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ABSTRACT 
For a connected graph G = (V,E) , a monophonic set  S ⊆ E is called an  edge – to – vertex monophonic set if  every 
vertex of G lies on a  monophonic path between two vertices in V(S). The edge -to -vertex monophonic number mev(G) 
of G is the minimum cardinality of its edge – to – vertex monophonic sets. The edge – to – vertex monophonic number 
of certain classes of graphs is determined and some of its general properties are studied. Connected graphs of size q ≥ 
3 with   edge – to – vertex monophonic number q and q -1 are characterized. It is shown that for   positive  integers rm, 
dm  and l ≥ 2 with rm < dm  ≤ 2 rm, there exists a connected graph G with radmG = rm, diammG = dm and mev(G) = l and 
also shown that for  every integers a, b and c with 2 ≤ a ≤ b ≤ c, and c ≥ 2b – a +1, there exists a connected graph G 
such that mev(G) = a , gev(G) = b and  ß′ (G) = c, where gev(G) is edge – to – vertex geodetic number and ß′ (G) is edge 
covering number of G. 
 
Keywords: Monophonic path, Monophonic number, Edge – to – vertex  monophonic number, Geodesic, Edge – to – 
vertex geodetic number. 
 
AMS subject classification:  05C38. 
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1.  INTRODUCTION 
 
By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and 
size of G are denoted by p and q respectively. We consider connected graphs with at least three vertices. For basic 
definitions and terminologies we refer to [1].An edge covering of G is a subset K ⊆ E(G) such that each vertex of G is 
end of some edge in K. The number of edges in a minimum edge covering of G, denoted by ß′ (G) is the edge covering 
number of G. For two vertices u and v in a connected graph G, the distance d(u, v) is the length of a shortest u − v path 
in G. An u − v path of length d (u, v) is called an u − v geodesic. For a vertex v of G, the eccentricity e(v) is the distance 
between v and a vertex farthest from v. The minimum eccentricity among the vertices is the radius, rad G and the 
maximum eccentricity is the diameter, diam G of G. For subsets A and B of V (G), the distance d(A, B) is defined as 
d(A, B) = min{d(x, y) : x ∈ A, y ∈ B}. An u − v path of length d (A, B) is called an A − B geodesic joining the sets A, B, 
where u ∈ A and v ∈ B. A vertex x is said to lie on an A − B geodesic if x is a vertex of an A − B geodesic. For A = (u, 
v) and B = (z, w) with uv and zw edges, we write an A − B geodesic as uv − zw geodesic and d(A, B) as d(uv, zw). A set 
S ⊆ E is called an edge-to-vertex geodetic set if every vertex of G is either incident with an edge of S or lies on a 
geodesic joining a pair of edges of S. The edge-to-vertex geodetic number gev(G) of G is the minimum cardinality of its 
edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality gev(G) is an edge-to-vertex geodetic 
basis of G. The edge-to-vertex geodetic number of a graph is introduced and studied in [6,7]. The maximum degree of 
G, denoted by ∆( G), is given by ∆( G) = max{degG(v) : v ∈V(G)}. N(v)  = {u ∈ V(G): uv ∈E(G)} is called the 
neighborhood of the vertex v in G. A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors 
is complete.  An edge e of a graph G is called an extreme edge of G, if one of its ends is an extreme vertex of G.   A 
chord of a path u

