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ABSTRACT 

Here, an analytical technique, namely the homotopy analysis method (HAM), is applied to solve various linear and 
nonlinear Fokker-Planck equations. HAM is strong and easy-to-use analytical tool for nonlinear problem and does not 
need small parameters in the equations. Comparison of the results with those of Adomain decomposition method 
(ADM) and Homotopy perturbation method (HPM), has led just us to significant consequences. The homotopy analysis 
method contains the auxiliary parameter , which provides us with a simple way to adjust and control the convergence 
region of solution series. 
 
Keywords: Homotopy analysis method, Fokker-Planck equation, Kolmogorov equation, approximate solution, exact 
solution. 
________________________________________________________________________________________________ 
 
1. INTRODUCTION 
 
The investigations of the exact solutions to nonlinear equations play an important role in the study of nonlinear physical 
phenomena. To date, various nonlinear equations were presented, which described, for example, the motion of the 
isolated waves, and in many fields such as hydrodynamics, plasma physics, nonlinear optics etc. In most cases it is 
difficult to solve nonlinear problems, especially analytically. Perturbation techniques [1, 2] were among the popular 
ones and are based on the existence of small or large parameters, namely the perturbation quantities. Unfortunately 
many nonlinear problems in science and engineering do not contain such kind of perturbation quantities at all. Hence 
some non-perturbative techniques [3, 4] have been developed, in which these techniques are independent upon small 
parameters. However, both perturbative and non-perturbative cannot provide a simple way to adjust or control the 
convergence region and the rate of given approximate series [5]. 
 
To overcome such problems, the homotopy analysis method (HAM) is developed and proposed by Liao [6] in 1992. 
The method is powerful analytical method for nonlinear problems and has been applied to solve many types of 
nonlinear problems in science and engineering by many authors [7-25] and the references therein. HAM is different 
from the perturbation and non-perturbation methods mentioned above as it's provide a simple way to adjust or control 
the convergence region and the rate of given approximate series. It is also aimed to confirm that the HAM is efficient in 
handling scientific and engineering problems. In this paper we apply HAM to various Fokker-Planck equations 
(discussed in next section). Various techniques have been used to solve these equations as [27- 29] Comparisons of the 
present method with these techniques are also discussed in this paper. 
 
2. FOKKER-PLANCK EQUATION 
 
The Fokker-Planck equation was first introduced by Fokker and Planck to describe the Brownian motion of particles 
[26]. This equation has been used in different fields in natural sciences such as quantum optics, solid state physics, 
chemical physics, theoretical biology and circuit theory. Fokker-Planck equations describe the erratic motions of small 
particles that are immersed in fluids, fluctuations of the intensity of laser light, velocity distributions of fluid particles in 
turbulent flows and the stochastic behavior of exchange rates. In general, Fokker-Planck equations can be applied to 
equilibrium and nonequilibrium systems [30-33]. 
 
Fokker-Plank equation in general form can be expressed as follows [26]. 
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with the initial condition: 
  

)()0,( xfxu = ,    Rx∈  
 
where ),( txu is an unknown function, )(xA and )(xB  are called Diffusion and Drift coefficients, such 
that 0)( >xB . Diffusion and Drift coefficient in Eq. (1) can be function of x  and t  as well as 
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Eq. (1) is also well known as a forward Kolmogorov equation. There exists another type of this equation is called a 
backward one as [26]. 
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A generalization of Eq. (1) to N-variables of 1x , 2x ,… Nx , yields to 
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with the following initial condition  
 

)()0,( xfxu = ,     N
N Rxxxx ∈= ),...,( 21  

 
The nonlinear Fokker-Planck equation is a more general form of linear one which has also been applied in vast areas 
such as plasma physics, surface physics, astrophysics, the physics of polymer fluids and particle beams, nonlinear 
hydrodynamics, theory of electronic-circuitry and laser arrays, engineering, biophysics, population dynamics, human 
movement sciences, neurophysics, psychology and marketing [34]. 
 
