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ABSTRACT

For a connected graph G = (V,E) , a monophonic set S < E is called an edge — to — vertex monophonic set if every
vertex of G lies on a monophonic path between two vertices in V(S). The edge -to -vertex monophonic number me,(G)
of G is the minimum cardinality of its edge — to — vertex monophonic sets. The edge — to — vertex monophonic number
of certain classes of graphs is determined and some of its general properties are studied. Connected graphs of size q >
3 with edge — to — vertex monophonic number g and g -1 are characterized. It is shown that for positive integers ry,
dn and 1 > 2 with r, < dp, <2 ry, there exists a connected graph G with rad,,G = ry,, diam,,G = d,, and m,,(G) = | and
also shown that for every integers a, b and ¢ with 2 <a <b <c, and ¢ >2b — a +1, there exists a connected graph G
such that m.,(G) = a, ge(G) = b and R7(G) = c, where g.,(G) is edge — to — vertex geodetic number and R’(G) is edge
covering number of G.

Keywords: Monophonic path, Monophonic number, Edge — to — vertex monophonic number, Geodesic, Edge — to —
vertex geodetic number.

AMS subject classification: 05C38.

1. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and
size of G are denoted by p and g respectively. We consider connected graphs with at least three vertices. For basic
definitions and terminologies we refer to [1].An edge covering of G is a subset K < E(G) such that each vertex of G is
end of some edge in K. The number of edges in a minimum edge covering of G, denoted by ”(G) is the edge covering
number of G. For two vertices u and v in a connected graph G, the distance d(u, v) is the length of a shortest u —v path
in G. An u —v path of length d (u, v) is called an u —v geodesic. For a vertex v of G, the eccentricity e(v) is the distance
between v and a vertex farthest from v. The minimum eccentricity among the vertices is the radius, rad G and the
maximum eccentricity is the diameter, diam G of G. For subsets A and B of V (G), the distance d(A, B) is defined as
d(A, B) =min{d(x, y) : x € A,y € B}. Anu — v path of length d (A, B) is called an A — B geodesic joining the sets A, B,
where u € Aand v € B. A vertex x is said to lie on an A — B geodesic if x is a vertex of an A — B geodesic. For A = (u,
v) and B = (z, w) with uv and zw edges, we write an A — B geodesic as uv — zw geodesic and d(A, B) as d(uv, zw). A set
S < E is called an edge-to-vertex geodetic set if every vertex of G is either incident with an edge of S or lies on a
geodesic joining a pair of edges of S. The edge-to-vertex geodetic number ge,(G) of G is the minimum cardinality of its
edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality g.,(G) is an edge-to-vertex geodetic
basis of G. The edge-to-vertex geodetic number of a graph is introduced and studied in [6,7]. The maximum degree of
G, denoted byA( G), is given byA( G) = max{degs(v) : v eV(G)}. N(v) = {u € V(G): uv eE(G)} is called the
neighborhood of the vertex v in G. A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors
is complete. An edge e of a graph G is called an extreme edge of G, if one of its ends is an extreme vertex of G. A
chord of a path Ugs Uyy Uy iUy is an edge uu;, with j > i+ 2. An u-v path is called a monophonic path if it is a chord

less path. For two vertices u and v in a connected graph G, the monophonic distance dp(u, v) is the length of the
longest u- v.monophonic path in G. An u—v monophonic path of length d.,(u, v) is called an u —v monophonic. For a
vertex v of G, the monophonic eccentricity e, (v) is the monophonic distance between v and a vertex farthest from v.
The monophonic eccentricity among the vertices is the monophonic radius, rad,(G) and the maximum monophonic
eccentricity is the monophonic diameter, diam,,(G). For subsets A and B of V (G), the monophonic distance d.,(A, B) is

*Corresponding author: K. Uma Samundesvari*,*E-mail: kus_krishna@yahoo.co.in
International Journal of Mathematical Archive- 3 (2), Feb. — 2012 722


http://www.ijma.info/�
mailto:kus_krishna@yahoo.co.in�
mailto:kus_krishna@yahoo.co.in�

