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ABSTRACT
In this paper we study Hankel type transformation on the spaces M B and Qa, 8 defined. Further Hankel type Convolution

on M B and M ; y; is studied. We have given representation and characterization theorem for the elements of M ; Bt and M (; 8
on M @B and M ; Bt respectively. Finally interchange formula and algebraic properties are discussed.
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1. INTRODUCTION:

In the last few decades many authors have studied Hankel transformation theory and it’s applications in various areas of
mathematics, engineering and technologies, especially by Betancor[1], Betancor and Marrero[2,3,4,5,6,7], Waphare [18] and many
other amongst them. The Hankel type transformation defined in Waphare [18] is given by,

(s 0)(s) = j ()P T, _5(s) f(D)dt , s€ (0,00) (1.1)

-1 . . .
o — ,B > ? , where J , is the Bessel function of the first kind and order A .

We introduce the space H , 5 that consists of all complex valued functions f=f(x), xe (0,0), such that

k 1 " 26-1
pin (f)=suplx (;DJ (77 f () < oo, (1.2)

xe(0,00)

For every k,me N . We note that H B is a Frechet space. The dual space of H o is denoted by H ; rx

Now for every a € (0,00), we define the subspace B, s, of H, ; consisting of pe H,, 4 such that P(x)=0 for x=>a.The

space B 0 = UB . foa endowed with the inductive topology is a dense subspace of H @B and the Hankel type transform on B YL

a>0

Cholewinski [8], Hirschman [12] and Haimo [10] studied a convolution for a variant of the Hankel transformation that, after
straight forword manipulations, allows defining convolution for the hu transform. A measurable function @ on (0,0) is said to be in

L,  if and only if, x°“@ is absolutely integrable on (0, 0) . For @, € L,

a

and ¥ by

s> we define the Hankel type convolution @#y of ¢
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(P#Y)(x) =°f¢(y)<rxw><y)dy, xe (0,0) (1.3)
where the Hankel type translation is given by0
(TW¥)(y) =TDa,ﬁ(x,y,z)w(z)dz, x, y€ (0,0) (1.4
and ’
D, ;(x,y,2)= Tr“‘l )P T g (X)) P T (y0)(z)* P, ()t (1.5)
>

x,y,2€ (0,00).
The Fourier transform of distribution of exponential growth had been investigated earlier by Hasumi [11], Zielezny [24] and
among others. However the Hankel type transformations has not been defined on distribution of exponential growth. In this paper we

investigate the Hankel type transformation and Hankel type convolution on distribution of exponential growth.
The following boundedness properties of Bessel functions will be very much useful in the sequel:

(i) There exists C >0 such that

(@~ I
@ ’B)Ja_ﬂ(z)(SCeJmZLzeC (16)

Gi) If H él)ﬁ denotes the Hankel type function of the first kind and order (& — ,3 ) then
there exist C > 0 such that

za+'BH(1) (z)

Imz
o p <Ce ™% zeCle21 (1.7)

2. Hankel type transformation and the spaces O, ; and M, ,:

In this section we introduce new function spaces that the Hankel type transformation maps isomorphically.
Definition 2.1: The space M , ; is the space of all smooth complex valued functions ¢(x), x€ (0,0) such that

kx 1 " 25-1
7¢2 (@) =suple (;Dj (#7900 <o, @.1)
xe(0,00)

foreveryk,me N .

The space M @B is a Frechet space. By using Lemma 2.2 of Betancor and Marrero [4] we can see that the seminorms

a, p Sup kx 2B —-1,m
= e x A x),0oe M k,me N 2.2
77/(,m ) x€(07oo 0{,,3¢( ¢ a,pf @2)
where

_ 281y 4a 261

Ay s =x""Dx"Dx"".
is the Bessel type operator, induce on M , s the same topology as defined by {,71?' B } of seminorms. Notice that M , 518

| Mk me N '

continuously contained in H ap- It is easy to see that the Frechet function spaces introduced in Koh and Li [13] and Koh and
Zemanian [14] contain Maﬁ .
We denote by 6,, the space of multipliers of M, , that is a function f isin 8, whenever fope M, ; for everype M, ;.

Following a procedure used in Betancor and Marrero [2] and Yoshinaga [20], we can easily prove that f € HM if and only if
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(i) f is smooth on (0,00) , and
(ii) for every me N there exists k € N and C > 0 such that

X

(lemf(x) <Ce™, xel.

