International Journal of Mathematical Archive-3(2), 2012, Page: 722-728 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

THE EDGE –TO–VERTEX MONOPHONIC NUMBER OF A GRAPH

J. John

Department of Mathematics, Government college of Engineering, Tirunelveli, 627007, India E-mail: johnramesh1971@yahoo.co.in

K. Uma Samundesvari*

Department of Mathematics, Noorul Islam centre for Higher Education, Kumaracoil, 629175, India E-mail: kus_krishna@yahoo.co.in

(Received on: 10-02-12; Accepted on: 28-02-12)

ABSTRACT

For a connected graph G = (V, E), a monophonic set $S \subseteq E$ is called an edge - to - vertex monophonic set if every vertex of G lies on a monophonic path between two vertices in V(S). The edge - to - vertex monophonic number $m_{ev}(G)$ of G is the minimum cardinality of its edge - to - vertex monophonic sets. The edge - to - vertex monophonic number of certain classes of graphs is determined and some of its general properties are studied. Connected graphs of size $q \ge 3$ with edge - to - vertex monophonic number q and q-1 are characterized. It is shown that for positive integers r_m , d_m and $l \ge 2$ with $r_m < d_m \le 2 r_m$, there exists a connected graph G with $rad_m G = r_m$, $diam_m G = d_m$ and $m_{ev}(G) = l$ and also shown that for every integers a, b and c with $2 \le a \le b \le c$, and $c \ge 2b - a + 1$, there exists a connected graph G such that $m_{ev}(G) = a$, $g_{ev}(G) = b$ and $\beta'(G) = c$, where $g_{ev}(G)$ is edge - to - vertex geodetic number and $\beta'(G)$ is edge covering number of G.

Keywords: Monophonic path, Monophonic number, Edge - to - vertex monophonic number, Geodesic, Edge - to - vertex geodetic number.

AMS subject classification: 05C38.

1. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. We consider connected graphs with at least three vertices. For basic definitions and terminologies we refer to [1]. An *edge covering* of G is a subset $K \subseteq E(G)$ such that each vertex of G is end of some edge in K. The number of edges in a minimum edge covering of G, denoted by $\beta'(G)$ is the edge covering number of G. For two vertices u and v in a connected graph G, the distance d(u, v) is the length of a shortest u - v path in G. An u - v path of length d(u, v) is called an u - v geodesic. For a vertex v of G, the eccentricity e(v) is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices is the radius, rad G and the maximum eccentricity is the *diameter*, *diam* G of G. For subsets A and B of V (G), the *distance* d(A, B) is defined as $d(A, B) = \min\{d(x, y) : x \in A, y \in B\}$. An u - v path of length d(A, B) is called an A - B geodesic joining the sets A, B, where $u \in A$ and $v \in B$. A vertex x is said to *lie* on an A - B geodesic if x is a vertex of an A - B geodesic. For A = (u, v)v) and B = (z, w) with uv and zw edges, we write an A - B geodesic as uv - zw geodesic and d(A, B) as d(uv, zw). A set $S \subseteq E$ is called an *edge-to-vertex geodetic set* if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The edge-to-vertex geodetic number $g_{ev}(G)$ of G is the minimum cardinality of its edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality $g_{ev}(G)$ is an edge-to-vertex geodetic basis of G. The edge-to-vertex geodetic number of a graph is introduced and studied in [6,7]. The maximum degree of G, denoted by $\Delta(G)$, is given by $\Delta(G) = max\{deg_G(v) : v \in V(G)\}$. $N(v) = \{u \in V(G): uv \in E(G)\}$ is called the neighborhood of the vertex v in G. A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. An edge e of a graph G is called an *extreme edge* of G, if one of its ends is an extreme vertex of G. A chord of a path $u_0, u_1, u_2, \dots, u_n$ is an edge $u_i u_j$, with $j \ge i + 2$. An u - v path is called a monophonic path if it is a chord less path. For two vertices u and v in a connected graph G, the monophonic distance $d_m(u, v)$ is the length of the longest *u*-*v* monophonic path in *G*. An u-v monophonic path of length $d_m(u, v)$ is called an u-v monophonic. For a vertex v of G, the monophonic eccentricity $e_m(v)$ is the monophonic distance between v and a vertex farthest from v. The monophonic eccentricity among the vertices is the *monophonic radius*, $rad_m(G)$ and the maximum monophonic eccentricity is the monophonic diameter, $diam_m(G)$. For subsets A and B of V(G), the monophonic distance $d_m(A, B)$ is