The nonlinear form of Fokker-Planck equation can be expressed in the following form: 
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A generalization of Eq. (5) with N-variables of 1x , 2x ,… Nx  yields to 
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3. BASIC IDEA OF HOMOTOPY ANALYSIS METHOD (HAM) 
 
In this paper, we apply the HAM to the four problems to be discussed. In order to show the basic idea of HAM, 
consider the following differential equation: 
    

,0)],([ =txuN                                                                                            (7) 
 
where N is a nonlinear operator, x and t denote the independent variables and u is an unknown function. For simplicity, 
we ignore all boundary or initial conditions, which can be treated in the similar way. By means of the HAM, we first 
construct the so-called zeroth-order deformation equation. 
  

qtxuqtxLq =−− )],();,([)1( 0φ ћ )];,([),( qtxNtxH φ                                                             (8) 
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where ]1,0[∈q  is the embedding parameter, ћ 0≠ is an auxiliary parameter, L is an auxiliary linear 

operator, );,( qtxφ is an unknown function, ),(0 txu is an initial guess of ),( txu and ),( txH denotes a nonzero 

auxiliary function. It is obvious that when the embedding parameter 0=q  and 1=q , equation (8) becomes 
  

0( , ;0 ) ( , ), ( , ;1) ( , ),x t u x t x t u x tϕ ϕ= = respectively.  
 
Thus as q increases form 0 to1, the solution );,( qtxφ varies from the initial guess ),(0 txu to the solution ),( txu . 

Expanding );,( qtxφ in Taylor series with respect to q , one has 
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The convergence of the series (9) depends upon the auxiliary parameter . If it is convergent at 1=q , one has 
   

,),(),(),(
1

0 ∑
∞

=
+=

m
m txutxutxu                                                                    (11)  

 
which one of the solutions of the original nonlinear equation, as proven by Liao [6, 7]. Define the vectors 
  

)}.,(),...,,(),,({ 10 txutxutxuu nn =
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                                                                  (12) 
 
Differentiating the zeroth-order deformation equation (8) m-times with respect to q and then dividing them by !m  and 
finally setting 0=q , we get the following mth-order deformation equation: 
  

=− − )],(),([ 1 txutxuL mmm χ ),( 1−ℜ mm u                                                                   (13) 
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It should be emphasized that ),( txum for 1≥m is governed by the linear equation (13) with linear boundary 
conditions that comes from the original problem, which can be easily solved by the symbolic computation softwares 
such as Maple, Mathematica and Matlab. 
 
4. APPLICATIONS 
 
Example 4.1 Consider the following linear Fokker-Planck equation 
 
   xxxt uuu +=  
 
with the initial condition xxu =)0,(                                   (16) 
 
According to the HAM, we take the initial guess as  
  

xtxu =),(0                                                                              (17) 
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The rule of solution expression also suggests that we define the linear operator L by 
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with the property  
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The nonlinear operator is  
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The thm -order deformation equation is given by 
   

=− − )],(),([ 1 txutxuL mmm χ )( 1−ℜ mm u                                                            (22) 
 
solving above equation (22) under the initial conditions ...3,2,1,0)0,( == mxum we get 
 

ttxu −=),(1  

ttxu )1(),(2  +−=                                                               (23) 

ttxu 2
3 )1(),(  +=  

    
and so on 
 
Taking 1−= , the approximate solution is given by 
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Which is the exact solution and is same as obtained by ADM [27], VIM [28] and HPM[29] 
 
Example 4.2 Consider the following linear Fokker-Planck equation (2) such that 
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with the initial condition Rxxxu ∈= ,sinh)0,(                                 (25) 
 
According to the HAM, we take the initial guess as  
  

xtxu sinh),(0 =                                                                             (26)
  
The nonlinear operator is  
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The thm -order deformation equation is given by 
   

=− − )],(),([ 1 txutxuL mmm χ )( 1−ℜ mm u                                                    (29) 
 
solving above equation (29) under the initial conditions ...3,2,1,0)0,( == mxum we get 
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and so on 
 
Taking 1−= , the approximate solution is given by 
 

xetxu t sinh),( =                                                  (31) 
 
Which is the exact solution and is same as obtained by ADM [27], VIM [28] and HPM [29] 
 