We denote by M ; - the dual space of M L 6, is also the space of multipliers in M ; E Following techniques used in
Betancor[1], Betancor and Marrero[4] and Treves[17], is not very difficult to conclude that a functional 7 on M @B isin M ; B if

and only if there exists r € N and essentially bounded functions f, on ((),00), 0 <k <r such that

T = Zr:A';’ﬁ (e”xzﬁ*lfk ) .
k=0

Definition 2.2: The space Qm p consists of all complex valued functions D such that

G z** “'d(z) is an even entire function, and

(ii) for every k,me N,

o (®) = Sup‘(1+|z|2 ) z”’"ﬁ)(z)‘ <oo.

[Im z|<k

k,m

When endowed with the topology generated by the family {a)“'ﬁ }k . of norms; Q, B is a nuclear Frechet space. Q; B denotes the
,me B i

dual space O, ;.

Definition 2.3: The space 0Q of all complex valued, even and entire functions F' such that for every k € N there exists me N for
which

sup(1+|z|2)_m F(z)|<eo.

‘Im z‘sk

Itis seen that F' is a multiplier of O, ; whenever F' € 6,.

Theorem 2.4: The Hankel type transformation ha’ 8 is an isomorphism from M o, ONIO Qa’ 5 - Moreover, the inverse of ha’ y; is

also ha,ﬁ .

Proof: Let ¢€ M, ; and define @ =, ;5(@) . By (1.6), foreveryke N,

T‘(xz)_(“_ﬂ)la_ﬁ(xz)‘xm |p(x)|dx < CTex‘lmz‘x2“|¢(x)|dx

0

< Csup‘e(k+1)xx2/3—1¢(x)

xe(0,00)

, if|Imz|Sk.

This shows that x> '®(z) is an even entire function.

Also as Maﬁ C Haﬁ, by lemma 5.41 of Zemanian [23], we have for every k,me N,

sup(1+| o )"’ [ o)< it @)+t @)

‘Im z‘Sk
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Thus A, 5 is a continuous mapping from M , 5 into Q,, 5.

Let @€ Q, ;. Since P is absolutely integrable in (0, 00) , we can define
9(x) = [ )™ T,y D)y,  x€ (0,00),
0

and the integral is absolutely convergent for every x € (O, 00)

By Zemanian [23, 5.1(7)], forevery me N and x € ( 00) we have

1 " moo a— m m+2a
=D | (x79(x)) = (=1)" [ (o) o (9) 374D () dy 2.3)
x

0
The integral in (2.3) is again absolutely convergent for every X € (0, 00) .By Lemma 6.1 of Eijndhoven and Kerkhof [9], we have
from (2.3) that

o

(%Dj ( 2h- 1¢()C) = I Cf+l77 miﬁ) mH;Dmm( (Cf+i7]))(§+i7])2m+2aq)(gg+i77)ddff0revery

—oo

x>1,7>0 and me N and here H" «p is the Hankel type function of the first kind and order (& — B) . As |x(§ +i17) d§| >n
for x > 1, (2.2) gives

1Y ap
(XDJ (x*76(x))

<Ce™ T \E+in|" |@ (& +in)|dE (2.4)

for every x>1,7>0 and me N, where the positive constant C depends on 77. Now we choose /€ N such that
[ > 2(20!+ ﬁ) . By (2.4) we can obtain that for every k,me N ,

ke l 8 28-1
e (xD) (x ¢(x))

<Ce™ ]o |E+ilk+D)|"|@(E+ilk+1)|d&

< CT|§+i(k D[ E+itk+ D" |E+itk+ D[ |@(E+itk +D)| d&
< Ca)::]ﬁ,,m (CI)) , forevery x>1. (2.5)

Now for every X € (0,1) and k,me N we have
e 1 " 241 k
e\ —D (x ¢(x)) <e

X

<cal’ (@), (2.6)

1,m+n

(xy)—(a—ﬂ)—m Ja_ﬁ+m (xy)“y2m+2aq)(y)‘dy
0

where ne N and n> (3a+ﬁ) . By (2.5) and (2.6) we can conclude that ha’ﬁ is continuous mapping from Qa’ﬂ ino Ma,ﬂ

Finallyas M, ;, € H, 4., it follows that A, , = h;]ﬁ . This completes the proof.