0
, u

1
, u

2
,…,u

h
 is an edge uiuj, with j ≥  i + 2. An u– v path is called a monophonic path if it is a chord 

less path.  For two vertices u and v in a connected graph G, the monophonic distance dm(u, v) is the length of the 
longest u- v  monophonic path in G. An  u – v  monophonic path of length dm(u, v) is called an  u – v monophonic. For a 
vertex v of G, the monophonic eccentricity em (v) is the monophonic distance between v and a vertex farthest from v. 
The monophonic eccentricity among the vertices is the monophonic radius, radm(G) and the maximum monophonic 
eccentricity is the monophonic diameter, diamm(G).  For subsets A and B of V (G), the monophonic distance dm(A, B) is  
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defined as dm(A, B) = max{dm(x, y) : x ∈ A, y ∈ B}. An u − v monophonic path of length dm(A, B) is called an A − B 
monophonic joining the sets A, B where u ∈ A and v ∈ B. A vertex x is said to lie on an A − B monophonic if x is a 
vertex of an A − B monophonic. For A = (u, v) and B = (z, w) with uv and zw edges, we write an A − B monophonic as 
uv − zw monophonic and dm(A, B) as dm(uv, zw). The monophonic distance is studied in [8]. A monophonic set of G is a 
set M ⊆ V such that every vertex of G lies on a monophonic path joining some pair of vertices in M.  The monophonic 
number m(G) of G is the minimum order of its monophonic sets and any monophonic set of order m(G) is a minimum 
monophonic set or simply a m-set of G. The monophonic number of a graph is studied in [2, 3, 4, 5]. For a cut – vertex 
v in a connected graph G and a component H of G-v, the sub graph H and the vertex v together with all edges joining v 
and V (H) is called a branch of G at v. An end-block of G is a block containing exactly one cut-vertex of G. Thus every 
end-block is a branch of G. Girth is the length of the smallest cycle in G. A double star is a tree with diameter three. A  
caterpillar is a tree of order 3 or more, for which the removal of all end- vertices leaves a path. 
The following theorems are used in sequel. 
 
Theorem: 1.1. [5] Every end-edge of a connected graph G belongs to every edge-to-vertex geodetic set of G. 
 
Theorem: 1.2. [5] For a connected graph G, gev(G) =  q if and only if G is a star. 
 
Theorem: 1.3. [5] For a connected graph G with q ≥ 3, gev(G)  = q – 1 if and only if G is either C3 or a double star. 
 
2. EDGE-TO-VERTEX MONOPHONIC NUMBER OF A GRAPH G 
 
Definition: 2.1 Let e, f ∈ E (G). The e- f  monophonic path is an  u − v monophonic path , where u is one end of e and v 
is one end of f .The  vertex  x is said to lie on a e − f  monophonic path if x is a vertex of e − f  monophonic path. 
 
Definition: 2.2 Let G = (V, E) be a connected graph with at least three vertices. A set S ⊆ E is called an edge-to-vertex 
monophonic set if every vertex of G lies on a monophonic path between two vertices in V(S). The edge-to-vertex 
monophonic number mev(G)  of G is the minimum cardinality of its edge-to-vertex monophonic sets and any edge-to-
vertex monophonic set of cardinality mev(G)   is an mev – set of  G. 
 
Example: 2.3 For the graph G given in Figure 2.1  with  e =  v1 v6 and f = v3 v4 , the e − f  monophonic paths are   
P1 : v1 , v2 , v3 , P2: v6 ,  v1 , v2 , v3   , P3 : v6 , v7 , v8 , v3 , P4 : v6 , v5 ,v4 , P5 : v6 , v7 , v8 , v3 ,  v4 , P6 :v6 , v5 ,v4 ,v3, and  
P7:v6, v1 ,v4. Since the vertices v2 ,v5 ,v7 and v8 lies on the v1 v6 -   v3 v4 monophonic path, S = { e , f} is a mev – set of G 
and so mev(G) = 2  

 
Figure: 2.1 

 
Theorem: 2.4 If v is an extreme vertex of a connected graph G, then every edge-to-vertex monophonic set contains at 
least one extreme edge that is incident with v. 
 