Example 4.3 Consider the Backward Kolmogorov Eq. (3) such that 
 

)1(),( +−= xtxA ,     textxB 2),( =                                                (32) 
i.e. 

xx
t

xt uexuxu 2)1( ++=   
with the initial condition  
 

1)0,( += xxu ,     Rx∈                                                 (33) 
 
According to the HAM, we take the initial guess as  
  

)1(),(0 += xtxu                                                       (34)
  
The nonlinear operator is  
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The thm -order deformation equation is given by 
   

=− − )],(),([ 1 txutxuL mmm χ )( 1−ℜ mm u                                                    (37) 
 
solving above equation (37) under the initial conditions ...3,2,1,0)0,( == mxum we get 
 

txtxu )1(),(1 +−=   
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Taking 1−= , the approximate solution is given by 
 

)1(),( += xetxu t                                                  (39) 
 
Which is the exact solution and is same as obtained by ADM [27], VIM [28] and HPM [29] 
 
Example 4.4 Consider the following Nonlinear Fokker-Planck eq. (5) such that 
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According to the HAM, we take the initial guess as  
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The nonlinear operator is  
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The thm -order deformation equation is given by 
   

=− − )],(),([ 1 txutxuL mmm χ )( 1−ℜ mm u                                                    (45) 
 
solving above equation (45) under the initial conditions ...3,2,1,0)0,( == mxum we get 
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Taking 1−= , the approximate solution is given by 
 

textxu 2),( =                                                        (47) 
 
Which is the exact solution and is same as obtained by ADM [27], VIM [28] and HPM [29] 

If we denote the approximation of thk terms by kψ , then 4 -terms approximation is denoted by ∑
=

=
3

0
4 ),(

i
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The error between exact and approximate solution is given in Table 1. 
 
Table 1  
Comparison of the exact solution with 4-term HAM taking ћ = -1 solution of Ex. 4.4 
 
( ii tx , )  Exact Solution  Approximate Solution  Error 

     ),( txu    ),(4 txψ    ),(),( 4 txtxu ψ−  
(0.1, 0.1) 0.011052  0.011052   1.40898E-11 
  
(0.2, 0.2) 0.048856  0.048856   3.65974E-09 
 
(0.3, 0.3) 0.121487  0.121487   9.51818E-08 
 
(0.4, 0.4) 0.238692  0.238692   9.64965E-08 
 
(0.5, 0.5) 0.412184  0.412184   5.83851E-08 
           
             
5 CONCLUSIONS 
 
In this paper, the homotopy analysis method (HAM) is applied to obtain the solution of Fokker-Planck equation. HAM 
provides us with a convenient way to control the convergence of approximation series by adapting , which is a 
fundamental qualitative difference in analysis between HAM and other methods. The error between the exact solution 
and approximate solution are very small and tends to zero. Fig 1-6 shows that the exact solution and approximate 
solution have the same values for larger values of t. Also it has been shown that the HPM and ADM are the particular 
case of this method. This technique is algorithmic and it is easy to implementation by symbolic computation software, 
such a Maple and Mathematica. The numerical results of the above example display a fast convergence, with minimal 
calculations. It shows that the HAM is a very effective method and might find wide applications. Mathematica 7.0 has 
been used for numerical computation in this paper. 
 

 
 

Fig.1: Exact solution graph of Fokker-Planck ex. 4.4 for t= 0 to t =1 
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Fig.2: Approximate solution graph of Fokker-Planck ex. 4.4 for t= 0 to t =1 by HAM for fourth-order approximation 
 
 

 
 

Fig.3: Exact solution graph of Fokker-Planck ex. 4.4 for t= 0 to t =5 
 

 

 
 

Fig.4: Approximate solution graph of Fokker-Planck ex. 4.4 for t= 0 to t =5 by HAM for fourth-order approximation 
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Fig.5: Exact solution graph of Fokker-Planck ex. 4.4 for t= 0 to t =10 
 
 

 
 
Fig 6: Approximate solution graph of Fokker-Planck ex. 4.4 for t= 0 to t =10 by HAM for fourth-order approximation 
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