Corollary 2.5: The space Qa’ B is continuously contained in H e
Proof: Proof is easy and follows from Theorem 2.4.

Now we define the generalized Hankel type transformation between M ; 8 and Q; p o be the transpose of the ha’ 8
transformation, that is, the Hankel type transform h; P (T) of TeM ; 5 (resp. Q; ) is the element of Q; 5 (resp. M ; 5)
defined by
© 2011, IJMA. All Rights Reserved 134
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(g (T) . 9)=(T . h, 5(9)). 9€Q, s(resp. M, ).
Theorem 2.6: The generalized Hankel type transformation is an isomorphism from M (; 5 (resp. Q; ) onto Q(; 5 (resp. M ; 5)

when we consider on M ; 8 and Q; B the weak™ or strong topology.
. ’
3. Hankel type convolutionon M, ; and M, ;:

In this section first we investigate the behavior of the Hankel type transformation and Hankel type convolution in M L
Lemma 3.1: For every x € (0,c0), the Hankel type translation T, defines a continuous linear mapping from M o.p into itself.

Proof: Let x € (0,0) . As Maﬁ c Ha’ﬁ, by Marrero and Betancor [15] we have for every @ € Maﬁ ,

(2.0)(3) = hy s [ P77 )P Ty (DB, 5 (8) (1) (7). yeT G.1)

By theorem 2.4 to prove that 7  is continuous from M, p into itself, it is enough to prove that the function

ON (r)= (xt )7(0(7/; 'J ap (xt) . te N is a multiplier in Q, - Note that P is an even entire function. Moreover, from (1.6), it
follows that

CIDx(t)‘ cce ™,y

bl

Thus q)x € 9Q and the proof is complete.

Lemma 3.2: The Hankel type convolution defines a continuous linear mapping from M, 5 X M, 5 into M, -

Proof: Note that for each ¢,l//€ M a B> from Theorem 2.d of Hirschman [12] it is not very difficult to show that the following

interchange formula holds.
Moy (PHW) = 31y 5 () By (W) (3.2)

But the mapping (CID, ‘P) > yzﬁ_lq)‘P is continuous from M, s XM, 5 into M, ;. Thus the proof can be completed by using
Theorem 2.4.

Lemma 3.1 allows us to define the Hankel type convolution T #¢ of T € M ; s and @€ M, ; as below:

(T#9)(x)=(T , 7,0), x€(0,0).

Note that we cannot insure that 7 #@€ M , ;. Infact, define

=)

(T.9) = [x*p(x)dx, peM,,.

0

Note that T € M;ﬁ .Let pe M By Hirschman [12, §2, (2)], we have

ap’
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(T, 2.0)= Tz“fna,ﬁ (5.7.2) 0 () dye:

(x,y,2)2*dzdy

O'—»8
O'—»8

G [y (v dy,  xe (00)
0
where, C,, 5 = 24F (3ar+ f3) . Thus
x2ﬁ—1< ¢> <T T¢) aﬁIy2a¢ dy, ‘e (O,w),and

e xH! (T , Tx¢)> — o0 as X —> oo,
Therefore TH#HPe M, 5.

In the next lemma we shall prove that for every T € M ; 5 and peM, 5 X # ¢ is a multiplier of M , 5

Lemma3.3:1f T € M;’ﬁ and g€ M, ; then X T#oe 0, .

Proof: From Section 2, there exists r € N and essentially bounded functions f, on (0,%0), 0 <k <, such that
T ZA ( rx Zﬁ 1 )

T = A';ﬁ (e”xzﬂ_lf),

Thus it is enough to prove the result for

where f is an essentially bounded functions on (0,0), and r,ke N .Let g M, 5

Now by Proposition 2.1(ii) of Marrero and Betancor [15] we have
(T#6)(x)=(T . 7,9) = j Fe? y e (AL ,0)(y)dy
= (1) 2 £y [ () P 1 (1) (9) (1) (),
0

X€E (O, 00) .Now let ne N . By using 5.1(7) of Zemanian [21], it is clear that

(1D]"(x2“(f#¢>(x))

X

I PO [ () (30 (0)0) (9 e 00

Then for each x € (0,00),
(L0 (2 (r#0)(x)
< CSllp e(r+1>yy2,871haﬁ [tz(mk) (xt)‘w_ﬁ)—n Ja_ﬁ+n (xt) haﬁ (¢) (t)} ( y)‘ .
y€(0,00)

