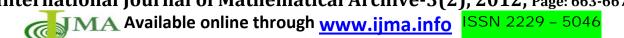
International Journal of Mathematical Archive-3(2), 2012, Page: 663-667



A SUFFICIENT CONDITION FOR A SEQUENCE IN A MENGER SPACE TO BE CAUCHY

K. P. R. Sastry¹, G. A. Naidu², S. S. A. Sastri^{3*} and P. V. S. Prasad⁴

¹8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatnam-530017, India E-mail: kprsastry@hotmail.com

^{2, 4}Department of Mathematics, Andhra University, Visakhapatnam-530 003, India E-mail: drgolivean@yahoo.com, pvsprasad10@yahoo.in

³Department of Mathematics, GVP College of Engineering, Madhurawada, Visakhaptnam- 530048, India E-mail: sambharasas@yahoo.co.in

(Received on: 08-01-12; Accepted on: 13-02-12)

ABSTRACT

 $m{I}$ n this paper we obtain sufficient condition for a sequence in a Menger space to be Cauchy. Incidentally, we observe a fallacy in the argument of a result of B.K. Sharma and D.R. Sahu [4].

AMS Mathematical subject classification (2000): 47H10, 54H25.

Key words: Triangular norm, Menger space, Cauchy sequence.

1. INTRODUCTION:

Let us start with the following definitions.

Definition 1.1: (Schweizer and Sklar, [3]): A function $F: \mathbb{R} \to [0,1]$ is called a distribution function if

- (i) F is non-decreasing,
- (ii) F is left continuous,
- (iii) $\inf_{x \in \mathbb{R}} F(x) = 0$ and $\sup_{x \in \mathbb{R}} F(x) = 1$

D denotes for the class of all distribution functions.

Definition 1.2: (Schweizer and Sklar, [3]): A triangular norm $*: [0,1] \times [0,1] \to [0,1]$ is a function satisfying the following conditions:

- (i) $\alpha * 1 = \alpha \quad \forall \alpha \in [0,1]$
- (ii) $\alpha * \beta = \beta * \alpha \quad \forall \alpha, \beta \in [0,1]$
- (iii) $\gamma * \delta \ge \alpha * \beta \ \forall \alpha, \beta, \gamma, \delta \in [0,1]$ with $\gamma \ge \alpha$ and $\delta \ge \beta$
- (iv) $(\alpha * \beta) * \gamma = \alpha * (\beta * \gamma) \forall \alpha, \beta, \gamma \in [0,1]$

Definition 1.3: (Schweizer and Sklar, [3]): Let X be a non-empty set and let $F: X \times X \to \mathfrak{D}$. For $p, q \in X$, we denote the image of the pair (p, q) by $F_{p,q}$ which is a distribution function so that $F_{p,q}(x) \in [0,1]$, for every real x. Suppose F satisfies:

- (i) $F_{p,q}(x) = 1$ for all x > 0 if and only if p = q,
- (ii) $F_{p,q}(0) = 0$,
- (iii) $F_{p,q}(x) = F_{q,p}(x)$,
- (iv) If $F_{p,q}(x) = 1$ and $F_{q,r}(y) = 1$ then $F_{p,r}(x+y) = 1$ where $p, q, r \in X$.

Then (X, F) is called a probabilistic metric space.

Definition 1.4: (Schweizer and Sklar, [3]): Let X be a non empty set, * a t-norm and $F: X \times X \to \mathfrak{D}$ satisfies:

- (i) $F_{p,q}(0) = 0 \ \forall \ p,q \in X$,
- (ii) $F_{p,q}(x) = 1 \ \forall \ x > 0$ if and only if p = q,
- (iii) $F_{p,q}(x) = F_{q,p}(x) \quad \forall \ p,q \in X,$
- (iv) $F_{p,r}(x+y) \ge *(F_{p,q}(x), F_{q,r}(y)) \quad \forall \ x,y \ge 0 \ and \ p,q,r \in X.$

Then the triplet (X, F, *) is called a Menger space.