Corresponding author: K. Uma Samundesvari, *E-mail: kus_krishna@yahoo.co.in International Journal of Mathematical Archive- 3 (2), Feb. – 2012

defined as $d_m(A, B) = max\{d_m(x, y) : x \in A, y \in B\}$. An u - v monophonic path of length $d_m(A, B)$ is called an A - Bmonophonic joining the sets A, B where $u \in A$ and $v \in B$. A vertex x is said to *lie* on an A - B monophonic if x is a vertex of an A - B monophonic. For A = (u, v) and B = (z, w) with uv and zw edges, we write an A - B monophonic as uv - zw monophonic and $d_m(A, B)$ as $d_m(uv, zw)$. The monophonic distance is studied in [8]. A monophonic set of G is a set $M \subseteq V$ such that every vertex of G lies on a monophonic path joining some pair of vertices in M. The monophonic number m(G) of G is the minimum order of its monophonic number of a graph is studied in [2, 3, 4, 5]. For a cut – vertex v in a connected graph G and a component H of G-v, the sub graph H and the vertex v together with all edges joining vand V(H) is called a branch of G at v. An end-block of G is a block containing exactly one cut-vertex of G. Thus every end-block is a branch of G. Girth is the length of the smallest cycle in G. A double star is a tree with diameter three. A caterpillar is a tree of order 3 or more, for which the removal of all end-vertices leaves a path. The following theorems are used in sequel.

Theorem: 1.1. [5] Every end-edge of a connected graph G belongs to every edge-to-vertex geodetic set of G.

Theorem: 1.2. [5] For a connected graph G, $g_{ev}(G) = q$ if and only if G is a star.

Theorem: 1.3. [5] For a connected graph G with $q \ge 3$, $g_{ev}(G) = q - 1$ if and only if G is either C_3 or a double star.

2. EDGE-TO-VERTEX MONOPHONIC NUMBER OF A GRAPH G

Definition: 2.1 Let $e, f \in E(G)$. The *e*-*f* monophonic path is an u - v monophonic path , where *u* is one end of *e* and v is one end of *f*. The vertex *x* is said to lie on a e - f monophonic path if *x* is a vertex of e - f monophonic path.

Definition: 2.2 Let G = (V, E) be a connected graph with at least three vertices. A set $S \subseteq E$ is called an *edge-to-vertex* monophonic set if every vertex of G lies on a monophonic path between two vertices in V(S). The *edge-to-vertex* monophonic number $m_{ev}(G)$ of G is the minimum cardinality of its edge-to-vertex monophonic sets and any edge-to-vertex monophonic set of cardinality $m_{ev}(G)$ is an m_{ev} – set of G.

Example: 2.3 For the graph *G* given in Figure 2.1 with $e = v_1 v_6$ and $f = v_3 v_4$, the e - f monophonic paths are $P_1 : v_1, v_2, v_3, P_2 : v_6, v_1, v_2, v_3, P_3 : v_6, v_7, v_8, v_3, P_4 : v_6, v_5, v_4, P_5 : v_6, v_7, v_8, v_3, v_4, P_6 : v_6, v_5, v_4, v_3$, and $P_7 : v_6, v_1, v_4$. Since the vertices v_2, v_5, v_7 and v_8 lies on the $v_1 v_6 - v_3 v_4$ monophonic path, $S = \{e, f\}$ is a m_{ev} – set of *G* and so $m_{ev}(G) = 2$

Theorem: 2.4 If v is an extreme vertex of a connected graph G, then every edge-to-vertex monophonic set contains at least one extreme edge that is incident with v.

Proof: Let *v* be an extreme vertex of *G*. Let $e_1, e_2, ..., e_k$ be the edges incident with *v*. Let *S* be any edge-to-vertex monophonic set of *G*. We claim that $e_i \in S$ for some $i(1 \le i \le k)$. Otherwise, $e_i \notin S$ for any $i(1 \le i \le k)$. Since *S* is an edge-to-vertex monophonic set, the vertex *v* lies on a monophonic path joining two elements, say, $x, y \in V(S)$. Since *v* is an internal vertex of a monophonic path *x*-*y*, *v* is not an extreme vertex of *G*, which is a contradiction. Hence $e_i \in S$ for some $i(1 \le i \le k)$.

Corollary: 2.5 Every end-edge of a connected graph *G* belongs to every edge-to-vertex monophonic set of *G*.

