International Journal of Mathematical Archive-3(2), 2012, Page: 722-728 (C) ${ }^{\text {(M M A }}$ Available online through www.ijma.info ISSN 2229-5046

THE EDGE -TO-VERTEX MONOPHONIC NUMBER OF A GRAPH

J. John
Department of Mathematics, Government college of Engineering, Tirunelveli, 627007, India
E-mail: johnramesh1971@yahoo.co.in

K. Uma Samundesvari*
Department of Mathematics, Noorul Islam centre for Higher Education, Kumaracoil, 629175, India
E-mail: kus_krishna@yahoo.co.in

(Received on: 10-02-12; Accepted on: 28-02-12)

Abstract

For a connected graph $G=(V, E)$, a monophonic set $S \subseteq E$ is called an edge - to - vertex monophonic set if every vertex of G lies on a monophonic path between two vertices in $V(S)$. The edge -to -vertex monophonic number $m_{e v}(G)$ of G is the minimum cardinality of its edge - to - vertex monophonic sets. The edge - to - vertex monophonic number of certain classes of graphs is determined and some of its general properties are studied. Connected graphs of size $q \geq$ 3 with edge - to - vertex monophonic number q and $q-1$ are characterized. It is shown that for positive integers r_{m}, d_{m} and $l \geq 2$ with $r_{m}<d_{m} \leq 2 r_{m}$, there exists a connected graph G with $\operatorname{rad}_{m} G=r_{m}$, diam $G=d_{m}$ and $m_{e r}(G)=l$ and also shown that for every integers a, b and c with $2 \leq a \leq b \leq c$, and $c \geq 2 b-a+1$, there exists a connected graph G such that $m_{e v}(G)=a, g_{e v}(G)=b$ and $\beta^{\prime}(G)=c$, where $g_{e v}(G)$ is edge - to - vertex geodetic number and $\beta^{\prime}(G)$ is edge covering number of G.

Keywords: Monophonic path, Monophonic number, Edge - to - vertex monophonic number, Geodesic, Edge - to vertex geodetic number.

AMS subject classification: 05C38.

1. INTRODUCTION

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. We consider connected graphs with at least three vertices. For basic definitions and terminologies we refer to [1].An edge covering of G is a subset $K \subseteq E(G)$ such that each vertex of G is end of some edge in K. The number of edges in a minimum edge covering of G, denoted by $\beta^{\prime}(G)$ is the edge covering number of G. For two vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. For a vertex v of G, the eccentricity $e(v)$ is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices is the radius, rad G and the maximum eccentricity is the diameter, diam G of G. For subsets A and B of $V(G)$, the distance $d(A, B)$ is defined as $d(A, B)=\min \{d(x, y): x \in A, y \in B\}$. An $u-v$ path of length $d(A, B)$ is called an $A-B$ geodesic joining the sets A, B, where $u \in A$ and $v \in B$. A vertex x is said to lie on an $A-B$ geodesic if x is a vertex of an $A-B$ geodesic. For $A=(u$, v) and $B=(z, w)$ with $u v$ and zw edges, we write an $A-B$ geodesic as $u v-z w$ geodesic and $d(A, B)$ as $d(u v, z w)$. A set $S \subseteq E$ is called an edge-to-vertex geodetic set if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The edge-to-vertex geodetic number $g_{e v}(G)$ of G is the minimum cardinality of its edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality $g_{\text {ev }}(G)$ is an edge-to-vertex geodetic basis of G. The edge-to-vertex geodetic number of a graph is introduced and studied in [6,7]. The maximum degree of
 neighborhood of the vertex v in G. A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. An edge e of a graph G is called an extreme edge of G, if one of its ends is an extreme vertex of G. A chord of a path $u_{0}, u_{1}, u_{2}, \ldots, u_{h}$ is an edge $u_{i} u_{j}$, with $j \geq i+2$. An $u-v$ path is called a monophonic path if it is a chord less path. For two vertices u and v in a connected graph G, the monophonic distance $d_{m}(u, v)$ is the length of the longest $u-v$ monophonic path in G. An $u-v$ monophonic path of length $d_{m}(u, v)$ is called an $u-v$ monophonic. For a vertex v of G, the monophonic eccentricity $e_{m}(v)$ is the monophonic distance between v and a vertex farthest from v. The monophonic eccentricity among the vertices is the monophonic radius, $\operatorname{rad}_{m}(G)$ and the maximum monophonic eccentricity is the monophonic diameter, $\operatorname{diam}_{m}(G)$. For subsets A and B of $V(G)$, the monophonic distance $d_{m}(A, B)$ is