Proof: Let v be an extreme vertex of G. Let e1, e2,.. ,ek be the edges incident with v. Let S be any edge-to-vertex 
monophonic set of G. We claim that ei ∈ S for some i(1 ≤ i ≤ k). Otherwise,  ei ∉ S for any i(1 ≤ i ≤ k). Since S is an 
edge-to-vertex monophonic set , the vertex v  lies on a monophonic path joining two elements, say, x, y ∈V(S). Since v 
is an internal vertex of a monophonic path x-y, v is not an extreme vertex of G, which is a contradiction. Hence ei ∈ S 
for some i(1 ≤ i ≤ k).                                                               
 
Corollary: 2.5 Every end-edge of a connected graph G belongs to every edge-to-vertex monophonic set of G. 
 
Proof: This follows from Theorem 2.4.                                                                            
 
Theorem: 2.6 Let G be a connected graph with cut-vertices and S an edge-to-vertex monophonic set of G. Then every 
branch of G  at v contains an element of S. 
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Proof: Assume that there is a branch B of G at a cut-vertex v such that B contains no element of S. Then by Corollary 
2.5, B does not contain any end-edge of G. Hence it follows that no vertex of B is an end vertex of G. Let u be any 
vertex of B such that u ≠ v (such a vertex exists since | V(B) | ≥ 2). Then u  ∉ V(S) and so u lies on a e − f monophonic  
path P : u1, u2, …, u, ..., ut, where u1 is an end of e and ut is an end of  f  with e,  f ∈ S. Since v is a cut-vertex of G, the 
u1 − u and u − ut sub paths of P both contain v and so P is not a path, which is a contradiction. Hence every branch of G 
contains an element of S.                                                                                                      
 
Corollary: 2.7 Let G be a connected graph with cut-edges and S an edge-to-vertex monophonic set of G. Then for any 
cut-edge e of G, which is not an end-edge, each of the two component of G − e contains an element of S. 
 
Proof: Let e = uv. Let G1 and G2 be the two component of G − e such that u ∈ V(G1) and v ∈ V(G2). Since u and v are 
cut-vertices of G, it follows that G1 contains at least one branch at u and G2 contains at least one branch at v. Hence it 
follows from Theorem 2.6 that each of G1 and G2 contains an element of S.                                           
 
Theorem 2.8 Let G be a connected graph and S be a mev-set of G. Then no cut edge of G which is not an end-edge of G 
belongs to S. 
 
Proof: Let S be a mev- set of G. Suppose that e = uv be a cut edge of G which is not an end-edge of G such that e ∈ S. 
Let G1 and G2 be the two component of G − e.    Let S ′ = S − {uv}. We claim that S ′ is an edge-to-vertex monophonic 
set of G. By Corollary 2.7, G1 contains an edge xy and G2 contains an edge x ′y ′, where x y, x ′y ′ ∈ S. Let z be any 
vertex of G. Assume without loss of generality that z belongs to G1. Since uv is a cut edge of G, every path joining a 
vertex of G1 with a vertex of G2 contains the edge uv. Suppose that z is incident with uv or the edge xy of S or that lies 
on a monophonic path joining xy and uv. If z is incident with uv, then z = u. Let  P : y, y1, y2, ..., z = u be a xy − u 
monophonic path. Let Q : v, v1, v2, …, y ′ be a v − x ′y ′ monophonic path. Then, it is clear that P ∪ {uv} ∪ Q is a xy − x 
′ y ′ monophonic path .Thus z lies on the xy − x ′y ′ monophonic path. If z is incident with xy, then there is nothing to 
prove. If z lies on a xy − uv monophonic path, say, y, y1, y2… z… u, then let v, v1, v2… y ′  be v − x ′y ′ monophonic 
path. Then clearly y, y1, y2... z... u, v, v1, v2... y ′  is a xy − x ′y ′ monophonic path. Thus z lies on a monophonic path 
joining a pair of edges of S ′. Thus we have proved that a vertex that is incident with uv or an edge of S or that lies on a 
monophonic path joining xy and uv of S also is incident with an edge of S ′ or lies on a monophonic path joining a pair 
of edges of S ′. Hence it follows that S ′ is an edge-to-vertex monophonic set such that | S ′| = | S | − 1, which is a 
contradiction to S a mev- set of G. Hence the theorem follows.                                                        
 
In the following, we determine edge – to- vertex monophonic number of some standard graphs. 
 