Definitions 1.5: (Schweizer and Sklar, [3]):

- (i) Let (X, F, *) be a Menger space and $p \in X$. For $\varepsilon > 0, 0 < \lambda < 1$, the (ε, λ) neighbourhood of p is defined as $U_p(\varepsilon, \lambda) = \{q \in X : F_{p,q}(\varepsilon) > 1 \lambda\}$. The topology induced by the family $\{U_p(\varepsilon, \lambda) : p \in X, \varepsilon > 0, 0 < \lambda < 1\}$ is known as the (ε, λ) -topology. It may be observed that, if * is continuous then the (ε, λ) -topology is Hausdorff.
- (ii) A sequence $\{x_n\}$ in X is said to converge to $p \in X$ in the (ε, λ) -topology, if for any $\varepsilon > 0$ and $0 < \lambda < 1$ there exists a positive integer $N = N(\varepsilon, \lambda)$ such that $F_{x_n, p}(\varepsilon) > 1 \lambda$ where n > N.
- (iii) A sequence $\{x_n\}$ in X is said to be a Cauchy sequence in the (ε, λ) topology, if for $\varepsilon > 0$ and $0 < \lambda < 1$ there exists a positive integer $N = N(\varepsilon, \lambda)$ such that $F_{x_m,x_n}(\varepsilon) > 1 \lambda$ for all m,n > N.
- (iv) A Menger space (X, F, *), where * is continuous, is said to be complete if every Cauchy sequence in X is convergent in the (ε, λ) -topology.

Definition 1.6: (Hadzic, [1]): Let * be a t-norm. For any $a \in [0,1]$, write $*_0(a) = 1$ and

$$*_1(a) = *(*_0(a), a) = *(1, a) = a$$

In general define $*_{n+1}(a) = *(*_n(a), a) for n = 0, 1, 2$

If the sequence $\{*_n\}$ is equicontinuous at 1, that is given $\varepsilon > 0$ there exists $\delta > 0$ such that $x > 1 - \delta$ implies $*_n(x) > 1 - \varepsilon \ \forall \ n \in \mathbb{N}$, then we say that * is a Hadzic type t-norm.

We observe that 'min't-norm is of Hadzic type.

B. K. Sharma and D. R. Sahu [4] proved the following theorem.

Theorem 1.7: (Sharma and Sahu, [4], Theorem 3.1): Let (X, F, *) be a Menger space and C, D be non empty subsets of X. Let $\{A_i\}_{i\in\mathbb{N}}: C \to D$. If there exists a function $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ which is non decreasing, $\lim_{n\to\infty} \varphi^n(t) = \infty \ \forall \ t > 0$ and mappings $S, T: C \to D$ such that for each $i, j \in \mathbb{N}$, $i \neq j$

- (1.7.1) $A_i(C) \subseteq T(C)$ and $A_i(C) \subseteq S(C)$,
- $(1.7.2) \quad F_{A_ix,A_iy}(a) \ge F_{Sx,Ty}(\varphi(a)) \text{ for all } x,y \text{ in C and for all } a > 0,$
- (1.7.3) T(C) is complete.

Then for each $i, j \in \mathbb{N}$, $i \neq j$, there exist $u, v \in C$ and $z \in D$ such that $A_i u = Su = z = A_j v = Tv$. If C = D and for $i, j \in \mathbb{N}$, $i \neq j$, A_i and A_j and A_j and A_j are 2-compatible, then A_i is the unique common fixed point of A_i and the family A_i in A_i in A_i in A_i and A_i are 2-compatible, then A_i is the unique common fixed point of A_i and the family A_i in A_i in A_i in A_i in A_i in A_i and A_i in A_i i

In proving this theorem the sequence $\{y_n\}$ is constructed as follows:

Let $y_0 \in C$, the sequence $\{x_n\}$ is defined by $Tx_{2n+1} = A_ix_{2n} = y_{2n}$ and $Sx_{2n+2} = A_ix_{2n+1} = y_{2n+1}$ for n = 0,1,2...

Then it is observed that for all a > 0 and $n \in \mathbb{N}$

$$F_{y_n,y_{n+1}}(a) \ge F_{y_{n-1},y_n}(\varphi(a)) \ge \dots \ge F_{y_0,y_1}(\varphi^n(a)).$$

To show that $\{y_n\}$ is a Cauchy sequence, the authors proceeded like this:

Finally the authors concluded that $\{y_n\}$ is a Cauchy sequence, since $\{*_n(x)\}$ is equicontinuous at x=1 and $\lim_{n\to\infty} \varphi^{n+m-1}(a) = \infty \ \forall \ a>0$.