[^0]defined as $d_{m}(A, B)=\max \left\{d_{m}(x, y): x \in A, y \in B\right\}$. An $u-v$ monophonic path of length $d_{m}(A, B)$ is called an $A-B$ monophonic joining the sets A, B where $u \in A$ and $v \in B$. A vertex x is said to lie on an $A-B$ monophonic if x is a vertex of an $A-B$ monophonic. For $A=(u, v)$ and $B=(z, w)$ with $u v$ and $z w$ edges, we write an $A-B$ monophonic as $u v-z w$ monophonic and $d_{m}(A, B)$ as $d_{m}(u v, z w)$. The monophonic distance is studied in [8]. A monophonic set of G is a set $M \subseteq V$ such that every vertex of G lies on a monophonic path joining some pair of vertices in M. The monophonic number $m(G)$ of G is the minimum order of its monophonic sets and any monophonic set of order $m(G)$ is a minimum monophonic set or simply a m-set of G. The monophonic number of a graph is studied in [2, 3, 4, 5]. For a cut - vertex v in a connected graph G and a component H of $G-v$, the sub graph H and the vertex v together with all edges joining v and $V(H)$ is called a branch of G at v. An end-block of G is a block containing exactly one cut-vertex of G. Thus every end-block is a branch of G. Girth is the length of the smallest cycle in G. A double star is a tree with diameter three. A caterpillar is a tree of order 3 or more, for which the removal of all end- vertices leaves a path.
The following theorems are used in sequel.
Theorem: 1.1. [5] Every end-edge of a connected graph G belongs to every edge-to-vertex geodetic set of G.
Theorem: 1.2. [5] For a connected graph $G, g_{e v}(G)=q$ if and only if G is a star.
Theorem: 1.3. [5] For a connected graph G with $q \geq 3, g_{e v}(G)=q-1$ if and only if G is either C_{3} or a double star.

2. EDGE-TO-VERTEX MONOPHONIC NUMBER OF A GRAPH G

Definition: 2.1 Let $e, f \in E(G)$. The e - f monophonic path is an $u-v$ monophonic path, where u is one end of e and v is one end of f. The vertex x is said to lie on a $e-f$ monophonic path if x is a vertex of $e-f$ monophonic path.

Definition: 2.2 Let $G=(V, E)$ be a connected graph with at least three vertices. A set $S \subseteq E$ is called an edge-to-vertex monophonic set if every vertex of G lies on a monophonic path between two vertices in $V(S)$. The edge-to-vertex monophonic number $m_{e v}(G)$ of G is the minimum cardinality of its edge-to-vertex monophonic sets and any edge-tovertex monophonic set of cardinality $m_{e v}(G)$ is an $m_{e v}$ - set of G.

Example: 2.3 For the graph G given in Figure 2.1 with $e=v_{1} v_{6}$ and $f=v_{3} v_{4}$, the $e-f$ monophonic paths are $P_{1}: v_{1}, v_{2}, v_{3}, P_{2}: v_{6}, v_{1}, v_{2}, v_{3}, P_{3}: v_{6}, v_{7}, v_{8}, v_{3}, P_{4}: v_{6}, v_{5}, v_{4}, P_{5}: v_{6}, v_{7}, v_{8}, v_{3}, v_{4}, P_{6}: v_{6}, v_{5}, v_{4}, v_{3}$, and $P_{7}: v_{6}, v_{1}, v_{4}$. Since the vertices v_{2}, v_{5}, v_{7} and v_{8} lies on the $v_{1} v_{6}-v_{3} v_{4}$ monophonic path, $S=\{e, f\}$ is a $m_{e v}-$ set of G and so $m_{e v}(G)=2$

Figure: 2.1
Theorem: 2.4 If v is an extreme vertex of a connected graph G, then every edge-to-vertex monophonic set contains at least one extreme edge that is incident with v.

Proof: Let v be an extreme vertex of G. Let $e_{1}, e_{2}, . ., e_{k}$ be the edges incident with v. Let S be any edge-to-vertex monophonic set of G. We claim that $e_{i} \in S$ for some $i(1 \leq i \leq k)$. Otherwise, $e_{i} \notin S$ for any $i(1 \leq i \leq k)$. Since S is an edge-to-vertex monophonic set, the vertex v lies on a monophonic path joining two elements, say, $x, y \in V(S)$. Since v is an internal vertex of a monophonic path $x-y, v$ is not an extreme vertex of G, which is a contradiction. Hence $e_{i} \in S$ for some $i(1 \leq i \leq k)$.

Corollary: 2.5 Every end-edge of a connected graph G belongs to every edge-to-vertex monophonic set of G.
Proof: This follows from Theorem 2.4.
Theorem: 2.6 Let G be a connected graph with cut-vertices and S an edge-to-vertex monophonic set of G. Then every branch of G at v contains an element of S.