J. John & K. Uma Samundesvari*/ THE EDGE ~TO-VERTEX MONOPHONIC NUMBER OF A GRAPH / IIMA- 3(2), Feb.-2012,
Page: 722-728

defined as dy(A, B) = max{d,(x, y) : X € A, y € B}. An u —v monophonic path of length d.,(A, B) is called an A - B
monophonic joining the sets A, B where u € A and v e B. A vertex x is said to lie on an A — B monophonic if x is a
vertex of an A — B monophonic. For A = (u, v) and B = (z, w) with uv and zw edges, we write an A —B monophonic as
uv —zw monophonic and dy,(A, B) as d,(uv, zw). The monophonic distance is studied in [8]. A monophonic set of G is a
set M < V such that every vertex of G lies on a monophonic path joining some pair of vertices in M. The monophonic
number m(G) of G is the minimum order of its monophonic sets and any monophonic set of order m(G) is a minimum
monophonic set or simply a m-set of G. The monophonic number of a graph is studied in [2, 3, 4, 5]. For a cut — vertex
v in a connected graph G and a component H of G-v, the sub graph H and the vertex v together with all edges joining v
and V (H) is called a branch of G at v. An end-block of G is a block containing exactly one cut-vertex of G. Thus every
end-block is a branch of G. Girth is the length of the smallest cycle in G. A double star is a tree with diameter three. A
caterpillar is a tree of order 3 or more, for which the removal of all end- vertices leaves a path.

The following theorems are used in sequel.

Theorem: 1.1. [5] Every end-edge of a connected graph G belongs to every edge-to-vertex geodetic set of G.
Theorem: 1.2. [5] For a connected graph G, ge(G) = q if and only if G is a star.

Theorem: 1.3. [5] For a connected graph G with q > 3, ge(G) =q— 1 if and only if G is either C; or a double star.
2. EDGE-TO-VERTEX MONOPHONIC NUMBER OF A GRAPH G

Definition: 2.1 Lete, f € E (G). The e- f monophonic path is an u — v monophonic path , where u is one end of e and v
is one end of f . The vertex x is said to lie on a e — f monophonic path if x is a vertex of e — f monophonic path.

Definition: 2.2 Let G = (V, E) be a connected graph with at least three vertices. A set S c E is called an edge-to-vertex
monophonic set if every vertex of G lies on a monophonic path between two vertices in V(S). The edge-to-vertex
monophonic number m,(G) of G is the minimum cardinality of its edge-to-vertex monophonic sets and any edge-to-
vertex monophonic set of cardinality m.,(G) is an m,, —set of G.

Example: 2.3 For the graph G given in Figure 2.1 with e = vyvg and f =v;v,, the e — f monophonic paths are
Piivi,Vo,Vs,PoiVe, Vi,Vo,Vs ,P3iVs,Vs,Vg,V3,Pa:Vg,Vs,Va,Ps:Vs, Vs, Vs, Vs, Vg, Pg:iVs, Vs,Vs,V3 and
P7:ve, V1 V4. Since the vertices v, ,vs ,v; and vg lies on the v; vg - v3 v, monophonic path, S ={ e, f} isa me, — set of G
and so me,(G) =2

L Ve Vs
L 3
Va
-
Vs Vs Va
=
Figure: 2.1

Theorem: 2.4 If v is an extreme vertex of a connected graph G, then every edge-to-vertex monophonic set contains at
least one extreme edge that is incident with v.

Proof: Let v be an extreme vertex of G. Let e, e,,.. ,ex be the edges incident with v. Let S be any edge-to-vertex
monophonic set of G. We claim that e; € S for some i(1 < i < k). Otherwise, e; ¢ S for any i(1 < i <k). Since S is an
edge-to-vertex monophonic set , the vertex v lies on a monophonic path joining two elements, say, x, y €V(S). Since v
is an internal vertex of a monophonic path x-y, v is not an extreme vertex of G, which is a contradiction. Hence e; € S
for some i(1 <i <K).

Corollary: 2.5 Every end-edge of a connected graph G belongs to every edge-to-vertex monophonic set of G.
Proof: This follows from Theorem 2.4.