Corollary: 2.9 For any non-trivial tree T with k end-vertices, mev(T) = k and the set of all end-edges of T is the unique 
edge-to-vertex monophonic set of T. 
 
Proof:  This follows from Corollary 2.5 and Theorem 2.8.                                              
 
Theorem: 2.10 For the cycle Cp (p ≥ 4), mev(Cp) =  2 
 
Proof: Let e, f be two independent edges of G. Then S = {e, f} is an edge to vertex monophonic set of G so that  
mev(Cp) =  2.                                                                        
  
Theorem: 2.11 For the complete graph Kp(p ≥ 4) with p even, mev(Kp) = p/2. 
 
Proof: Let S be any set of p/2 independent edges of Kp . Since each vertex of Kp is incident with an edge of S, it follows 
that mev(G)  ≤  p/2. If mev(G)  <   p/2, then there exists an edge-to-vertex monophonic set S ′ of Kp such that | S ′ | < p/2. 
Therefore, there exists at least one vertex v of Kp such that v is not incident with any edge of S ′. Hence v is neither 
incident with any edge of S ′ nor lies on a monophonic path of S ′ and so S ′ is not an edge-to-vertex monophonic set of 
G, which is a contradiction. Thus S is an edge-to-vertex monophonic basis of Kp. Hence  mev(Kp) = p/2 
 

Theorem: 2.12 For the complete graph G = Kp( p ≥ 5) with p odd, mev(G) = 
2

1+p . 

Proof: Let M consist of any set of 
2

3−p  independent edges of Kp and M ′ consist of 2 adjacent edges of Kp, each of 

which is independent with the edges of M. Let S = M∪ M′. Since each vertex of Kp is incident with an element of S, it 

follows that S is an edge-to-vertex monophonic set of G so that mev(G) ≤ 
2

12
2

3 +
=+

− pp . 
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If mev(G) < 
2

1+p , then there exists an edge-to-vertex monophonic set S ′ of Kp such that   | S ′| < 
2

1+p . Therefore, 

there exists at least one vertex v of Kp such that v is not incident with any edge of S ′. Hence the vertex v is neither 
incident with any edge of S ′ nor lies on a monophonic path of S ′ and so S ′ is not an edge-to-vertex monophonic set of 

G, which is a contradiction. Hence mev(G) = 
2

1+p .   

 
Theorem: 2.13 For the complete bipartite graph G = Km, n(2 ≤ m ≤ n), mev(G) = 2. 
 
Proof:  Let X = {x1, x2… xm} and Y = {y1, y2… yn} be a bipartition of G. Let S ={e,f }, where  e ≠ f  and e = xi yj  and  
f = xk yl (1 ≤ j , l ≤n, m, 1 ≤ j ,k  ≤ n )  i ≠ k and   j ≠l . Let x be a vertex of G . If x ∈Y, then x lies on the monophonic 
path xi – xk . If x ∈X, then x lies on the monophonic path yj –yl .Hence S is an edge-to- vertex monophonic set of G so 
that  mev(G) = 2.  
 
Theorem: 2.14 Let G be a connected unicyclic graph with girth greater than three. Then mev(G) is either k or k+1, 
where k is the number of end- vertices of G. 
 