J. John \& K. Uma Samundesvari*/ THE EDGE -TO-VERTEX MONOPHONIC NUMBER OF A GRAPH / IJMA- 3(2), Feb.-2012, Page: 722-728

Proof: Assume that there is a branch B of G at a cut-vertex v such that B contains no element of S. Then by Corollary $2.5, B$ does not contain any end-edge of G. Hence it follows that no vertex of B is an end vertex of G. Let u be any vertex of B such that $u \neq v$ (such a vertex exists since $|V(B)| \geq 2$). Then $u \notin V(S)$ and so u lies on a $e-f$ monophonic path $P: u_{1}, u_{2}, \ldots, u, \ldots, u_{t}$, where u_{1} is an end of e and u_{t} is an end of f with $e, f \in S$. Since v is a cut-vertex of G, the $u_{1}-u$ and $u-u_{t}$ sub paths of P both contain v and so P is not a path, which is a contradiction. Hence every branch of G contains an element of S.

Corollary: 2.7 Let G be a connected graph with cut-edges and S an edge-to-vertex monophonic set of G. Then for any cut-edge e of G, which is not an end-edge, each of the two component of $G-e$ contains an element of S.

Proof: Let $e=u v$. Let G_{1} and G_{2} be the two component of $G-e$ such that $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. Since u and v are cut-vertices of G, it follows that G_{1} contains at least one branch at u and G_{2} contains at least one branch at v. Hence it follows from Theorem 2.6 that each of G_{1} and G_{2} contains an element of S.

Theorem 2.8 Let G be a connected graph and S be a $m_{e v}$-set of G. Then no cut edge of G which is not an end-edge of G belongs to S.

Proof: Let S be a $m_{e v}$ - set of G. Suppose that $e=u v$ be a cut edge of G which is not an end-edge of G such that $e \in S$. Let G_{1} and G_{2} be the two component of $G-e . \quad$ Let $S^{\prime}=S-\{u v\}$. We claim that S^{\prime} is an edge-to-vertex monophonic set of G. By Corollary 2.7, G_{1} contains an edge $x y$ and G_{2} contains an edge $x^{\prime} y^{\prime}$, where $x y, x^{\prime} y^{\prime} \in S$. Let z be any vertex of G. Assume without loss of generality that z belongs to G_{1}. Since $u v$ is a cut edge of G, every path joining a vertex of G_{1} with a vertex of G_{2} contains the edge $u v$. Suppose that z is incident with $u v$ or the edge $x y$ of S or that lies on a monophonic path joining $x y$ and $u v$. If z is incident with $u v$, then $z=u$. Let $P: y, y_{1}, y_{2}, \ldots, z=u$ be a $x y-u$ monophonic path. Let $Q: v, v_{1}, v_{2}, \ldots, y^{\prime}$ be a $v-x^{\prime} y^{\prime}$ monophonic path. Then, it is clear that $P \cup\{u v\} \cup Q$ is a $x y-x$ ' y^{\prime} monophonic path. Thus z lies on the $x y-x y^{\prime} y$ monophonic path. If z is incident with $x y$, then there is nothing to prove. If z lies on a $x y-u v$ monophonic path, say, $y, y_{1}, y_{2} \ldots z \ldots u$, then let $v, v_{1}, v_{2} \ldots y^{\prime}$ be $v-x^{\prime} y^{\prime}$ monophonic path. Then clearly $y, y_{1}, y_{2} \ldots z \ldots u, v, v_{1}, v_{2} \ldots y^{\prime}$ is a $x y-x^{\prime} y^{\prime}$ monophonic path. Thus z lies on a monophonic path joining a pair of edges of S^{\prime}. Thus we have proved that a vertex that is incident with $u v$ or an edge of S or that lies on a monophonic path joining $x y$ and $u v$ of S also is incident with an edge of S^{\prime} or lies on a monophonic path joining a pair of edges of S^{\prime}. Hence it follows that S^{\prime} is an edge-to-vertex monophonic set such that $\left|S^{\prime}\right|=|S|-1$, which is a contradiction to S a $m_{e v}{ }^{-}$set of G. Hence the theorem follows.

In the following, we determine edge - to- vertex monophonic number of some standard graphs.
Corollary: 2.9 For any non-trivial tree T with k end-vertices, $m_{e r}(T)=k$ and the set of all end-edges of T is the unique edge-to-vertex monophonic set of T.

Proof: This follows from Corollary 2.5 and Theorem 2.8.
Theorem: 2.10 For the cycle $C_{p}(p \geq 4), m_{e v}\left(C_{p}\right)=2$
Proof: Let e, f be two independent edges of G. Then $S=\{e, f\}$ is an edge to vertex monophonic set of G so that $m_{e v}\left(C_{p}\right)=2$.