Proof: This follows from Theorem 2.4.

Theorem: 2.6 Let G be a connected graph with cut-vertices and S an edge-to-vertex monophonic set of G. Then every branch of G at v contains an element of S.

Proof: Assume that there is a branch *B* of *G* at a cut-vertex *v* such that *B* contains no element of *S*. Then by Corollary 2.5, *B* does not contain any end-edge of *G*. Hence it follows that no vertex of *B* is an end vertex of *G*. Let *u* be any vertex of *B* such that $u \neq v$ (such a vertex exists since $|V(B)| \geq 2$). Then $u \notin V(S)$ and so *u* lies on a e - f monophonic path $P : u_1, u_2, ..., u_i, ..., u_i$, where u_1 is an end of *e* and u_i is an end of *f* with *e*, $f \in S$. Since *v* is a cut-vertex of *G*, the $u_1 - u$ and $u - u_t$ sub paths of *P* both contain *v* and so *P* is not a path, which is a contradiction. Hence every branch of *G* contains an element of *S*.

Corollary: 2.7 Let *G* be a connected graph with cut-edges and *S* an edge-to-vertex monophonic set of *G*. Then for any cut-edge *e* of *G*, which is not an end-edge, each of the two component of G - e contains an element of *S*.

Proof: Let e = uv. Let G_1 and G_2 be the two component of G - e such that $u \in V(G_1)$ and $v \in V(G_2)$. Since u and v are cut-vertices of G, it follows that G_1 contains at least one branch at u and G_2 contains at least one branch at v. Hence it follows from Theorem 2.6 that each of G_1 and G_2 contains an element of S.

Theorem 2.8 Let G be a connected graph and S be a m_{ev} -set of G. Then no cut edge of G which is not an end-edge of G belongs to S.

Proof: Let *S* be a m_{ev} - set of *G*. Suppose that e = uv be a cut edge of *G* which is not an end-edge of *G* such that $e \in S$. Let G_1 and G_2 be the two component of G - e. Let $S' = S - \{uv\}$. We claim that *S'* is an edge-to-vertex monophonic set of *G*. By Corollary 2.7, G_1 contains an edge xy and G_2 contains an edge x'y', where $xy, x'y' \in S$. Let z be any vertex of *G*. Assume without loss of generality that z belongs to G_1 . Since uv is a cut edge of *G*, every path joining a vertex of G_1 with a vertex of G_2 contains the edge uv. Suppose that z is incident with uv or the edge xy of *S* or that lies on a monophonic path joining xy and uv. If z is incident with uv, then z = u. Let $P : y, y_1, y_2, ..., z = u$ be a xy - umonophonic path. Let $Q : v, v_1, v_2, ..., y'$ be a v - x'y' monophonic path. Then, it is clear that $P \cup \{uv\} \cup Q$ is a xy - x'y' monophonic path. Thus z lies on the xy - x'y' monophonic path. If z is incident with xy, then there is nothing to prove. If z lies on a xy - uv monophonic path, say, $y, y_1, y_2..., z..., u$, then let $v, v_1, v_2..., y'$ be v - x'y' monophonic path. Then clearly $y, y_1, y_2..., z..., u, v, v_1, v_2..., y'$ is a xy - x'y' monophonic path. Thus z lies on a monophonic path joining a pair of edges of S'. Thus we have proved that a vertex that is incident with uv or an edge of S or that lies on a monophonic path joining xy and uv of S also is incident with an edge of S' or lies on a monophonic path joining a pair of edges of S'. Hence it follows that S' is an edge-to-vertex monophonic set such that |S'| = |S| - 1, which is a contradiction to S a m_{ev} - set of G. Hence the theorem follows.

In the following, we determine edge – to- vertex monophonic number of some standard graphs.

Corollary: 2.9 For any non-trivial tree *T* with *k* end-vertices, $m_{ev}(T) = k$ and the set of all end-edges of *T* is the unique edge-to-vertex monophonic set of *T*.

Proof: This follows from Corollary 2.5 and Theorem 2.8.

Theorem: 2.10 For the cycle C_p ($p \ge 4$), $m_{ev}(C_p) = 2$

Proof: Let *e*, *f* be two independent edges of *G*. Then $S = \{e, f\}$ is an edge to vertex monophonic set of *G* so that $m_{ev}(C_p) = 2$.

Theorem: 2.11 For the complete graph $K_p(p \ge 4)$ with p even, $m_{ev}(K_p) = p/2$.