© 2011, IJMA. All Rights Reserved
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As z_(a_ﬁ)Ja_ﬁ (z) 1S HQ and using Theorem 2.4, there exists /,m € N such that

[lpjn (5 (T#9)(x))

X

< Cafyf (1 () Ty (1) (9)(1)). e (0.50). 6

Now from (1.6), we have
o ()" T (xz)ﬂ“")ha 5(9)(0))
< a)l m+k+n ( ) N » XE I > (34)

where C is independent of x € ( )

Lastly by Theorem 2.4 again and by (3.3) and (3.4) we can infer that

‘(1DJH (77 (T#9)(x))

<CeY, xe (0,00)-
x

Thus x*#™ (T # ¢) (x) € 6,, . This completes the proof.
Now by Lemma 3.3, if T € M;ﬁ and € M, ; then T #¢ defines an element of M;qﬁ
by

(T#¢,w>=T(T#¢)(x)w(x)dx, yeM,,.

0
Lemma3.4:1f T€ M, , and ¢ M, ; then

(TH#o,v)=(T,o#y), yeM,,. 3.5)

and the interchange formula

1,5 (T#0)= "0, ,(T)h, ,(9)

holds. Moreover, for every T € M ; 5 the mapping @+> T #¢ is continuous from M, 5 into M ; 5 When we consider on M ; 5
the strong topology.

Proof: Letyy € M, ;. We have

(T#0.) = [(T#0) (x) (x)dx = [(T.2.0)p (x)dx.

0

As (Tx¢)(y) = (Z‘_‘,¢) (x) , X,yE€ (0, 00) , thus to complete the proof of (3.5), it is enough to prove that

T<T’7x¢> (x a’x—< dx> 3.7)

0
Case I: lim [ (7,6)(y)y (x)dx=0 (3.8)

O'—'.S

First we prove the following case.

and
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lim | (z,6)(y)y (x)dx=0 (3.9)
0
in the sense of convergence in M a

Proof of Case I: First we prove (3.8). Leta > 0. It is clear that

o0

(2 2) (0w (x)dx= (v, #9)(y). ye(0.).

a

where

v (x):{y/(x), x>a

0, x<a.
But by Theorem 2.d of Hirschman [12], we have

hy s (W, #0)=x""h, 5 (W,) h, 5(9)

Therefore by Theorem 2.4, ¥/, #¢ — 0 in Ma,ﬁ as @ — oo, if and only if ,

xzﬁ*‘hw,, (W) hyy(#) > 0in Q, 5 as a —> oo.

Now by (1.6), xz'g_lhaﬁ (l//a ) (x) is an even entire and also for every k € N , we have

2y )0 = T L) )

< CTeyk‘yZ“l//(y)‘dy, |Imx|£k.

Hence

. 28-1 _
6111_1:10le ha,ﬁ (y/a)ha,ﬂ(¢)_o
in the sense of convergence in Qa’ B This proves (3.8). In the same manner (3.9) can be established.

Thus proof of Case I is completed.

CaseII: Let 0 < a < b < oo. Then

T(T,Tx@‘//(ﬂdx=<T(y),j(fx¢)(y)l//(X)dX> (3.10)

Proof of Case II: We use the Riemann sums techniques. Let me N — {0} Define
a+nb-a)
X, =—,

n

m
Because of linearity of T° we have

m—»oo

Q C—

(T8 (x)dx=1lim <T( y), 2= i(f}¢)(xn)l//(xn)>.

Hence to complete the proof of Case I, it is enough to show that
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limb_—ai(fy¢)(xn)l/l(xn)=i(2’y¢)(x)l//(x)dx G

m—yco
1/ ——

in the sense of convergence in M a B Moreover by Theorem 2.d of Hirschman [12], (3.1)

and Theorem 2.4, (3.11) is equivalent to

tim 220 S 2, (0)(1) (1), (15, )0 ()

:tZﬁ_lha,ﬁ(¢)(t)ha,ﬁ(Wa,b)(t) (3'12)

in the sense of convergence in Q,, I where

v,,(1)=

Now we prove (3.12). Let [,k € N . From (1.6), we have

)= (14 7]) 4, (0050 Y7 0,5 () [ () 7,y o) 2 ()
SC(1+M) ‘ha’ﬂ(¢)(t)t2ﬁ_l‘, Im?#| <k,

where C is independent of me N .