Theorem: 2.11 For the complete graph $K_{p}(p \geq 4)$ with p even, $m_{e v}\left(K_{p}\right)=p / 2$.
Proof: Let S be any set of $p / 2$ independent edges of K_{p}. Since each vertex of K_{p} is incident with an edge of S, it follows that $m_{e v}(G) \leq p / 2$. If $m_{e v}(G)<p / 2$, then there exists an edge-to-vertex monophonic set S^{\prime} of K_{p} such that $\left|S^{\prime}\right|<p / 2$. Therefore, there exists at least one vertex v of K_{p} such that v is not incident with any edge of S^{\prime}. Hence v is neither incident with any edge of S^{\prime} nor lies on a monophonic path of S^{\prime} and so S^{\prime} is not an edge-to-vertex monophonic set of G, which is a contradiction. Thus S is an edge-to-vertex monophonic basis of K_{p}. Hence $m_{e v}\left(K_{p}\right)=p / 2$

Theorem: 2.12 For the complete graph $G=K_{p}(p \geq 5)$ with p odd, $m_{e v}(G)=\frac{p+1}{2}$.
Proof: Let M consist of any set of $\frac{p-3}{2}$ independent edges of K_{p} and M^{\prime} consist of 2 adjacent edges of K_{p}, each of which is independent with the edges of M. Let $S=M \cup M^{\prime}$. Since each vertex of K_{p} is incident with an element of S, it follows that S is an edge-to-vertex monophonic set of G so that $m_{e v}(G) \leq \frac{p-3}{2}+2=\frac{p+1}{2}$.

J. John \& K. Uma Samundesvari*/ THE EDGE -TO-VERTEX MONOPHONIC NUMBER OF A GRAPH / IJMA- 3(2), Feb.-2012,

If $m_{e v}(G)<\frac{p+1}{2}$, then there exists an edge-to-vertex monophonic set S^{\prime} of K_{p} such that $\left|S^{\prime}\right|<\frac{p+1}{2}$. Therefore, there exists at least one vertex v of K_{p} such that v is not incident with any edge of S^{\prime}. Hence the vertex v is neither incident with any edge of S^{\prime} nor lies on a monophonic path of S^{\prime} and so S^{\prime} is not an edge-to-vertex monophonic set of G, which is a contradiction. Hence $m_{e v}(G)=\frac{p+1}{2}$.

Theorem: 2.13 For the complete bipartite graph $G=K_{m, n}(2 \leq m \leq n), m_{e v}(G)=2$.
Proof: Let $X=\left\{x_{1}, x_{2} \ldots x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2} \ldots y_{n}\right\}$ be a bipartition of G. Let $S=\{e, f\}$, where $e \neq f$ and $e=x_{i} y_{j}$ and $f=x_{k} y_{l}(1 \leq j, l \leq n, m, 1 \leq j, k \leq n) \quad i \neq k$ and $j \neq l$. Let x be a vertex of G. If $x \in Y$, then x lies on the monophonic path $x_{i}-x_{k}$. If $x \in X$, then x lies on the monophonic path $y_{j}-y_{l}$.Hence S is an edge-to- vertex monophonic set of G so that $m_{e v}(G)=2$.

Theorem: 2.14 Let G be a connected unicyclic graph with girth greater than three. Then $\operatorname{mev}(G)$ is either k or $k+1$, where k is the number of end- vertices of G.

Proof: Let C be the unicycle in G such that $|C| \geq 4$. Let W be the set of end edges of G. If $V(C)$ contain at least three cut- vertices of G, then W is an edge-to-vertex monophonic set of G and by Corollary 2.5 that $\mathrm{m}_{e v}(G)=k$. If $V(C)$ contains exactly two cut -vertices of G, say, u, v, and if u and v are not adjacent, then W is an edge-to-vertex monophonic set of G and by Corollary 2.5 that $m_{e v}(G)=k$. If u and v are adjacent, then W is not an edge-to-vertex monophonic set of G and so by Corollary $2.5, m_{e v}(G) \geq k+1$. Let $x \in V(C)$ such that $x v \in E(C)$ and $x \neq u$. Then $W \cup\{x v\}$ is an edge-to-vertex monophonic set of G so that $m_{e v}(G)=k+1$. If $V(C)$ contains one cut vertex of G, say v, then W is not an edge-to-vertex monophonic set of G and so by Corollary $2.5, \operatorname{mev}(G) \geq k+1$. Since $|C| \geq 4$, there exits $x \in V(C)$ such that $d(x, v) \geq 2$. Let $y \in V(C)$ such that $x y \in E(C)$ and $y \neq v$. Then $S=W \cup\{x y\}$ is an edge-to-vertex monophonic set of G so that $\operatorname{mev}(G)=k+1$.

3. SOME RESULTS ON EDGE-TO-VERTEX MONOPHONIC NUMBER OF A GRAPH

Theorem: 3.1 Let G be a connected graph. Then $2 \leq m_{e v}(G) \leq g_{e v}(G) \leq \beta^{\prime}(G) \leq q$.
Proof: An edge-to-vertex monophonic needs at least two edges and so $m_{e v}(G) \geq 2$. Since every edge-to-vertex geodesic set of G is an edge-to-vertex monophonic set of G and so $m_{e v} \leq g_{e v}(G)$. Also every edge cover of G is an edge -to-vertex geodesic set of G. We have $g_{e v}(G) \leq \beta^{\prime}(G)$. Since $E(G)$ is the edge cover of G, we have $\beta^{\prime}(G) \leq q$. Thus $2 \leq m_{e v}(G) \leq$ $g_{e v}(G) \leq \beta^{\prime}(G) \leq q$.