Proof: Let *S* be any set of p/2 independent edges of K_p . Since each vertex of K_p is incident with an edge of *S*, it follows that $m_{ev}(G) \le p/2$. If $m_{ev}(G) < p/2$, then there exists an edge-to-vertex monophonic set *S* ' of K_p such that |S'| < p/2. Therefore, there exists at least one vertex *v* of K_p such that *v* is not incident with any edge of *S* '. Hence *v* is neither incident with any edge of *S* ' nor lies on a monophonic path of *S* ' and so *S* ' is not an edge-to-vertex monophonic set of *G*, which is a contradiction. Thus *S* is an edge-to-vertex monophonic basis of K_p . Hence $m_{ev}(K_p) = p/2$

Theorem: 2.12 For the complete graph $G = K_p(p \ge 5)$ with p odd, $m_{ev}(G) = \frac{p+1}{2}$.

Proof: Let *M* consist of any set of $\frac{p-3}{2}$ independent edges of K_p and *M'* consist of 2 adjacent edges of K_p , each of which is independent with the edges of *M*. Let $S = M \cup M'$. Since each vertex of K_p is incident with an element of *S*, it follows that *S* is an edge-to-vertex monophonic set of *G* so that $m_{ev}(G) \leq \frac{p-3}{2} + 2 = \frac{p+1}{2}$.

If $m_{ev}(G) < \frac{p+1}{2}$, then there exists an edge-to-vertex monophonic set S' of K_p such that $|S'| < \frac{p+1}{2}$. Therefore,

there exists at least one vertex v of K_p such that v is not incident with any edge of S'. Hence the vertex v is neither incident with any edge of S' nor lies on a monophonic path of S' and so S' is not an edge-to-vertex monophonic set of

G, which is a contradiction. Hence $m_{ev}(G) = \frac{p+1}{2}$.

Theorem: 2.13 For the complete bipartite graph $G = K_{m,n}(2 \le m \le n), m_{ev}(G) = 2$.

Proof: Let $X = \{x_1, x_2..., x_m\}$ and $Y = \{y_1, y_2..., y_n\}$ be a bipartition of *G*. Let $S = \{e, f\}$, where $e \neq f$ and $e = x_i y_j$ and $f = x_k y_l$ $(1 \le j, l \le n, m, 1 \le j, k \le n)$ $i \ne k$ and $j \ne l$. Let *x* be a vertex of *G*. If $x \in Y$, then *x* lies on the monophonic path $x_i - x_k$. If $x \in X$, then *x* lies on the monophonic path $y_j - y_l$. Hence *S* is an edge-to- vertex monophonic set of *G* so that $m_{ev}(G) = 2$.

Theorem: 2.14 Let *G* be a connected unicyclic graph with girth greater than three. Then mev(G) is either *k* or k+1, where *k* is the number of end- vertices of *G*.

Proof: Let *C* be the unicycle in *G* such that $|C| \ge 4$. Let *W* be the set of end edges of *G*. If V(C) contain at least three cut-vertices of *G*, then *W* is an edge-to-vertex monophonic set of *G* and by Corollary 2.5 that $m_{ev}(G) = k$. If V(C) contains exactly two cut -vertices of *G*, say, *u*, *v*, and if *u* and *v* are not adjacent, then *W* is an edge-to-vertex monophonic set of *G* and by Corollary 2.5 that $m_{ev}(G) = k$. If *u* and *v* are adjacent, then *W* is not an edge-to-vertex monophonic set of *G* and so by Corollary 2.5, $m_{ev}(G) \ge k + 1$. Let $x \in V(C)$ such that $xv \in E(C)$ and $x \ne u$. Then $W \cup \{xv\}$ is an edge-to-vertex monophonic set of *G* so that $m_{ev}(G) = k + 1$. If V(C) contains one cut vertex of *G*, say *v*,

then W is not an edge-to-vertex monophonic set of G and so by Corollary 2.5, $mev(G) \ge k + 1$. Since $|C| \ge 4$, there exits $x \in V(C)$ such that $d(x, v) \ge 2$. Let $y \in V(C)$ such that $xy \in E(C)$ and $y \ne v$. Then $S = W \cup \{xy\}$ is an edge-to-vertex monophonic set of G so that mev(G) = k + 1.

3. SOME RESULTS ON EDGE-TO-VERTEX MONOPHONIC NUMBER OF A GRAPH

Theorem: 3.1 Let *G* be a connected graph. Then $2 \le m_{ev}(G) \le g_{ev}(G) \le \beta'(G) \le q$.