Proof: Let C be the unicycle in G such that |C| ≥ 4. Let W be the set of end edges of G. If V(C) contain at least three 
cut- vertices of G, then W is an edge-to-vertex monophonic set of G and by Corollary 2.5 that mev(G) = k. If V(C) 
contains exactly two cut -vertices of G, say, u, v, and if u and v are not adjacent, then W is an edge-to-vertex 
monophonic set of G and by Corollary 2.5 that mev(G) = k. If u and v are adjacent, then W is not an edge-to-vertex 
monophonic set of G and so by Corollary 2.5, mev(G) ≥ k + 1. Let  x∈V(C) such that  xv ∈ E(C) and x ≠ u. Then  
W ∪ {xv} is an edge-to-vertex monophonic set of G so that mev(G) = k + 1. If V(C) contains one cut vertex of G, say v, 
then W is not an edge-to-vertex monophonic set of G and so by Corollary 2.5, mev(G) ≥k + 1. Since |C| ≥4, there exits  
x ∈V(C) such that d(x, v) ≥2. Let y ∈ V(C) such that xy∈ E(C) and y ≠ v. Then S = W∪ {xy} is an edge-to-vertex 
monophonic set of G so that mev(G) = k + 1. 
 
3. SOME RESULTS ON EDGE-TO-VERTEX MONOPHONIC NUMBER OF A GRAPH 
 
Theorem: 3.1 Let G be a connected graph. Then 2 ≤ mev(G) ≤ gev(G) ≤ ß′ (G) ≤ q. 
 
Proof: An edge-to-vertex monophonic needs at least two edges and so mev(G) ≥ 2. Since every edge-to-vertex geodesic 
set of G is an edge-to-vertex monophonic set of G and so mev ≤ gev(G). Also every edge cover of G is an edge -to-vertex 
geodesic set of G.  We have  gev(G) ≤ ß′ (G). Since E(G) is the edge cover of G, we have ß′ (G) ≤ q. Thus 2 ≤ mev(G) ≤ 
gev(G) ≤ ß′ (G) ≤ q.                                                                                                                         
 
Remark: 3.2 The set of two end-edges of a path P of length at least two is its unique edge-to-vertex monophonic set so 
that mev(P) = 2. For the star K1, q (q ≥ 2) ,it is clear that  the set of all edges is the unique  edge-to-vertex monophonic 
number  set  so that mev(G) = q. Thus the star K1, q (q ≥ 2) has the largest possible edge-to-vertex monophonic number q 
and the paths of length at least 2 have the smallest edge-to-vertex monophonic.   
 
Theorem:  3.3. Let G be a connected graph. Then m(G) ≤ 2 mev(G). 
 
Proof: Let S be an edge – to – vertex monophonic set of G .Since every vertex of G lies on a monophonic path between 
two vertices  in V(S), it follows that V(S) is a monophonic set of G and so m(G) ≤ | V(S)| ≤ 2 |E(S)| = 2 mev(G) . Thus 
m(G) ≤ 2 mev(G).   
 
Theorem: 3.4 Let G  be a connected graph. If d( e , f ) =  0 or 1 for every  e , f ∈ E(G). Then mev(G) =  gev(G) =  ß′ (G) 
. 
Proof:  Let S be an edge-to-vertex monophonic set of  G. We show that S is  an edge covering of G. Suppose that S is 
not an edge covering of G. Then there exists  at least one vertex v ∈V(G)  such that v ∉V(S). Then v lies on a e - f 
monophonic path, where e , f ∈ S.  Since v is an internal vertex of the e - f monophonic path, it follows that  
 
d( e , f ) ≥ 2,which is a contradiction. Therefore  S is an edge cover of G so that mev(G) =  ß′ (G). Now it follows from 
Theorem 3.1 that gev(G) =  ß′ (G). Thus mev(G) =  gev(G) =  ß′ (G) .                                  
 
Theorem: 3.5 The converse of the theorem 3.4 is not true. For the graph given in Figure 3.1, mev(G) =  gev(G) =  ß′ (G)  
= 6 . However d (e, f) =   2. 
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Figure: 3.1 

 
Theorem: 3.6 Let G be a connected graph without extreme vertices. Then mev(G) ≤ q - ∆(G) + 1. 
 