Remark: 3.2 The set of two end-edges of a path P of length at least two is its unique edge-to-vertex monophonic set so that $m_{e v}(P)=2$. For the star $K_{1},{ }_{q}(q \geq 2)$, it is clear that the set of all edges is the unique edge-to-vertex monophonic number set so that $m_{e v}(G)=q$. Thus the star $K_{1}, q(q \geq 2)$ has the largest possible edge-to-vertex monophonic number q and the paths of length at least 2 have the smallest edge-to-vertex monophonic.

Theorem: 3.3. Let G be a connected graph. Then $m(G) \leq 2 m_{e v}(G)$.
Proof: Let S be an edge - to - vertex monophonic set of G. Since every vertex of G lies on a monophonic path between two vertices in $V(S)$, it follows that $V(S)$ is a monophonic set of G and so $m(G) \leq|V(S)| \leq 2|E(S)|=2 m_{e v}(G)$. Thus $m(G) \leq 2 m_{e r}(G)$.

Theorem: 3.4 Let G be a connected graph. If $d(e, f)=0$ or 1 for every $e, f \in E(G)$. Then $m_{e v}(G)=g_{e v}(G)=\beta^{\prime}(G)$
Proof: Let S be an edge-to-vertex monophonic set of G. We show that S is an edge covering of G. Suppose that S is not an edge covering of G. Then there exists at least one vertex $v \in V(G)$ such that $v \notin V(S)$. Then v lies on a $e-f$ monophonic path, where $e, f \in S$. Since v is an internal vertex of the $e-f$ monophonic path, it follows that
$d(e, f) \geq 2$, which is a contradiction. Therefore S is an edge cover of G so that $m_{e r}(G)=\beta^{\prime}(G)$. Now it follows from Theorem 3.1 that $g_{e v}(G)=\beta^{\prime}(G)$. Thus $m_{e v}(G)=g_{e v}(G)=\beta^{\prime}(G)$.

Theorem: 3.5 The converse of the theorem 3.4 is not true. For the graph given in Figure 3.1, $m_{e v}(G)=g_{e v}(G)=\beta^{\prime}(G)$ $=6$. However $d(e, f)=2$.

J. John \& K. Uma Samundesvari*/ THE EDGE -TO-VERTEX MONOPHONIC NUMBER OF A GRAPH / IJMA- 3(2), Feb.-2012, Page: 722-728

Figure: 3.1
Theorem: 3.6 Let G be a connected graph without extreme vertices. Then $m_{e v}(G) \leq q-\Delta(G)+1$.
Proof: Let x be a vertex of G such that $\operatorname{deg}_{G}(x)=\Delta(G)$ and $N(x)=\left\{y_{1}, y_{2}, \ldots, y_{\Delta}\right\}$. Since x is not an extreme vertex of G, $x y_{i}(1 \leq i \leq \Delta)$ is not an extreme edge of G. Now $S=E(G)-\left\{x y_{2}, x y_{3}, \ldots, x y_{\Delta}\right\}$ is an edge - to - vertex monophonic set of G so that $m_{e v}(G) \leq q-\Delta(G)+1$.

Theorem: 3.7 Let G be a connected non- complete graph and U is a minimum cutest of G such that each component of $G-U$ has at least one edge. Then $m_{e v}(G) \leq q-m k(G)$, where m is the number of component of $G-U$.

Proof: Suppose G is non- complete, it is clear that $1 \leq k(G) \leq p-2$. Let $U=\left\{u_{1}, u_{2} \ldots u_{k}\right\}$ be a minimum cutest of G. Let $G_{1}, G_{2}, \ldots, G_{m}(m \geq 2)$ be the components of $G-U$. Then every vertex $u_{\mathrm{i}}(1 \leq i \leq k)$ is adjacent to at least one vertex of G_{j}, for every $j(1 \leq j \leq m)$. Let $x_{i j}$ be a vertex of $G_{j}(1 \leq i \leq k)(1 \leq j \leq m)$ which is adjacent to $u_{\mathrm{i}}(1 \leq i \leq k)$. Then $S=E(G)-\left\{u_{1} x_{11}, u_{1} x_{12}, \ldots, u_{1 m}, u_{2} x_{21}, u_{2} x_{22}, \ldots, u_{2} x_{2 m,}, u_{k} x_{k 1}, u_{k} x_{k 2, \ldots,}, u_{k} x_{k m}\right\}$ is an edge - to - vertex monophonic set of G so that $m_{e v}(G) \leq q-m k(G)$.