Proof: An edge-to-vertex monophonic needs at least two edges and so $m_{ev}(G) \ge 2$. Since every edge-to-vertex geodesic set of *G* is an edge-to-vertex monophonic set of *G* and so $m_{ev} \le g_{ev}(G)$. Also every edge cover of *G* is an edge -to-vertex geodesic set of *G*. We have $g_{ev}(G) \le \beta'(G)$. Since E(G) is the edge cover of *G*, we have $\beta'(G) \le q$. Thus $2 \le m_{ev}(G) \le g_{ev}(G) \le \beta'(G) \le q$.

Remark: 3.2 The set of two end-edges of a path *P* of length at least two is its unique edge-to-vertex monophonic set so that $m_{ev}(P) = 2$. For the star K_1 , $_q(q \ge 2)$, it is clear that the set of all edges is the unique edge-to-vertex monophonic number set so that $m_{ev}(G) = q$. Thus the star K_1 , $_q(q \ge 2)$ has the largest possible edge-to-vertex monophonic number *q* and the paths of length at least 2 have the smallest edge-to-vertex monophonic.

Theorem: 3.3. Let *G* be a connected graph. Then $m(G) \leq 2 m_{ev}(G)$.

Proof: Let *S* be an edge – to – vertex monophonic set of *G*. Since every vertex of *G* lies on a monophonic path between two vertices in V(S), it follows that V(S) is a monophonic set of *G* and so $m(G) \le |V(S)| \le 2 |E(S)| = 2 m_{ev}(G)$. Thus $m(G) \le 2 m_{ev}(G)$.

Theorem: 3.4 Let G be a connected graph. If d(e, f) = 0 or 1 for every $e, f \in E(G)$. Then $m_{ev}(G) = g_{ev}(G) = \beta'(G)$

Proof: Let *S* be an edge-to-vertex monophonic set of *G*. We show that *S* is an edge covering of *G*. Suppose that *S* is not an edge covering of *G*. Then there exists at least one vertex $v \in V(G)$ such that $v \notin V(S)$. Then *v* lies on a *e* - *f* monophonic path, where *e*, $f \in S$. Since *v* is an internal vertex of the *e* - *f* monophonic path, it follows that

 $d(e, f) \ge 2$, which is a contradiction. Therefore *S* is an edge cover of *G* so that $m_{ev}(G) = \beta'(G)$. Now it follows from Theorem 3.1 that $g_{ev}(G) = \beta'(G)$. Thus $m_{ev}(G) = g_{ev}(G) = \beta'(G)$.

Theorem: 3.5 The converse of the theorem 3.4 is not true. For the graph given in Figure 3.1, $m_{ev}(G) = g_{ev}(G) = \beta'(G) = 6$. However d(e, f) = 2.

Theorem: 3.6 Let *G* be a connected graph without extreme vertices. Then $m_{ev}(G) \le q - \Delta(G) + 1$.

Proof: Let *x* be a vertex of *G* such that $deg_G(x) = \Delta(G)$ and $N(x) = \{y_1, y_2, \dots, y_A\}$. Since *x* is not an extreme vertex of *G*, xy_i $(1 \le i \le \Delta)$ is not an extreme edge of *G*. Now $S = E(G) - \{xy_2, xy_3, \dots, xy_A\}$ is an edge – to – vertex monophonic set of *G* so that $m_{ev}(G) \le q - \Delta(G) + 1$.

Theorem: 3.7 Let *G* be a connected non- complete graph and *U* is a minimum cutest of *G* such that each component of G - U has at least one edge. Then $m_{ev}(G) \le q - m k(G)$, where *m* is the number of component of G - U.

Proof: Suppose *G* is non- complete, it is clear that $1 \le k(G) \le p - 2$. Let $U = \{u_1, u_2, \dots, u_k\}$ be a minimum cutest of *G*. Let G_i, G_2, \dots, G_m $(m \ge 2)$ be the components of G - U. Then every vertex u_i $(1 \le i \le k)$ is adjacent to at least one vertex of G_j , for every j $(1 \le j \le m)$. Let x_{ij} be a vertex of G_j $(1 \le i \le k)$ $(1 \le j \le m)$ which is adjacent to u_i $(1 \le i \le k)$. Then $S = E(G) - \{u_1x_{11}, u_1x_{12}, \dots, u_{1m}, u_2x_{21}, u_2x_{22}, \dots, u_2x_{2m}, u_k x_{k1}, u_k x_{k2,\dots, n}, u_k x_{km}\}$ is an edge – to – vertex monophonic set of *G* so that $m_{ev}(G) \le q - m k(G)$.