Theorem: 2.6 Let G be a connected graph with cut-vertices and S an edge-to-vertex monophonic set of G. Then every
branch of G at v contains an element of S.
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Proof: Assume that there is a branch B of G at a cut-vertex v such that B contains no element of S. Then by Corollary
2.5, B does not contain any end-edge of G. Hence it follows that no vertex of B is an end vertex of G. Let u be any
vertex of B such that u # v (such a vertex exists since | V(B) | > 2). Then u ¢ V(S) and so u lies on a e — f monophonic
path P : ug, Uy, ..., U, ..., U, where uy is an end of e and u, is an end of f with e, f € S. Since v is a cut-vertex of G, the
u; — u and u — u, sub paths of P both contain v and so P is not a path, which is a contradiction. Hence every branch of G
contains an element of S.

Corollary: 2.7 Let G be a connected graph with cut-edges and S an edge-to-vertex monophonic set of G. Then for any
cut-edge e of G, which is not an end-edge, each of the two component of G — e contains an element of S.

Proof: Let e = uv. Let G; and G, be the two component of G — e such that u € V(G;) and v € V(G,). Since u and v are
cut-vertices of G, it follows that G, contains at least one branch at u and G, contains at least one branch at v. Hence it
follows from Theorem 2.6 that each of G; and G, contains an element of S.

Theorem 2.8 Let G be a connected graph and S be a mg,-set of G. Then no cut edge of G which is not an end-edge of G
belongs to S.

Proof: Let S be a mg,- set of G. Suppose that e = uv be a cut edge of G which is not an end-edge of G such that e € S.
Let G; and G, be the two component of G —e. Let S’ =S — {uv}. We claim that S’ is an edge-to-vertex monophonic
set of G. By Corollary 2.7, G; contains an edge xy and G, contains an edge x 'y ’, where x y, X 'y ' € S. Let z be any
vertex of G. Assume without loss of generality that z belongs to G;. Since uv is a cut edge of G, every path joining a
vertex of G; with a vertex of G, contains the edge uv. Suppose that z is incident with uv or the edge xy of S or that lies
on a monophonic path joining xy and uv. If z is incident with uv, then z = u. Let P:y,yy, ¥, .., Z=Ubeaxy —u
monophonic path. Let Q : v, vy, Vs, ..., ¥ " be av —x 'y’ monophonic path. Then, it is clear that P U {uv} U Q is a xy — x
"'y " monophonic path .Thus z lies on the xy — x 'y " monophonic path. If z is incident with xy, then there is nothing to
prove. If z lies on a xy — uv monophonic path, say, Y, yi, ¥2... Z... u, then let v, vi, v,... y' be v — x 'y " monophonic
path. Then clearly y, y1, Yo... Z... U, V, V3, Vo... Y ' IS @ Xy — x 'y " monophonic path. Thus z lies on a monophonic path
joining a pair of edges of S '. Thus we have proved that a vertex that is incident with uv or an edge of S or that lies on a
monophonic path joining xy and uv of S also is incident with an edge of S’ or lies on a monophonic path joining a pair
of edges of S '. Hence it follows that S ' is an edge-to-vertex monophonic set such that | S’| =| S| — 1, which is a
contradiction to S a me,~ set of G. Hence the theorem follows.

In the following, we determine edge — to- vertex monophonic number of some standard graphs.

Corollary: 2.9 For any non-trivial tree T with k end-vertices, me,(T) = k and the set of all end-edges of T is the unique
edge-to-vertex monophonic set of T.

Proof: This follows from Corollary 2.5 and Theorem 2.8.
Theorem: 2.10 For the cycle C, (p > 4), Mey(Cp) = 2

Proof: Let e, f be two independent edges of G. Then S = {e, f} is an edge to vertex monophonic set of G so that
Mey(Cp) = 2.

Theorem: 2.11 For the complete graph Ky(p > 4) with p even, me,(K;) = p/2.