The following Theorems 3.8 and 3.9 characterize graphs for which $m_{e v}(G)=q$ and $m_{e v}(G)=q-1$ respectively.
Theorem: 3.8 For a connected graph $G, m_{e v}(G)=q$ if and only if $g_{e v}(G)=q$.
Proof: Let $m_{e v}(G)=q$. Then by Theorem 3.1, $g_{e v}(G)=q$. Conversely, let $g_{e v}(G)=q$. Then by Theorem $1.2, G$ is a star.
Now it follows from Corollary 2.9 that $m_{e v}(G)=q$.
Theorem: 3.9 For a connected graph G with $q \geq 3, m_{e v}(G)=q-1$ if and only if $g_{e v}(G)=q-1$.
Proof: Let $m_{e v}(G)=q-1$. Then by Theorem 3.1, $g_{e v}(G)=q$ or $q-1$. If $g_{e v}(G)=q$, then by Theorem $1.2, G$ is a star. But by Corollary 2.9, $m_{e v}(G)=q$, which is a contradiction. Therefore $g_{e v}(G)=q-1$.Conversely, let $g_{e v}(G)=q$-1.Then by Theorem 1.3, G is either C_{3} or a double star. If G is C_{3}, then $m_{e v}(G)=2=q-1$. If G is a double star, then by Corollary 2.9 that $m_{e v}(G)=q-1$. Hence the theorem.

4. EDGE - TO - VERTEX MONOPHONIC NUMBER AND MONOPHONIC DIAMETER OF A GRAPH

Theorem: 4.1 For a connected graph G with $q \geq 2, m_{e v}(G) \leq q-d_{m}+2$, where d_{m} is the monophonic diameter of G.
Proof: Let u and v be vertices of G for which $d_{m}(u, v)=d_{m}$, where d_{m} is the monophonic diameter of G and let $P: u=$ $v_{0}, v_{1}, v_{2}, \ldots, v_{d m}=v$ be a $u-v$ path of length d_{m}. Let $e_{i}=v_{i-1} v_{i}\left(1 \leq i \leq d_{m}\right)$. Let $S=E(G)-\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{d m-2} v_{d m-1}\right\}$. Let x be any vertex of G. If $x=v_{i}\left(1 \leq i \leq d_{m}-1\right)$, then x lies on the $e_{1}-e_{d m}$ monophonic path $P_{1}: v_{1}, v_{2} \ldots v_{d m-1}$.
If $x \neq v_{i}\left(1 \leq i \leq d_{m}-1\right)$, then x is incident with an edge of S. Therefore, S is an edge-to-vertex monophonic set of G. Consequently, $m_{e v}(G) \leq|S|=q-d_{m}+2$.

Remark: 4.2 The bound in Theorem 4.1 is sharp. For the $\operatorname{star} G=K_{1, q}(q \geq 2), d_{\mathrm{m}}=2$ and $m_{e v}(G)=q$, by Corollary 2.9, so that $m_{e r}(G)=q-d_{m}+2$.

Theorem: 4.3 Let G be a connected graph without extreme vertices. Then $m_{e v}(G) \leq q-d_{m}$, where d_{m} is the monophonic diameter of G.

Proof: Let u and v be vertices of G for which $d_{m}(u, v)=d_{m}$, where d_{m} is the monophonic diameter of G and let $P: u=v_{0}, v_{1}, v_{2}, \ldots, v_{d m}=v$ be a $u-v$ monophonic path of length d_{m}. Let $e_{i}=v_{i-1} v_{i}\left(1 \leq i \leq d_{m}\right)$.

J. John \& K. Uma Samundesvari*/ THE EDGE -TO-VERTEX MONOPHONIC NUMBER OF A GRAPH / IJMA- 3(2), Feb.-2012,

Let $S=E(G)-\left\{e_{2}, e_{3}, \ldots, e_{d m-1}\right\}-\{e, f\}$ where $e=v_{0} y$ and $f=v_{d m} z$, where $y \neq v_{1}$ and $z \neq v_{d m-1}$. Let x be any vertex of G. If $x=v_{i}\left(1 \leq i \leq d_{m}-1\right)$, then x lies on the $e_{1}-e_{d m}$ monophonic path $P_{1}: v_{1}, v_{2}, \ldots, v_{d m-1}$. If $x \neq v_{i}\left(1 \leq i \leq d_{m}-1\right)$, then x $\in V(S)$. Therefore, S is an edge-to-vertex monophonic set of G. Consequently, $m_{e v}(G) \leq|S|=q-d_{m}$.

Theorem: 4.4 For any y non-trivial tree T with $q \geq 2, m_{\mathrm{ev}}(T)=q-d_{m}+2$ if and only if T is a caterpillar.
Proof: Let $P: v_{0}, v_{1}, v_{2}, \ldots, v_{d m-1}, v_{d m}=v$ be a diametral path of length d_{m}. Let $e_{i}=v_{i-1} v_{i}\left(1 \leq i \leq d_{m}\right)$ be the edges of the diametral path P. Let k be the number of end-edges of T and l be the number of internal edges of T other than e_{i} ($2 \leq i \leq$ $\left.d_{m}-1\right)$. Then $d_{m}-2+l+k=q$. By Corollary 2.9, $m_{e v}(T)=k$ and so $m_{e v}(T)=q-d_{m}+2-l$.