The following Theorems 3.8 and 3.9 characterize graphs for which $m_{ev}(G) = q$ and $m_{ev}(G) = q - 1$ respectively.

Theorem: 3.8 For a connected graph G, $m_{ev}(G) = q$ if and only if $g_{ev}(G) = q$.

Proof: Let $m_{ev}(G) = q$. Then by Theorem 3.1, $g_{ev}(G) = q$. Conversely, let $g_{ev}(G) = q$. Then by Theorem 1.2, G is a star.

Now it follows from Corollary 2.9 that $m_{ev}(G) = q$.

Theorem: 3.9 For a connected graph G with $q \ge 3$, $m_{ev}(G) = q-1$ if and only if $g_{ev}(G) = q-1$.

Proof: Let $m_{ev}(G) = q - 1$. Then by Theorem 3.1, $g_{ev}(G) = q$ or q - 1. If $g_{ev}(G) = q$, then by Theorem 1.2, *G* is a star. But by Corollary 2.9, $m_{ev}(G) = q$, which is a contradiction. Therefore $g_{ev}(G) = q - 1$. Conversely, let $g_{ev}(G) = q - 1$. Then by Theorem 1.3, *G* is either C_3 or a double star. If *G* is C_3 , then $m_{ev}(G) = 2 = q - 1$. If *G* is a double star, then by Corollary 2.9 that $m_{ev}(G) = q - 1$. Hence the theorem.

4. EDGE – TO – VERTEX MONOPHONIC NUMBER AND MONOPHONIC DIAMETER OF A GRAPH

Theorem: 4.1 For a connected graph G with $q \ge 2$, $m_{ev}(G) \le q - d_m + 2$, where d_m is the monophonic diameter of G.

Proof: Let *u* and *v* be vertices of *G* for which $d_m(u, v) = d_m$, where d_m is the monophonic diameter of *G* and let *P* : $u = v_0, v_1, v_2, ..., v_{dm} = v$ be a u - v path of length d_m . Let $e_i = v_{i-1}v_i$ $(1 \le i \le d_m)$. Let $S = E(G) - \{v_1v_2, v_2v_3, ..., v_{dm-2}v_{dm-1}\}$. Let *x* be any vertex of *G*. If $x = v_i$ $(1 \le i \le d_m-1)$, then *x* lies on the $e_1 - e_{dm}$ monophonic path P_1 : $v_1, v_2..., v_{dm-1}$. If $x \ne v_i$ $(1 \le i \le d_m - 1)$, then *x* is incident with an edge of *S*. Therefore, *S* is an edge-to-vertex monophonic set of *G*. Consequently, $m_{ev}(G) \le |S| = q - d_m + 2$.

Remark: 4.2 The bound in Theorem 4.1 is sharp. For the star $G = K_{l,q}(q \ge 2)$, $d_m = 2$ and $m_{ev}(G) = q$, by Corollary 2.9, so that $m_{ev}(G) = q - d_m + 2$.

Theorem: 4.3 Let G be a connected graph without extreme vertices. Then $m_{ev}(G) \leq q - d_m$, where d_m is the monophonic diameter of G.

Proof: Let *u* and *v* be vertices of *G* for which $d_m(u, v) = d_m$, where d_m is the monophonic diameter of *G* and let $P : u = v_0, v_1, v_2, ..., v_{dm} = v$ be a u - v monophonic path of length d_m . Let $e_i = v_{i-1}v_i$ ($1 \le i \le d_m$).

Let $S = E(G) - \{e_2, e_3, \dots, e_{dm-1}\} - \{e, f\}$ where $e = v_0 y$ and $f = v_{dm} z$, where $y \neq v_1$ and $z \neq v_{dm-1}$. Let x be any vertex of G. If $x = v_i$ ($1 \le i \le d_m - 1$), then x lies on the $e_1 - e_{dm}$ monophonic path P_1 : $v_1, v_2, \dots, v_{dm-1}$. If $x \neq v_i$ ($1 \le i \le d_m - 1$), then $x \in V(S)$. Therefore, S is an edge-to-vertex monophonic set of G. Consequently, $m_{ev}(G) \le |S| = q - d_m$.