Proof: Let x be a vertex of G such that degG(x) = ∆(G) and N(x) = {y1, y2,…, y∆}.Since x is not an extreme vertex of G , 
xyi (1 ≤ i ≤ ∆) is not an extreme edge of G. Now S = E(G) – {xy2 , xy3 , … , xy∆} is an edge – to – vertex monophonic set 
of G so that mev(G) ≤ q - ∆(G) + 1. 
 
Theorem: 3.7 Let G be a connected non- complete graph and U is a minimum cutest of G such that each component of 
G – U has at least one edge. Then mev(G) ≤ q – m k(G), where m is the number of component of G – U.  
 
Proof: Suppose G is non- complete, it is clear that 1 ≤ k(G) ≤ p -2. Let U = {u1, u2… uk} be a minimum cutest of G.  
Let G1, G2, …, Gm (m ≥ 2) be the components of G – U. Then every vertex ui (1 ≤ i ≤ k) is adjacent to at least one 
vertex of Gj ,  for every j (1 ≤ j ≤ m). Let xij be a vertex of Gj  (1 ≤ i ≤ k)  (1 ≤ j ≤ m) which is adjacent to ui (1 ≤ i ≤ k). 
Then S = E(G) – {u1x11, u1x12,…,u1m, u2x21, u2x22,, …, u2x2m,, uk xk1, uk xk2,…, uk xkm,} is an edge – to – vertex monophonic  
set of G so that mev(G) ≤ q – m k(G).            
 
The following Theorems 3.8 and 3.9 characterize graphs for which mev(G) = q and mev(G) = q – 1 respectively. 
 
Theorem: 3.8 For a connected graph G, mev(G) =  q if and only if gev(G) = q. 
 
Proof: Let mev(G) =  q. Then by Theorem 3.1, gev(G) = q. Conversely, let gev(G) = q. Then by Theorem 1.2, G is a star.  
 
Now it follows from Corollary 2.9 that mev(G) =  q.  
 
Theorem: 3.9 For a connected graph G with q ≥3, mev(G) =  q-1 if and only if  gev(G) =  q -1. 
 
Proof: Let mev(G) =  q -1. Then by Theorem 3.1, gev(G) = q or q – 1. If gev(G) = q,  then by Theorem 1.2,G is a star.  
But by Corollary 2.9, mev(G) =  q, which is a contradiction. Therefore  gev(G) =  q -1.Conversely, let gev(G) =  q -1.Then 
by Theorem 1.3, G is either C3 or a double star. If G is C3 , then mev(G) = 2 =  q-1. If G is a double star , then by 
Corollary 2.9 that mev(G) =  q-1. Hence the theorem.        
      
4. EDGE – TO – VERTEX MONOPHONIC NUMBER AND MONOPHONIC DIAMETER OF A GRAPH 
 
Theorem: 4.1 For a connected graph G with q ≥ 2 , mev(G) ≤  q – dm + 2 , where  dm is the  monophonic diameter of G. 
 
Proof: Let u and v be vertices of G for which dm(u, v) = dm, where dm is the monophonic diameter of G and let P : u = 
v0, v1, v2, ..., vdm  = v be a u – v path of length dm. Let ei  = vi-1 vi (1 ≤ i ≤ dm). Let S = E (G) – { v1v2, v2 v3, …, vdm-2 vdm-1 }.  
Let x be any vertex of G. If x = vi (1 ≤ i ≤ dm-1), then x lies on the e1 – edm monophonic path P1: v1, v2… vdm-1.  
If x ≠ vi (1 ≤ i ≤ dm – 1), then x is incident with an edge of S. Therefore, S is an edge-to-vertex monophonic set of G. 
Consequently, mev(G) ≤ | S | = q – dm +2 .    
 
Remark: 4.2 The bound in Theorem 4.1 is sharp. For the star G = K1,q(q ≥ 2), dm = 2 and mev(G) = q , by Corollary 2.9, 
so that mev(G) = q – dm + 2. 
 