Hence $m_{e v}(T)=q-d_{m}+2$ if and only if $l=0$, if and only if all internal vertices of T lie on the diametral path P, if and only if T is a caterpillar.

For every connected graph G, rad $G \leq \operatorname{diam} G \leq 2 \operatorname{rad} G$. Ostrand[9] showed that every two positive integers a and b with $a \leq b \leq 2 a$ are realizable as the radius and diameter, respectively, of some connected graphs. Now, Ostrand's theorem can be extended so that the edge - to - vertex monophonic number can also be prescribed.

Theorem: 4.5 For positive integers r_{m}, d_{m} and $l \geq 2$ with $r_{m}<d_{m} \leq 2 r_{m}$, there exists a connected graph G with $\operatorname{rad}_{m} G$ $=r_{m}, \operatorname{diam}_{m} G=d_{m}$ and $m_{e r}(G)=l$.

Proof: When $r_{m}=1$, we let $G=K_{1, l}$. Then the result follows from Corollary 2.9.
Let $r_{m} \geq 2$. Let $C_{r+2}: v_{1}, v_{2}, \ldots, v_{r+2}$ be a cycle of length $r+2$ and let $P_{d m-r+1}: u_{0}, u_{1}, u_{2}, \ldots, u_{d m}-r$ be a path of length $d_{m}-r_{m}+1$. Let H be a graph obtained from C_{r+2} and $P_{d m-r+1}$ by identifying v_{1} in C_{r+2} and u_{0} in $P_{d m-r+1}$. Now add $l-2$ new vertices $w_{1}, w_{2}, \ldots, w_{l-2}$ to H and join each $w_{i}(1 \leq i \leq l-2)$ to the vertex $u_{d m-r-1}$ and obtain the graph G of Figure 4.1.Then $\operatorname{rad}_{m} G=r_{m}, \operatorname{diam}_{m} G=d_{m}$.

Figure: 4.1
Let $S=\left\{u_{d m-r-1} w_{1}, u_{d m-r-1} w_{2}, \ldots, u_{d m-r-1} w_{l-2}, u_{d m-r-1} u_{d m-r}\right\}$ be the set of all end-edges of G. By Corollary 2.5, S is contained in every edge - to - vertex monophonic set of G. It is clear that S is not an edge - to - vertex monophonic set of G. However, the set $S \cup\{e\}$, where $e \in\left\{v_{2} v_{3}, v_{3} v_{4}, \ldots, v_{r} v_{r+1}, v_{r+1} v_{r+2}\right\}$ is an edge - to - vertex monophonic set of G so that $m_{e v}(G)=l-1+1=l$.

5. REALIZATION THEOREM

Theorem: 5.1 For every integers a, b and c with $2 \leq a \leq b \leq c$, and $c \geq 2 b-a+1$, there exists a connected graph G such that $m_{e v}(G)=a, g_{e v}(G)=b$ and $\beta^{\prime}(G)=c$.

Proof: Let $P_{3}: y_{1}, y_{2}, y_{3}$ be a path of order 3 . For each integer i with $1 \leq i \leq b-a$, let $Q_{i}: u_{i}, v_{i}, w_{i}(1 \leq i \leq b-a)$ be a path of order 3. Let H be a graph obtained from P_{3} and $Q_{i}(1 \leq i \leq b-a)$ by joining each $u_{i}(1 \leq i \leq b-a)$ with y_{1} and each $w_{i}(1 \leq i \leq b-a)$ with y_{3} and also adding $a-1$ new vertices $z_{i} \quad(1 \leq i \leq a-1)$ and joining each $z_{i}(1 \leq i \leq a-1)$ with y_{3}. Let G be a graph obtained from H by adding new vertices x, y and $x_{i}(1 \leq i \leq c-2 b+a-1)$, and joining each $x_{i}(1 \leq i \leq c-2 b+a-1)$ with y and y_{1} and x with y. The graph G is given in Figure 5.1. First show that $m_{e v}(G)$ $=a$. Let $S=\left\{y_{3} z_{1}, y_{3} z_{2}, \ldots y_{3} z_{a-1}, x y\right\}$ be the set of all end edges of G. By Corollary 2.9, S is a subset of every edge - to - vertex monophonic set of G and so $m_{e v}(G) \geq a$. Now it is clear that S is an edge - to - vertex monophonic set of G so that $m_{e v}(G)=a$. Next show that $g_{e v}(G)=b$. By Theorem 1.1, S is a subset of every edge - to - vertex geodetic set of G. It is clear that S is not an edge - to - vertex geodetic set of G. Let $H_{i}:\left\{u_{i} v i, v i, w_{i}\right\},(1 \leq i \leq b-a)$. It is easily observed that every edge - to - vertex geodetic set of G contains at least one edge from each $H_{i},(1 \leq i \leq b-$ a) and so $g_{e v}(G) \geq a+b-a=b$. Now $S^{\prime}=S \cup\left\{v_{1} w_{1}, v_{2} w_{2}, v_{3} w_{3}, \ldots v_{b-a} w_{b-a}\right\}$ is an edge - to - vertex geodetic