Proof: Let S be any set of p/2 independent edges of K. Since each vertex of K; is incident with an edge of S, it follows
that mey(G) < p/2. If me,(G) < p/2, then there exists an edge-to-vertex monophonic set S’ of Kysuch that | S’ | < p/2.
Therefore, there exists at least one vertex v of K, such that v is not incident with any edge of S '. Hence v is neither
incident with any edge of S’ nor lies on a monophonic path of S’ and so S’ is not an edge-to-vertex monophonic set of
G, which is a contradiction. Thus S is an edge-to-vertex monophonic basis of K,. Hence mey(K) = p/2

b+l

Theorem: 2.12 For the complete graph G = Ky( p > 5) with p odd, me,(G) = >

Proof: Let M consist of any set of

P ; 3 independent edges of K, and M ' consist of 2 adjacent edges of K, each of

which is independent with the edges of M. Let S = Mu M'. Since each vertex of K, is incident with an element of S, it
p-3 p+1

+2=—.

follows that S is an edge-to-vertex monophonic set of G so that me,(G) < 2
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. Therefore,

If me,(G) < p;l , then there exists an edge-to-vertex monophonic set S ' of K, such that | S’| < p;—l
there exists at least one vertex v of K, such that v is not incident with any edge of S '. Hence the vertex v is neither
incident with any edge of S’ nor lies on a monophonic path of S’ and so S’ is not an edge-to-vertex monophonic set of
_p+1

G, which is a contradiction. Hence m,,(G) >

Theorem: 2.13 For the complete bipartite graph G = Ky, 1(2 <m <n), me(G) = 2.

Proof: Let X = {Xy, Xo... Xn} and Y = {y1, ¥»... yn} be a bipartition of G. Let S ={e,f}, where e=f and e =x; y; and
f=xxyi(1<j,1<n,m, 1<jk <n) i#zkand j#l.Letxbeavertexof G. Ifx €Y, then x lies on the monophonic
path x; — x, . If x €X, then x lies on the monophonic path y; -y, .Hence S is an edge-to- vertex monophonic set of G so
that me,(G) = 2.

Theorem: 2.14 Let G be a connected unicyclic graph with girth greater than three. Then mev(G) is either k or k+1,
where k is the number of end- vertices of G.

Proof: Let C be the unicycle in G such that |C| > 4. Let W be the set of end edges of G. If V(C) contain at least three
cut- vertices of G, then W is an edge-to-vertex monophonic set of G and by Corollary 2.5 that me,(G) = k. If V(C)
contains exactly two cut -vertices of G, say, u, v, and if u and v are not adjacent, then W is an edge-to-vertex
monophonic set of G and by Corollary 2.5 that m.,(G) = k. If u and v are adjacent, then W is not an edge-to-vertex
monophonic set of G and so by Corollary 2.5, me,(G) > k + 1. Let xeV(C) such that xv € E(C) and x # u. Then

W U {xv} is an edge-to-vertex monophonic set of G so that m.,(G) = k + 1. If V(C) contains one cut vertex of G, say v,
then W is not an edge-to-vertex monophonic set of G and so by Corollary 2.5, mev(G) >k + 1. Since |C| >4, there exits
x €V(C) such that d(x, v) >2. Let y e V(C) such that xye E(C) and y # v. Then S = Wu {xy} is an edge-to-vertex
monophonic set of G so that mev(G) =k + 1.

3. SOME RESULTS ON EDGE-TO-VERTEX MONOPHONIC NUMBER OF A GRAPH
Theorem: 3.1 Let G be a connected graph. Then 2 < me,(G) < gey(G) < R7(G) < q.

Proof: An edge-to-vertex monophonic needs at least two edges and so me,(G) > 2. Since every edge-to-vertex geodesic
set of G is an edge-to-vertex monophonic set of G and so me, < g.,(G). Also every edge cover of G is an edge -to-vertex
geodesic set of G. We have g.(G) < 7(G). Since E(G) is the edge cover of G, we have 7(G) <. Thus 2 < m,(G) <
9e(G) <R’(G) <q.