Theorem: 4.4 For any y non-trivial tree T with $q \ge 2$, $m_{ev}(T) = q - d_m + 2$ if and only if T is a caterpillar.

Proof: Let *P*: $v_0, v_1, v_2, ..., v_{dm-1}, v_{dm} = v$ be a diametral path of length d_m . Let $e_i = v_{i-1} v_i$ $(1 \le i \le d_m)$ be the edges of the diametral path *P*. Let *k* be the number of end-edges of *T* and *l* be the number of internal edges of *T* other than e_i $(2 \le i \le d_m-1)$. Then $d_m-2+l+k=q$. By Corollary 2.9, $m_{ev}(T) = k$ and so $m_{ev}(T) = q - d_m + 2 - l$.

Hence $m_{ev}(T) = q - d_m + 2$ if and only if l = 0, if and only if all internal vertices of T lie on the diametral path P, if and only if T is a caterpillar.

For every connected graph *G*, *rad* $G \le diam \ G \le 2 \ rad \ G$. Ostrand[9] showed that every two positive integers *a* and *b* with $a \le b \le 2a$ are realizable as the radius and diameter , respectively, of some connected graphs. Now, Ostrand's theorem can be extended so that the edge - to - vertex monophonic number can also be prescribed.

Theorem: 4.5 For positive integers r_m , d_m and $l \ge 2$ with $r_m < d_m \le 2$ r_m , there exists a connected graph G with $rad_m G = r_m$, $diam_m G = d_m$ and $m_{ev}(G) = l$.

Proof: When $r_m = 1$, we let $G = K_{1,l}$. Then the result follows from Corollary 2.9.

Let $r_m \ge 2$. Let $C_{r+2}: v_1, v_2, ..., v_{r+2}$ be a cycle of length r + 2 and let $P_{dm-r+1}: u_0, u_1, u_2, ..., u_{dm}$ -r be a path of length $d_m - r_m + 1$. Let H be a graph obtained from C_{r+2} and P_{dm-r+1} by identifying v_1 in C_{r+2} and u_0 in P_{dm-r+1} . Now add l-2 new vertices $w_1, w_2, ..., w_{l-2}$ to H and join each w_i ($1 \le i \le l-2$) to the vertex u_{dm-r-1} and obtain the graph G of Figure 4.1. Then $rad_m G = r_m$, $diam_m G = d_m$.

Let $S = \{u_{dm-r-1} w_1, u_{dm-r-1} w_2, ..., u_{dm-r-1} w_{l-2}, u_{dm-r-1} u_{dm-r}\}$ be the set of all end-edges of *G*. By Corollary 2.5, *S* is contained in every edge - to - vertex monophonic set of *G*. It is clear that *S* is not an edge - to - vertex monophonic set of *G*. However, the set $S \cup \{e\}$, where $e \in \{v_2v_3, v_3v_4, ..., v_rv_{r+1}, v_{r+1}v_{r+2}\}$ is an edge - to - vertex monophonic set of *G* so that $m_{ev}(G) = l - 1 + 1 = l$.

5. REALIZATION THEOREM

Theorem: 5.1 For every integers *a*, *b* and *c* with $2 \le a \le b \le c$, and $c \ge 2b - a + 1$, there exists a connected graph *G* such that $m_{ev}(G) = a$, $g_{ev}(G) = b$ and $\beta'(G) = c$.

Proof: Let P_3 : y_1, y_2, y_3 be a path of order 3. For each integer *i* with $1 \le i \le b - a$, let Q_i : u_i, v_i, w_i $(1 \le i \le b - a)$ be a path of order 3. Let *H* be a graph obtained from P_3 and Q_i $(1 \le i \le b - a)$ by joining each u_i $(1 \le i \le b - a)$ with y_1 and each w_i $(1 \le i \le b - a)$ with y_3 and also adding a - 1 new vertices z_i $(1 \le i \le a - 1)$ and joining each z_i $(1 \le i \le a - 1)$ with y_3 . Let *G* be a graph obtained from *H* by adding new vertices x, y and x_i $(1 \le i \le c - 2b + a - 1)$, and joining each x_i $(1 \le i \le c - 2b + a - 1)$ with y and y_1 and x with y. The graph *G* is given in Figure 5.1. First show that $m_{ev}(G) = a$. Let $S = \{y_3 z_1, y_3 z_2, \ldots, y_3 z_{a-1}, xy\}$ be the set of all end edges of *G*. By Corollary 2.9, *S* is a subset of every edge – to – vertex monophonic set of *G* and so $m_{ev}(G) \ge a$. Now it is clear that *S* is an edge – to – vertex monophonic set of *G* and edge – to – vertex geodetic set of *G*. Let $H_i : \{u_i v_i, v_i, w_i\}, (1 \le i \le b - a)$. It is easily observed that every edge – to – vertex geodetic set of *G* contains at least one edge from each H_i , $(1 \le i \le b - a)$. It is easily observed that every edge – to – vertex geodetic set of *G* contains at least one edge from each H_i , $(1 \le i \le b - a)$. It is easily observed that every edge – to – vertex geodetic set of *G* contains at least one edge from each H_i , $(1 \le i \le b - a)$. And so $g_{ev}(G) \ge a + b - a = b$. Now $S' = S \cup \{v_1 w_1, v_2 w_2, v_3 w_3, \dots, v_{b-a} w_{b-a}\}$ is an edge – to – vertex geodetic