J. John \& K. Uma Samundesvari*/ THE EDGE -TO-VERTEX MONOPHONIC NUMBER OF A GRAPH / IJMA- 3(2), Feb.-2012,

set of G, so that $g_{e v}(G)=b$. Next show that $\beta^{\prime}(G)=c$. Let Q_{i} : $\left\{\left\{u_{i} v i, v i, w_{i}\right\},\left\{y_{1} u_{i}, v_{i}, w_{i}\right\},\left\{y_{3} w_{i}, u_{i} v i\right\}\right\}(1 \leq i \leq b-a)$ and $F_{i}:\left\{y_{1} x_{i}, y x_{i}\right\},(1 \leq i \leq c-2 b+a-1)$ and $M=\left\{y_{1} y_{2}, y_{2} y_{3}\right\}$. We have to show that a set W of edges is a minimum edge covering of G if and only if W has the following five properties.(1) S is a subset of W, (2) W contains exactly one element of each $Q_{i}(1 \leq i \leq b-a)$, (3) W contains exactly one element of M, (4) W contains exactly one element each $F_{\mathrm{i}},(1 \leq i \leq c-2 b+a-1)$, (5) $V(M) \cap V\left(y_{1} x_{\mathrm{i}}\right) \neq x_{\mathrm{i}}$ and $V(M) \cap V\left(y x_{\mathrm{i}}\right) \neq x_{\mathrm{i}}$. Obviously, the properties (1) and (3) are true. Suppose that W does not contain an element of $Q_{\mathrm{i}},(1 \leq i \leq b-a)$. Then the vertices $u_{\mathrm{i}}, v_{\mathrm{i}}$ and w_{i} does not lie on the edge covering of G.Therefore the property (2) holds good. Suppose that W does not contain an element of $F_{\mathrm{i}}(1 \leq i \leq c-2 b+a-1)$. Then the vertices $x_{i}(1 \leq i \leq \mathrm{c}-2 b+a-1)$ does not lie on the edge covering of G, which is a contradiction .Therefore W has the property (4). Suppose that property (5) is not satisfied. Then $\beta^{\prime}(\mathrm{G})$ is not a minimum edge covering of G. Therefore from the above said five conditions, it is clear that $\beta^{\prime}(G) \geq a+2 b-2 a+$ $c-2 b+a-1+1=c$. Now $S^{\prime \prime}=S \cup\left\{u_{1} v_{1}, u_{2} v_{2}, u_{3} v_{3}, \ldots, u_{b-a} v_{b-a}, v_{1} w_{1}, v_{2} w_{2}, \ldots, v_{\mathrm{b}-\mathrm{a}} w_{\mathrm{b}-\mathrm{a}}, y_{1} y_{2}, y_{1} x_{1}\right.$, $\left.y_{1} x_{2}, \ldots, y_{1} x_{c-2 b+a-1}\right\}$ is an edge cover of G so that $\beta^{\prime}(G)=c$.

Figure: 5.1

REFERENCES

[1] F. Buckley and F. Harary, Distance in Graphs, Addition- Wesley, Redwood City, CA, 1990.
[2] Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the Steiner, geodetic and hull number of graphs, Discrete Mathematics 293 (2005) 139-154.
[3] Esamel M. paluga, Sergio R. Canoy, Jr., Monophonic numbers of the join and Composition of connected graphs, Discrete Mathematics 307 (2007) 1146-1154.
[4] J. John and S. Panchali, The Upper Monophonic Number of a Graph,International Journal of Mathematical Combinatorics 4(2010), 46-52.
[5] Mitre C. Dourado, Fabio protti and Jayme. L. Szwarcfiter, Algorithmic Aspects of Monophonic Convexity, Electronic Notes in Discrete Mathematics 30(2008) 177-182.
[6] A. P. Santhakumaran and J. John, The Edge - to- Vertex Geodetic Number of a Graph -Serdica Mathematical Journal (Accepted).
[7] A. P. Santhakumaran and J. John, On the Edge - to- Vertex Geodetic Number of a Graph, Miskolc Mathematical Notes (Accepted).
[8] A. P. Santhakumaran and P.Titus, Monophonic Distance in Graphs, Discrete Algorithms and Applications 3(2011) 159-169.
[9] P. A. Ostrand, Graphs with specified radius and diameter, Discrete Mathematics 4(1973), pp.71-75.

[^0]: * Corresponding author: K. Uma Samundesvari*,* E-mail: kus_krishna@yahoo.co.in