Let &> 0. There exists R > 0 such that if |Ret| > R and |Imt| < k then
Im(?) < €, forevery me [J . (3.13)

But then there exists m 0 € N such that for every me N with m 2 my,

() g, () Py (x)dr< €. Ga4)

b—a& —(a- o
Z(t‘xn) h Ja—ﬂ ()"xn)'x’-n2 l//(xn)_
m

n=1

QA —

for [Re#| < R and |Im?| < k . Combining (3.13) and (3.14), we get (3.12).
This completes the proof of Case II.

Now we prove (3.7). For every 0 < a < b < oo, by Case I and Case II,

I<Tr¢>w dx—< I(r¢)() ()dx>

:I<T’Tx¢>yl( dx+j T.7.0W(x dx+j T.7.0) (x)dx

< ). f s d>< ) jeeo >

I
_< (v )T(Tm( )y (x )dx> —0,as a—0and b — .

Thus (3.7) is proved.
Now let ¥ € Qa’ﬁ . By using (3.2) and (3.5), we can obtain
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(I, (T#0) . w)=(T#¢, h, ;(v))

(T, p#h, ,(v))

(5 (T). aﬁ(¢#haﬁ(w))>
<

xzﬁ 1h ha,ﬁ (¢) ’ l//>

This proves (3.6).
Finally, by invoking Lemma 3.2 we can conclude that for each '€ M ; 5 the mapping @+ T #¢ is continuous from M, 5

into M ; 8 when on M ; p We consider the strong topology. This completes the proof.

Now we introduce a subspace M;yﬁy# of M;ﬁ such that S#@pe M, ; for every S€ M;ﬁy# and g€ M, ;. The new
space M, 5, contains M, 5 and 8;’ 5 - Also we will define the Hankel type convolution on M (; s XM (; p4- Let me N . The

space X, 5,4 consists of all smooth complex valued functions ¢ = #(x), xe€(0,00), such that

‘iiihﬁ = Sl]l?‘e’ 25— lZSk ﬁQé(XJ‘<: co

x€(0,00)

for every k€ N . When endowed with the topology generated by the system {5:1’(1, ﬂ}k ! of seminorms, X o Bt is a Frechet
space. Notice that M, , € X, 5 .

Now we define M, p.m# as the closure of M, ;in X, p.m# - One can easily conclude that M, p.m# 18 a Frechet space. Moreover,

M, 4,414 is continuously containedin M, 5 .

4. REPRESENTATION AND CHARACTERIZATION:
In this section we give representation for elements of M ; By ON M @B and characterization of elements of M ; p on
M/

a,p# "

Theorem 4.1 (Representation): Let me N. If Te M ; Bt then there exists r€ N and essentially bounded functions fk on
(0,00),/{20,1,2, ............. , 7, such that

T = Zr:Al;ﬁ [xzﬂ_le("”z)xfk] on M, ,.

Proof: Let 7 be in M;ﬁ’m’# . Then there exist ne N and C > O such that

(T.¢)|<Cmaxs,,(4). seM,,,,. @.0)

0<k<n
Let p€ M, ; and k€ N . Assume first that me N . For every X € (0,00) we have
28-1 Ak _ 281 Ak
KPINL 49 (x) = [ D[ 17A 5, 9(1) ]dr

Then
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™ xPPIAK ﬁ¢( )‘<e””‘]£ D, [ 2P IAZﬁ,¢(t)]‘dt

oo

mt

e

IA

D[ AL, 0(1) |t

oo

J‘ 2aAk+l¢( )

t

emtt4ﬂ—2

j‘ 2aAk+1¢( du}dt+j mt 4ﬁ 2

0

IA

Il
S~ O~ O3

em[J‘ 28— I‘Ak+l¢( ‘dudt+j 145~ 2j u(m+l) 20:‘Ak+1¢( )‘dudt

0 t

(ool

0
Thus

=

I (m+2)u 2~ I‘Akﬂ ( )‘du. 4.2)

0

ma,B

Let me N,m < —1. Forevery X€& (0,00) we can write

N ()< [ (e, o0

<|m| j "1 AL (1 \dz+j &

(1277 (1 ]‘dr

<|m| j "t AL (1) dt + j A j WAL (u)| du dt

0

< c(je'"’ﬁﬂ A ot \dmj A ARG ( ‘dtJ, xe (0,0).