Theorem: 4.3 Let G be a connected graph without extreme vertices. Then mev(G) ≤ q – dm , where dm is the 
monophonic diameter of G. 
 
Proof: Let u and v be vertices of G for which dm(u, v) = dm, where dm is the monophonic diameter of G and let  
P : u = v0, v1, v2, ..., vdm  = v be a u – v monophonic path of length dm. Let ei  = vi-1 vi (1 ≤ i ≤ dm).  
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Let S = E(G) – {e2,e3,…,edm-1 }-{e , f} where  e = v0 y and  f = vdm z, where  y ≠ v1 and z ≠ vdm-1. Let x be any vertex of G. 
If x = vi (1 ≤ i ≤ dm – 1), then x lies on the e1 – edm monophonic path P1: v1, v2, …, vdm-1. If x ≠ vi (1 ≤ i ≤ dm – 1), then x 
∈V(S). Therefore, S is an edge-to-vertex monophonic set of G. Consequently, mev(G) ≤ | S | = q – dm .  
        
Theorem: 4.4 For any y non-trivial tree T with q ≥ 2, mev(T) = q - dm + 2 if and only if T is a caterpillar. 
 
Proof: Let P: v0, v1, v2,…, vdm-1,vdm = v  be a diametral path of length dm . Let ei = vi-1 vi (1 ≤ i ≤ dm) be the edges of the 
diametral path P. Let k be the number of end-edges of T and l  be the number of internal edges of T other than ei (2 ≤ i ≤ 
dm-1).Then dm -2 +l +k = q. By Corollary 2.9, mev(T) = k and so mev(T) = q - dm + 2 –l .  
 
Hence mev(T) = q - dm + 2 if and only if l = 0, if and only if all internal vertices of T lie on the diametral path P, if and 
only if T  is a caterpillar. 
 
For every connected graph G, rad G ≤ diam G ≤ 2 rad G. Ostrand[9] showed that every two positive integers a and b 
with  a ≤ b ≤ 2a are realizable as the radius and diameter , respectively, of some connected graphs. Now, Ostrand's 
theorem can be extended so that the edge - to - vertex monophonic number can also be prescribed. 
 
Theorem: 4.5 For positive integers rm, dm and l ≥ 2 with rm < dm ≤ 2 rm , there exists a connected graph G with radm G 
= rm , diamm G = dm and mev(G) = l.  
 
Proof: When rm = 1, we let G = K1,l. Then the result follows from Corollary 2.9. 
 
Let rm ≥ 2. Let Cr+2 : v1,v2,…, vr+2 be a cycle of length r + 2 and let  Pdm-r+1: u0, u1, u2, …,  udm-r  be a path of length  
dm - rm + 1.  Let H be a graph obtained from Cr+2 and Pdm-r+1 by identifying v1  in Cr+2 and u0 in Pdm-r+1. Now add l-2 
new vertices w1, w2, …, wl-2 to H and join each wi (1≤ i ≤ l-2)  to the vertex udm - r-1  and obtain the graph G of Figure 
4.1.Then radm G = rm , diamm G = dm . 
 

 
Figure: 4.1 

 
Let S = {udm-r-1 w1, udm-r-1 w2, …, udm-r-1 wl-2, udm-r-1 udm-r}  be the set of all end-edges of G. By Corollary 2.5, S is 
contained in every edge - to - vertex monophonic set of G. It is clear that S is not an edge - to - vertex monophonic set 
of G. However, the set  S ∪ {e}, where e ∈{v2v3, v3 v4, …, vr vr+1, vr+1vr+2} is an edge - to - vertex monophonic set of G 
so that mev(G) = l - 1 + 1 = l. 
 
5. REALIZATION THEOREM 
 
Theorem: 5.1 For every integers a , b and c with 2 ≤ a ≤ b ≤ c, and c ≥ 2b – a + 1, there exists a connected graph G 
such that mev(G) = a , gev(G) = b and  β ’(G) = c. 
 