set of *G*, so that $g_{ev}(G) = b$. Next show that $\beta'(G) = c$. Let Q_i : {{ $u_i v_i, v_i w_i$ }, { $y_1 u_i, v_b w_i$ }, { $y_3 w_i, u_i v_i$ }} ($1 \le i \le b - a$) and $F_i :$ { $y_1 x_i, y x_i$ }, ($1 \le i \le c - 2b + a - 1$) and M = { $y_1 y_2, y_2 y_3$ }. We have to show that a set *W* of edges is a minimum edge covering of *G* if and only if *W* has the following five properties.(1) *S* is a subset of *W*, (2) *W* contains exactly one element of each Q_i ($1 \le i \le b - a$), (3) *W* contains exactly one element of *M*, (4) *W* contains exactly one element each F_i , ($1 \le i \le c - 2b + a - 1$), (5) $V(M) \cap V(y_1x_i) \ne x_i$ and $V(M) \cap V(yx_i) \ne x_i$. Obviously, the properties (1) and (3) are true. Suppose that *W* does not contain an element of $Q_i, (1 \le i \le b - a)$. Then the vertices u_i, v_i and w_i does not lie on the edge covering of *G*. Therefore the property (2) holds good. Suppose that *W* does not contain an element of F_i ($1 \le i \le c - 2b + a - 1$). Then the vertices x_i ($1 \le i \le c - 2b + a - 1$) does not lie on the edge covering of *G*, which is a contradiction .Therefore from the above said five conditions, it is clear that $\beta'(G) \ge a + 2b - 2a + c - 2b + a - 1 + 1 = c$. Now $S'' = S \cup$ { $u_1 v_1, u_2 v_2, u_3 v_3, \dots, u_{b-a} v_{b-a}, v_1 w_1, v_2 w_2, \dots, v_{b-a} w_{b-a}, y_1 y_2, y_1 x_1, y_1 x_2, \dots, y_1 x_{c-2b+a-1}$ } is an edge cover of *G* so that $\beta'(G) = c$.

Figure: 5.1

REFERENCES

- [1] F. Buckley and F. Harary, *Distance in Graphs*, Addition- Wesley, Redwood City, CA, 1990.
- [2] Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the Steiner, geodetic and hull number of graphs, *Discrete Mathematics* 293 (2005) 139 - 154.
- [3] Esamel M. paluga, Sergio R. Canoy, Jr., Monophonic numbers of the join and Composition of connected graphs, *Discrete Mathematics* 307 (2007) 1146 1154.
- [4] J. John and S. Panchali, The Upper Monophonic Number of a Graph, *International Journal of Mathematical Combinatorics* 4(2010), 46-52.
- [5] Mitre C. Dourado, Fabio protti and Jayme. L. Szwarcfiter, Algorithmic Aspects of Monophonic Convexity, *Electronic Notes in Discrete Mathematics* 30(2008) 177-182.
- [6] A. P. Santhakumaran and J. John, The Edge to- Vertex Geodetic Number of a Graph –Serdica Mathematical Journal (Accepted).
- [7] A. P. Santhakumaran and J. John, On the Edge to- Vertex Geodetic Number of a Graph, *Miskolc Mathematical Notes* (Accepted).
- [8] A. P. Santhakumaran and P.Titus, Monophonic Distance in Graphs, *Discrete Algorithms and Applications* 3(2011) 159-169.
- [9] P. A. Ostrand, Graphs with specified radius and diameter, Discrete Mathematics 4(1973), pp.71-75.