0

Then
Ot (¢)<C[£emt’2ﬂ Ak 0 ‘d”j (2 |AL g ‘dtj. 4.3)
Now by combining (4.1), (4.2) and (4.3) we conclude that
(T . ¢)|< Cmax Ie("’”)'tzﬁ_l ‘A’;ﬁq}(t)‘dt., peM,,. (4.4)
0<k<r 0

For some re N . The required result can be deduced from (4.4) by using a standard procedure (see Betancor [1] and Treves [17]).
This completes the proof.

We denote by M e the space U M @Bt endowed with the inductive topology. We now characterize the elements of

mell

M;ﬁ that belong to M(;)ﬁ)# )

Theorem 4.2(Characterization): Let T € M ; s The following statements are equivalent:
i TeM,,,.
Gy x7'n 4(T)eb,.

(iii) Forevery me N there exists r € N and continuous functions f, on (0,00), k=0,1,2,.cccccununn.. , 7, such that
o Ak
T=YAL,f, 4.5)
k=0
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and €™ f, is bounded on (0,00) forevery k =0,1,2,..ccccceunnen.n. 7.
(iv) Forevery me N there exists r € N and bounded continuous functions f, on (0,00) , k=0,1,2, e, , T, such that
(4.5) holds and €™ f, = 0 as x —> oo foreach k =0,1,2,................. 7.

(v) Forevery me N there exists r€ N and bounded continuous functions f, on (O, 00) , k=0,1,2,................. , ¥, such that

(4.5) holds and €™ f, is absolutely integrable on (0, 00) foreach K =0,1,2,.....cccuvnun.e. 7.

Proof: (i) = (ii). LetT € M(;ﬁ!#. Then T € M(;ﬁ!# for every me N . Let m <—2. By Theorem 4.1 there exists re€ N and

essentially bounded functions f, on (O , 00) , n=0,1,2,..ccccceunnnn... , ¥, such that
(m 2)x 28-1
T= ZA [ PRy 2h fn] on M, 4.
n=0
Set
g, (x)= e =012, 7.

Now by Fubini’s theorem we have,

(e (). @)=(T . 1y (@)

&, (o[ 170 (3)] (x) s Thus

Y, (T)(y) fgn xy) P 0, (ay)dx. (4.6)

For every k € N by choosing the representation (4.6) associated with m = —k —3 and using (1.6) we have

‘ 2ﬂ1h

, |Imy|$k.

28177
Therefore y™""h, 4 (T)(y)e 6,.
(ii) = (iii). Let me N . We define 8 = h; ﬂT . Then for every k € N thery exist C, >0 and n e N such that

e (y)<c (1)) . jmy|<k.

-1
Now set V(y)=(M2+y2) 0(y), |Imy|£m+1. Here me N is such that M >m+1 and le N satisfies

I>n, +2a+ . Thus v is absolutely integrable on (0,00) and h;’ﬁ (v) =h 5 (v) . Thus by Zemanian [23 , Lemma 5.4-1],

,
we can write

T =1, (0) =1 (117 +37) v(v))
_Z(] M DAL by, 5 (v)
=§A;ﬁf,- :

© 2011, IJMA. All Rights Reserved 142



*B.B. Waphare and S. B. Gunjal / Hankel type transformation and convolution on spaces of distributions.../IJMA- 2(1), Jan.-2011,
Page: 131-145

l ‘ .
where fo=l (=) MR (v), =002, .
J . a.f
J

Forevery j=0,1,2,.............. ,1,itis clear that f ; is a continuous functions on (0 , 00) .
To prove (iii) we have to show that emxha’ B (v) is a bounded function on (0,00). As Vv is absolutely integrable on (0,00),

emxha) 8 (V)(x) is bounded on (0,1). On the other side, by using a procedure similar to the one employed in Lemma 6.1 of
Eijndhoven and Kerkhof [9], we have