However this argument is not sufficient to conclude this, since $\varphi^{n+m-1}\left(\frac{a}{m\,(m+1)}\right)$ may not go to ∞ as $n\to\infty$ for all $m\in\mathbb{N}$.

This is shown in the following example:

Example 1.8: Define
$$\varphi \colon \mathbb{R}^+ \to \mathbb{R}^+$$
 by $\varphi(t) = \left\{ \begin{array}{cc} n+1 & \text{if } t \in [n,n+1), n \geq 1 \\ \frac{1}{m} & \text{if } t \in \left[\frac{1}{m+1},\frac{1}{m}\right), \ m \geq 1 \\ 0 & \text{if } t = 0 \end{array} \right.$

For any
$$a > 0$$
 and $m \in \mathbb{N}$, $\lim_{n \to \infty} \varphi^{n+m-1} \left(\frac{a}{m(m+1)} \right) \neq \infty$. In fact $\varphi^{n+m-1} \left(\frac{a}{m(m+1)} \right) = \frac{1}{n^2+n+2}$ for every $m \in \mathbb{N}$.

Thus the argument does not hold.

Consequently, in this paper we obtain a sufficient condition for a sequence in a Menger space to be Cauchy.

2. MAIN RESULTS:

In this section we obtain a sufficient condition for a sequence in a Menger space to be Cauchy. First we start with a definition.

Definition 2.1: (i) If $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ is such that

 $(a)\varphi$ is increasing,

$$(b)\varphi(t) > t \ \forall \ t > 0$$

$$(c)\varphi(\varphi(t)-t) \ge \varphi^2(t)-\varphi(t)$$
 for every $t>0$,

then φ is called a contractive control function of type (A).

(ii) If $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ is such that a contractive control function which is strictly increasing, φ is onto and $\varphi(t - \varphi^{-1}(t)) \ge \varphi(t) - t$ for every t > 0, then φ is called a contractive control function of type (AS).

Examples 2.2: If
$$\varphi : \mathbb{R}^+ \to \mathbb{R}^+$$
 is defined by $\varphi(t) = \begin{cases} n+1 & \text{if } t \in [n,n+1) \\ 1 & \text{if } t \in (0,1) \\ 0 & \text{if } t = 0 \end{cases}$

then φ is a contractive control function of type (A) but not of type (AS).

Examples 2.3: If $\varphi \mathbb{R}^+ \to \mathbb{R}^+$ is defined by $\varphi(t) = kt \quad \forall \ t > 0$ and for some k > 0, then φ is a contractive control function of type (AS).

We use the following lemma in our main result.

Lemma 2.4:

(i) If $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ is a contractive control function of type (A), then

$$\varphi^n(\varphi(t)-t) \ge \varphi^{n+1}(t) - \varphi^n(t)$$
 for every $n \in \mathbb{N}$.

(ii). If $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ is a contractive control function of type (AS), then

$$\varphi^n(t-\varphi^{-1}(t)) \ge \varphi^n(t) - \varphi^{n-1}(t)$$
 for every $n \in \mathbb{N}$.

Proof: (i) Since $\varphi(\varphi(t) - t) \ge \varphi^2(t) - \varphi(t)$ for every t > 0, the result is true.

Now the proof follows by induction.

Assume that $\varphi^n(\varphi(t) - t) \ge \varphi^{n+1}(t) - \varphi^n(t)$

$$\Rightarrow \varphi^{n+1}(\varphi(t) - t) \ge \varphi(\varphi^{n+1}(t) - \varphi^n(t))$$

$$= \varphi(\varphi(s) - s) \text{ where } s = \varphi^n(t)$$

$$\ge \varphi^2(s) - \varphi(s)$$

$$= \varphi^2(\varphi^n(t)) - \varphi(\varphi^n(t))$$

$$= \varphi^{n+2}(t) - \varphi^{n+1}(t)$$

Therefore by induction, $\varphi^n(\varphi(t) - t) \ge \varphi^{n+1}(t) - \varphi^n(t)$ for all $n \in \mathbb{N}$.