Remark: 3.2 The set of two end-edges of a path P of length at least two is its unique edge-to-vertex monophonic set so
that me,(P) = 2. For the star Ky, 4 (9 > 2) ,it is clear that the set of all edges is the unique edge-to-vertex monophonic
number set so that me,(G) = g. Thus the star Ky, 4 (@ > 2) has the largest possible edge-to-vertex monophonic number g
and the paths of length at least 2 have the smallest edge-to-vertex monophonic.

Theorem: 3.3. Let G be a connected graph. Then m(G) <2 mg,(G).

Proof: Let S be an edge — to — vertex monophonic set of G .Since every vertex of G lies on a monophonic path between
two vertices in V(S), it follows that V(S) is a monophonic set of G and so m(G) <| V(S)| < 2 |[E(S)| = 2 me(G) . Thus
m(G) <2 me(G).

Theorem: 3.4 Let G be a connected graph. If d(e,f)= 0or1forevery e, f e E(G). Then mg(G) = g (G) = B’(G)

Proof: Let S be an edge-to-vertex monophonic set of G. We show that S is an edge covering of G. Suppose that S is
not an edge covering of G. Then there exists at least one vertex v eV(G) such that v ¢V(S). Then v liesonae - f
monophonic path, where e , f € S. Since v is an internal vertex of the e - f monophonic path, it follows that

d( e, f)>2,which is a contradiction. Therefore S is an edge cover of G so that m¢,(G) = B’(G). Now it follows from
Theorem 3.1 that ge,(G) = B7(G). Thus me,(G) = ge(G) = R7(G) .

Theorem: 3.5 The converse of the theorem 3.4 is not true. For the graph given in Figure 3.1, me(G) = ge(G) = B7(G)
=6.Howeverd (e, f)= 2.
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Figure: 3.1

Theorem: 3.6 Let G be a connected graph without extreme vertices. Then m.,(G) < q - A(G) + 1.

Proof: Let x be a vertex of G such that degg(X) = A(G) and N(x) = {y1, Y2,..., Y4}.Since x is not an extreme vertex of G,
Xyi (1 <i<A)is not an extreme edge of G. Now S = E(G) — {xy>, Xys, ... , Xy} is an edge — to — vertex monophonic set
of G so that me,(G) <q - A(G) + 1.

Theorem: 3.7 Let G be a connected non- complete graph and U is a minimum cutest of G such that each component of
G - U has at least one edge. Then m.,(G) < q— m k(G), where m is the number of component of G — U.

Proof: Suppose G is non- complete, it is clear that 1 < k(G) < p -2. Let U = {uy, U,... u} be a minimum cutest of G.

Let G, Gy, ..., Gy (M > 2) be the components of G — U. Then every vertex u; (1 < i <Kk) is adjacent to at least one
vertex of Gj, forevery j (1 <j<m). Letx;beavertexof G; (1<i<Kk) (1<j<m)which isadjacent to u; (1 <i<Kk).
Then S = E(G) — {U1X11, UsX12,...,Uim, UsXa1, UpXpp,, ..., UpXom, Uk Xk1, Uk Xkz,.... Uk Xkm } IS @n edge — to — vertex monophonic
set of G so that mg,(G) < q-m k(G).

The following Theorems 3.8 and 3.9 characterize graphs for which me,(G) = g and me,(G) = q — 1 respectively.
Theorem: 3.8 For a connected graph G, me,(G) = q if and only if ge(G) = q.

Proof: Let me,(G) = @. Then by Theorem 3.1, g..(G) = g. Conversely, let ge,(G) = . Then by Theorem 1.2, G is a star.
Now it follows from Corollary 2.9 that m.,(G) = g.

Theorem: 3.9 For a connected graph G with g >3, m.,(G) = g-1 if and only if g.,(G) = q-1.

Proof: Let me,(G) = q -1. Then by Theorem 3.1, ge(G) = q or g — 1. If go(G) = g, then by Theorem 1.2,G is a star.
But by Corollary 2.9, m,(G) = q, which is a contradiction. Therefore ge(G) = q -1.Conversely, let g¢,(G) = g -1.Then
by Theorem 1.3, G is either C; or a double star. If G is C; , then m.,(G) = 2 = ¢-1. If G is a double star , then by
Corollary 2.9 that m,,(G) = g-1. Hence the theorem.