Proof: Let P3: y1, y2, y3 be a path of order 3. For each integer i with  1 ≤ i ≤ b – a, let Qi: ui , vi , wi  (1 ≤ i ≤ b – a) be a 
path of order  3. Let H  be a graph obtained from P3 and Qi (1 ≤ i ≤ b – a) by joining each  ui (1 ≤ i ≤ b – a) with y 1 and  
each wi  (1 ≤ i ≤ b – a) with y3 and also  adding a – 1 new vertices zi  (1 ≤ i ≤ a –1)  and joining each zi (1 ≤ i ≤ a –1) 
with  y3 . Let G be a graph obtained from H by adding new vertices  x ,y  and xi  (1 ≤ i ≤  c – 2b + a –1) ,   and joining 
each xi (1 ≤ i ≤  c – 2b + a –1) with y   and y1  and x  with y. The graph G is given in Figure 5.1. First show that mev(G) 
= a. Let S = { y3 z1,  y3 z2 , . . .  y3  z a-1,  x y} be the set of all end edges of G. By Corollary 2.9, S is a subset of every 
edge – to – vertex monophonic set of G and so mev(G) ≥ a. Now it is clear that S is an edge – to – vertex monophonic 
set of G so that mev(G) = a. Next show that gev(G) = b. By Theorem 1.1, S is a subset of every edge – to – vertex 
geodetic set of G. It is clear that S is not an edge – to – vertex geodetic set of G. Let Hi  : { ui vi , vi,wi }, (1 ≤ i ≤ b – a). 
It is easily observed that every edge – to – vertex geodetic set of G contains at least one edge from each Hi ,(1 ≤ i ≤ b – 
a) and so gev(G) ≥  a + b – a = b. Now S’ = S ∪ { v1 w1 , v2 w2 , v3 w3  ,… vb-a w b-a  } is an edge – to – vertex geodetic  
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set of G, so that gev(G) = b. Next show that ß′ (G) = c. Let Qi: {{ ui vi , vi,wi},{y1ui , vi,wi}, {y3wi, ui vi }}  (1 ≤ i ≤ b – a)   
and Fi : { y1 xi , y xi }, (1 ≤ i ≤  c – 2b  + a –1) and M = {y1 y2 ,y2 y3}.  We have to show that a set W of edges  is a 
minimum edge covering of G if and only if W  has the following five properties.(1) S  is a subset of W, (2) W contains 
exactly one element of each Qi (1 ≤ i ≤ b – a) , (3) W  contains exactly one element of M , (4) W  contains exactly one 
element each Fi , (1 ≤ i ≤  c – 2b + a –1) , (5) V(M) ∩ V(y1xi ) ≠ xi and V(M) ∩ V(yxi ) ≠ xi . Obviously, the properties 
(1) and (3) are true. Suppose that W does not contain an element of Qi, (1 ≤ i ≤ b – a) . Then the vertices ui , vi  and wi  
does not lie on the edge covering of G .Therefore  the property (2) holds good. Suppose that W does not contain an 
element of Fi (1 ≤ i ≤ c – 2b + a –1). Then the vertices xi (1 ≤ i ≤ c – 2b + a –1) does not lie on the edge covering of G, 
which is a contradiction .Therefore W has the property (4). Suppose that property (5) is not satisfied. Then  β ’(G) is not 
a minimum edge covering of G. Therefore from the above said five conditions , it is clear that   β ’(G) ≥  a + 2b - 2 a + 
c – 2 b + a -1 + 1 = c .Now S” = S ∪  { u1 v1 , u2 v2 , u3 v3  , … , ub - a  vb - a , v1 w1 , v2 w2 , , … , vb - a  w b - a , y1 y2 , y1 x1 , 
y 1x2 , , … , y 1x c – 2b + a - 1 } is an edge cover of G so that  ß′ (G) = c.                          

 
Figure: 5.1 
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