m+4}
Hence, <C;* Ky > is a felicitous graph for any m.

For example, a felicitous labeling of <C; * Ky s> is shown in Figure 3.6.

=] Fi a8 9

Fig. 3.6
Case (iii): whenn>5 and n=1 (mod 2)

IA

Let V(<Ch*Kym>) = {uiz1<i<n}u{v;:0<i<m} where f(uy.) = f(vy) let E(<Ch* Kim>) = {(Uiltisr 0 1<
n-1}u{uu b u{vv:1<j<m}

Define f: V(<C, *Kyn>) — {0,1,2,...,g=m+n} by

n-1
f(UZi_l)zi—l,lﬁiS 5
n+1 n-1
f(ugy) = +i,1<i<
(2)) 5 | 5
n+1
flu) = 2
n-1
f(vy) = ——
(Vo) >

f(vjy =n+j,2<j<m

The induced edge labels are as follows:

n+1 .
T s 1<i<n-=-2
f1 (Ui Ujs1) = N+l
3——-1 i=n-1
2
n+1
fl(unul):T
fl(vovl)=3n—+l—2,
2
fl(vovj)=3nT+1—2+j,2£jsm.
n+1 n+1 n+1 n+1 n+1 n+1
Clearly, f(EG)={—,—+1,..., ——+n-2,——+n-1,——+n, ..., +n+m-1}
y, fl(E(G)) ={ > > > > > > }
After taking (mod q), f*(E (G)) = fi(E(G)) (mod q) = {nTJrl, nTJrl+1, Cey nTJrl+ n-2, n+1+ n-1,...,
n+1
— -1}
> }
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Hence, <C,* Ky n>wheren>5 and n=1 (mod 2) is a felicitous graph for any m.

For example, a felicitous labeling of <C; * K 4> is shown in Figure 3.7.

Fig.3.7

Case (iv): whenn>6 and n =0 (mod 2)

Let V(<Ch*Kyp>) = {uiz1<i<n}u{v;:0<i<m} where f(u,) = f(vy) and E(<Cy* Kymn>) = {(UjUiss :

n—1} U {upuy u{vov;:1<j<m}

Define an injective function f : V(<C, * Ky >) — {0,1,2, . ..

IA
IA

,q=m+n} by
.. N
f(uzi1) = i—-1, 1S|£§
g+|, IS|£2—1
f(uy; =
(U2 3n n
—-1, i=—
2 2
n
f(v, = —
(Vo) >
. .. N
n+j-22<j< ——
_ 2
f(v)) = 0
n+j, —<j<m
J > J
The edge labels are
£+i, 1<i<n-2
f1 (Ui Uis1) =
2(n-1),i=n-1
3n
1:1(unul): ?_l
2n-1, i=1
3n . .n
— +j-2, 2<j<—-1
f1 (Vo V) = 2 2
3n n .
— +j, —=<j<m
2 2
n n n n n n
Clearly, f(E(G)={—+1, —+2,..., — +n-2,2n-2, — +n-1,2n-1, —+n,...,2n-3,2n,... —+n+m}.
y, fi(E(G)) {2 > > > > }

© 2012, IJMA. All Rights Reserved

3535



V. Lakshmi Alias Gomathi*, A. Nagarajan and A. Nellai Murugan/ On Felicitous Labelings of Cycle Related Graphs/IIMA- 3(9),
Sept.-2012.

After taking (mod q), f*(E(G)) = fi(E(G)) (mod q) = {%+ 1, 2+ 2,..., 2 +n-1, 2 +n,...,2n-3,2n-2,2n-

n
1,2n,... =}
2
Hence, <C,* Ky m> wheren>6 and n=0 (mod 2) is a felicitous graph for any m.

For example, a felicitous labeling of <Cg * Ky 4> is shown in Figure 3.8.

Fig.3.8

In all the cases, the edge values are distinct and so <C, * Ky > admits felicitous labeling.

Theorem 3.3: C, ® Ky, n = 1(mod 2) is a felicitous graph for any n > 3.

Proof: Let V(C, ©® K)) ={u;,Vv;:1<i<n} and E(C, ® K) ={(ujuis0) : L <i<n-1}u{usudu{uivi:1<i<n}.
Define f: V (C, ® K;) — {0,1,2...9g=2n} by

flu)=i-1, 1<i<n

n+i,1<i<n-1
f(vi) = n, i=n

The labels of the edges are as follows:
f*(uu) =2i-1, 1<i<n-1

f*(uyu)=n-1

: . n+1
n+1+2(3i-1), 1<i<

f*(uivy) = 2i-n-1, +1<i<n-1
2n-1 i=n
n+1
*(EG)={1,3,5 ...,n=-2,n,n+2, ... . 2h-1)-1}u{n-1}Yu{n+1,n+3,..., n+1+2(T -2),n
n+1 n+1 n+1
+1+2(T-1)}u{2( +1)-n-1,2( +2)-n-1,...,2(n-1)-n-1}u {2n-1}.
={1,3,5 ...,n=2,n,n+2, ....2n=3}A{n-1}{n+1,n+3,...,2n=-2,2n}{2,4, ..., n=-3}u{2n-1}.
={1,2,3,45 ...,n=-3,n=-2,n-1,nn+1 ...,2n-3,2n-2,2n-1, 2n}.

Clearly, the above edge values are distinct and hence, C, ® Ky, n = 1(mod 2) is a felicitous graph for any n > 3.

For example, the felicitous labeling of C; ® K; is shown in the Figure 3.9.
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Fig. 3.9

Theorem 3.4: (C4 I Cy),, is a felicitous graph for any n> 1.

Proof : LetV(Cs I Cozn={Uj:1<j<2n and 1<i<4} and E(C, 7 Com={u U} ;s 1<j<2n and1<i<3}

o) udy s 1<i<anroqud ulth i<j<an-1n

It is enough to show that (C4 [J C,),, admits odd edge labeling.
Define f: V ((C4 0 Cy)on) — {0,1,2...9=10n-1} by
f(u) =0 f(u,t) =1, flush) =4, f(ul)=3
For2<j<2n,
f(uly =f(ul) +5G-1), 1<i<4

The labels of the edges are as follows:

f (u/uy) = 10j -9, 1<j<2n
f (ulug) = 10j - 5, 1<j<2n
f (us'ud) = 10j - 3, 1<j<2n
f(uiud) = 10j - 7, 1<j<2n
I AN .
f(u3 Uq )=10j-1, 1<j<2n-1
Clearly, f(E(G)) = {1,11, ...,20n-9}uU {515, ...,20n-5}u{7,17, ...,20n-3}uU{3,13, ..., 20n-T7}

u{9,19, ...,10@n-1)-1}.
= {1,11, ...,20n-9}{5, 15, ...,20n-5}0{7,17, ...,20n-3}{3, 13, ... 20n— 7T} {9, 19, ..., 20n-11}.
={1,3,5,7...20n-11,20n -9, 20n -7, 20n -5, 20n -3} = {1, 3,5, ..., 29— 1}.

Clearly, the above edge values are distinct and odd and hence G admits odd edge labeling. Therefore by 2.4, (C4 [ Cy),n
is a felicitous graph for any n> 1.

For example, a felicitous labeling of (C4 [J C4)4 is shown in Figure 3.10.

Fig. 3.10
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