4. EDGE - TO - VERTEX MONOPHONIC NUMBER AND MONOPHONIC DIAMETER OF A GRAPH
Theorem: 4.1 For a connected graph G withq>2, m.(G) < q—dn + 2, where dy, is the monophonic diameter of G.
Proof: Let u and v be vertices of G for which dy,(u, v) = d,, where d,, is the monophonic diameter of G and let P : u =
Vo, V1, Va2, ..., Vgm =V be a u — v path of length d,,. Lete; = vi; vi (1 <i<dp). Let S=E (G) = { ViVa, V2 V3, .-+, Vam-2 Vam-1 }-
Let x be any vertex of G. If x =v; (1 <i<dy-1), then x lies on the e; — 4, monophonic path P;: vy, V... Vgm.1.

If x#vi(1<i<dy-1), then x is incident with an edge of S. Therefore, S is an edge-to-vertex monophonic set of G.

Consequently, mg(G) <|S|=q-d, +2.

Remark: 4.2 The bound in Theorem 4.1 is sharp. For the star G = K, ((q > 2), dm = 2 and m,(G) = g , by Corollary 2.9,
so that me,(G) =q—d, + 2.

Theorem: 4.3 Let G be a connected graph without extreme vertices. Then m.(G)< ¢q - d, , where d, is the
monophonic diameter of G.

Proof: Let u and v be vertices of G for which dy,(u, v) = dy,, where d,, is the monophonic diameter of G and let
P :u=vyq, Vi, Vo, ..., Vgm =V be a u — v monophonic path of length d,. Let &; = vi1vi (L <i<dp).
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Let S = E(G) — {ez€s,...,eam1 }-{€, T} where e =vyy and f = vy, z, where y #v; and z # Vgn.1. Let x be any vertex of G.
If x=v;(1<i<dy,-1), then x lies on the e; — e4n» monophonic path Py: vy, Vo, ..., Vgm1. IFX#Vv; (1 <i<d,-1), then x
€V(S). Therefore, S is an edge-to-vertex monophonic set of G. Consequently, m.,(G) <|S|=q-d, .

Theorem: 4.4 For any y non-trivial tree T with g > 2, me(T) = q - d, + 2 if and only if T is a caterpillar.

Proof: Let P: vq, V4, Va,..., Vgn-1,Vam = V be a diametral path of length d,, . Let & = vi; v; (1 < i < d,) be the edges of the
diametral path P. Let k be the number of end-edges of T and | be the number of internal edges of T other thang; (2<i <
dn-1).Then d,,-2 +l +k = g. By Corollary 2.9, m.,(T) =k and so me,(T) =q-dn+2 -l .

Hence mg,(T) = q - d, + 2 if and only if | = 0, if and only if all internal vertices of T lie on the diametral path P, if and
only if T is a caterpillar.

For every connected graph G, rad G < diam G <2 rad G. Ostrand[9] showed that every two positive integers a and b
with a < b < 2a are realizable as the radius and diameter , respectively, of some connected graphs. Now, Ostrand's
theorem can be extended so that the edge - to - vertex monophonic number can also be prescribed.

Theorem: 4.5 For positive integers ry, d, and 1 > 2 with r, < dy, < 2 r, , there exists a connected graph G with rad,, G
=y, diamy, G = dy, and m,,(G) = 1.

Proof: When ry, = 1, we let G = Ky ;. Then the result follows from Corollary 2.9.

Let r,>2. Let Crip: Vi, Vo,..., Vi be a cycle of length r + 2 and let Pgq.r+1: Ug, Uy, Uo, ..., Ugn-F be a path of length

dn - rm + 1. Let H be a graph obtained from C,., and Pgyy.+1 by identifying v, in C., and Ug in Pgp.r+1. Now add -2
new vertices wy, Ws, ..., Wi to H and join each w; (1< i < 1-2) to the vertex ugy .1 and obtain the graph G of Figure
4.1.Thenrad, G=ry,, diam, G=d,.

W2

]
) — u u Womer2 Yetmeri Yoirm-r
. Tz V1= 4o . —.2 - -
.