oo

B (v) (%) = %xw [ (x(&+im) " HY), (x(&+im)(E+in)™ v(&+in)aé 7

—oo

forevery x >1 and 0 <77 <M . Now by (1.7) and (4.7) we have

. 2a
‘§+l(m+1)‘ , x>1LAs

) 2

" hy 5 (v) (x)‘ < Ce™ sup

I-n,,,
- (1+\§+i(m+1)\2) " fim e

[>n

m+1

+20+ it follows that €™ h, (v)(x) is bounded on (1,00).
(iiil) = (iv) and (iv) = (v) are clear.
(v) = (i) : Enough to show that T € M;’ﬁ,m’# for each me N . Now choose r € N such that ¥ >—m +1. There exist k€ N and

bounded continuous functions f; on (0,00) , 1=0,1,2, i, , 1, for which
k
T = Z(; A, f

and e"” f; is absolutely integrable on (0,00) forevery i =0,1,2,..cccceennen. k.
Then

o

<T,¢>=§Jﬁ(x)A;,ﬁ¢(x)dx, b M,,.

Therefore o

0
k
SCZ rln,a,,B (¢)7 ¢E Mo:,,B

As M ap is a dense subset of M it follows that T can be extended to an element of M ; Bt defined by the same formula,

and the proof is complete.

a,B.mi# >

One can immediately note from Theorem 2.4 and Theorem 4.2 that M a.B is a subspace of M ; .4 Now we introduce the
space «f o8 consisting of an smooth complex-valued functions ¢(x) , XE (0,00) , such that the limit
1 k

lim (—Dj (x*9(x))

=0\ x
exists for every ke N . This space is equipped with the topology generated by the family{BZ’f } o where for each

’ mel] —

me N—{O}and ke N,

B (0)= s [10] (¥ 00, oet,

We now prove that elements of M ; Bt define convolution operators in M ap
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Theorem 4.3: Let Se M ; 5.4 - Then the mapping @+ S#¢ is continuous from M , 5 into itself.

Proof: By Lemma 3.4, for every ¢E M apr Ve have
28177
haﬁ (S#¢) =X / ha,ﬁ’ (S)haﬁ’ (¢)
Hence by Theorem 2.4 and Theorem 4.2, h(; (S #¢) € Q, 5 for each € M, ;. Moreover the mapping @ > h 2 (S #¢) is
continuous from M, ;5 onto O, ;. Finally as ha, 5 reduces to h, ; on O, 5 we can infer from Theorem 2.4 that @ > S #¢

defines a continuous mapping from M @B into itself. This completes the proof.

From Theorem 4.3 we have the following definition:
For Te M ; pand Se M ; 5.4+ the Hankel type convolution T'#S  is the element of M ; 5 defined by

(T#S ,¢)=(T , S#9¢), peM,,
Note that by Lemma 3.4 the definition of Hankel type convolution on M (; B XM ; B4 is a generalization of the above definition of
Hankel type convolution on M ; s XM, 5
5. Interchange formula and algebraic properties of the generalized Hankel type convolution:

In this section first we establish the interchange formula.

Theorem 5.1(Interchange formula): Let 7' € M (; 5 and SeM (; 5.4~ Then
’ _ Qﬁ_l ’ ’
h, s (T#S)=x"""h,, ;(T)h;, ;(S).

Proof: According to Lemma 3.4 and Theorem 4.3 we can write

(I, (T#S), @)= <T#S b, (q>)> = (T . S#h,,(P))
(1) (590, (9)
(15 (T), X*7K, ,(S) @)
<

7 ‘h h’,}(s),cp>, deQ,,

a,

This completes the proof.

Corollary 5.2: If R,Se€ M’ ., then R#SeMaﬁ#

B #

Proof: It is immediate consequence of Theorem 4.2 and Theorem 5.1.
Now we show some algebraic properties of the generalized Hankel type convolution.

Theorem 5.3: Let T€ M, ; and R,S€ M, ;. Then
) (T # R) #S=TH# ( R# S) (Associativity)
(ii) R#S=S#R (Commutativity)

i) Ay (T#S)=(A,,T)#S =T#(A,,S).
@iv) If 50:, B denotes the functional on M ap defined by
_ na-p . 251
<§a,ﬁ’¢>_2 (3a’+,6’)}1_>rgx ¢(X), ¢E Ma,ﬁ’
then é‘a’ﬂe M;’ﬁ’# and S#0, . =S.
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Proof: (i), (ii), (iii) follow immediately from Theorem 5.1.

To prove (iv), it is enough to note that

yzﬂ_lh;ﬁ (5a,ﬂ) =1.

This completes the proof.
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