Worr W
Wy
W ore2 Wi
F
Figure: 4.1
Let S = {Ugmr1 W1, Ugmr1 W2, .y Ugmr1 Wi2, Ugmr1 Ugmry D€ the set of all end-edges of G. By Corollary 2.5, S is

contained in every edge - to - vertex monophonic set of G. It is clear that S is not an edge - to - vertex monophonic set
of G. However, the set S U {e}, where e e{v,Vs, V3V, ..., Vi Vii1, Vie1Ves2} §S @n edge - to - vertex monophonic set of G
sothat mg,(G) =1-1+1=1.

5. REALIZATION THEOREM

Theorem: 5.1 For every integers a , b and c with 2 <a<b <c, and ¢ > 2b — a + 1, there exists a connected graph G
such that m.(G) =a, go(G) =b and £’(G) =c.

Proof: Let P3: y; Y», Yabe a path of order 3. For each integer i with 1 <i<b-a,letQ;:u,v; w; (1<i<b-a)bea
path of order 3. Let H be a graph obtained from P; and Q; (1 <i<b - a) by joining each u;(1 <i<b-a)withy, and
eachw; (1<i<b-a)withys;andalso adding a— 1 new vertices z; (1<i<a-1) and joiningeachz(1<i<a-1)
with y; . Let G be a graph obtained from H by adding new vertices x,y andx; (1<i< c-2b+a-1), and joining
eachx; (1<i< c-2b+a-1)withy andy, and x withy. The graph G is given in Figure 5.1. First show that m¢,(G)
za. LetS={vys32;, Y322,... Y3 Z a1, XY} be the set of all end edges of G. By Corollary 2.9, S is a subset of every
edge — to — vertex monophonic set of G and so m,(G) > a. Now it is clear that S is an edge — to — vertex monophonic
set of G so that m.,(G) = a. Next show that g.,(G) = b. By Theorem 1.1, S is a subset of every edge — to — vertex
geodetic set of G. It is clear that S is not an edge — to — vertex geodetic set of G. Let H; : { ujvi viw;}, (1 <i<b-a).
It is easily observed that every edge — to — vertex geodetic set of G contains at least one edge from each H; ,(1 <i<b-
a)andso ge(G)> a+b—-a=b.Now S =S U {vi Wy, Vo W,,V3W3 ,... Vo W4 } IS an edge — to — vertex geodetic
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set of G, so that ge(G) = b. Next show that 37(G) = c. Let Q;: {{ u; vi, vi,wi},{ysu; vi,wi}, {yaw;, uivi }} (1<i<b-a)
and Fi:{yix,yxi}y(1<i<c-2b +a-1)and M ={y; > .y2 Ys}. We have to show that a set W of edges is a
minimum edge covering of G if and only if W has the following five properties.(1) S is a subset of W, (2) W contains
exactly one element of each Q; (1 <i<b-a), (3) W contains exactly one element of M, (4) W contains exactly one
elementeach F;, (1<i< c-2b+a-1), (5) VIM) n V(yx ) # x; and V(M) n V(yx; ) # ;. Obviously, the properties
(1) and (3) are true. Suppose that W does not contain an element of Q;, (1 <i<b - a) . Then the vertices u; v; and w;
does not lie on the edge covering of G .Therefore the property (2) holds good. Suppose that W does not contain an
element of F; (1 <i<c-2b+ a-1). Then the vertices x; (1 <i<c-2b + a-1) does not lie on the edge covering of G,
which is a contradiction . Therefore W has the property (4). Suppose that property (5) is not satisfied. Then £’(G) is not
a minimum edge covering of G. Therefore from the above said five conditions , it is clear that g’(G)> a+2b-2a+
c-2b+a-1+1=c.NowS”=S U {ugVvy UyVy,UsVz, ... ,Up.q Vp-a,VIW1,VoWo,, ... ,Vp.a Wp.a,Y1Y2, Y1 X1,
Y1X2,, ..., Y 1Xc—2b+a-1 ¢ IS an edge cover of G so that R7(G) =c.

Moo hao-1 Yoo Voo

Figure: 5.1
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