(ii) Since $\varphi(t-\varphi^{-1}(t)) \ge \varphi(t) - t$, the result is true for n = 1.

The proof now follows by induction.

Assume that $\varphi^n(t-\varphi^{-1}(t)) \ge \varphi^n(t) - \varphi^{n-1}(t)$

$$\Rightarrow \varphi^{n+1}(t - \varphi^{-1}(t)) \ge \varphi(\varphi^n(t) - \varphi^{n-1}(t))$$

$$= \varphi(s - \varphi^{-1}(s)) \text{ where } s = \varphi^n(t)$$

$$\ge \varphi(s) - s$$

$$= \varphi(\varphi^n(t)) - \varphi^n(t)$$

$$\ge \varphi^{n+1}(t) - \varphi^n(t)$$

Therefore by induction, $\varphi^n(t-\varphi^{-1}(t)) \ge \varphi^n(t) - \varphi^{n-1}(t)$ for every $n \in \mathbb{N}$.

Notation: Let Φ be the class of contractive control functions of type (AS) such that $\varphi^n(t) - \varphi^{n-1}(t) \to \infty$ as $n \to \infty$ for every t > 0.

We observe that $\varphi \in \Phi \Rightarrow \varphi^n(t) \to \infty$ as $n \to \infty$

Theorem 2.5: Let (X, F, *) be a Menger space with Hadzic type t-norm * and $\varphi \in \Phi$. If $\{x_n\}$ is a sequence in X such that $F_{x_n,x_{n+1}}(t) \geq F_{x_{n-1},x_n}(\varphi(t))$ for every t > 0, then $\{x_n\}$ is a Cauchy sequence in X.

Proof: By hypothesis,
$$F_{x_n,x_{n+1}}(t) \ge F_{x_{n-1},x_n}(\varphi(t)) \ge \dots \ge F_{x_0,x_1}(\varphi^n(t))$$

$$\ge F_{x_0,x_1}(\varphi^n(t) - \varphi^{n-1}(t))$$

$$= \lambda_n(t)$$
(2.5.1)

Since $\varphi \in \Phi$, $\lambda_n(t) \to 1$ as $n \to \infty$.

Now we show that $F_{x_n,x_{n+k}}(t) \ge *_k (\lambda_n(t))$

This is true for k = 1 and any $n \in \mathbb{N}$ by (2.5.1)

Assume the truth for k.

$$F_{x_{n},x_{n+k+1}}(t) \geq *\left(F_{x_{n},x_{n+1}}(t-\varphi^{-1}(t)),F_{x_{n+1},x_{n+k+1}}(\varphi^{-1}(t))\right)$$

$$\geq *\left(F_{x_{0},x_{1}}\left(\varphi^{n}(t-\varphi^{-1}(t))\right),*_{k}\left(F_{x_{0},x_{1}}(\varphi^{n+1}(\varphi^{-1}(t))-\varphi^{n}(\varphi^{-1}(t))\right)\right)$$

$$\geq *\left(F_{x_{0},x_{1}}(\varphi^{n}(t)-\varphi^{n-1}(t)),*_{k}\left(F_{x_{0},x_{1}}(\varphi^{n}(t)-\varphi^{n-1}(t))\right)\right), \text{ by Lemma 2.4}$$

$$= *_{k+1}\left(F_{x_{0},x_{1}}(\varphi^{n}(t)-\varphi^{n-1}(t))\right)$$

$$= *_{k+1}\left(\lambda_{n}(t)\right)$$
(2.5.2)

Let $\varepsilon > 0$, since * is Hadzic type t-norm and * is equicontinuous at 1, there exists $\eta \in (0,1)$ such that

 $1 \ge s > 1 - \eta \text{ implies } *_{k+1}(s) > 1 - \varepsilon.$

Since $\lambda_n(t) \to 1$ as $n \to \infty$, there exists N such that $n \ge N$ implies $\lambda_n(t) > 1 - \eta$.

Hence by (2.5.2), we have $F_{x_n,x_{n+k+1}}(t) \ge *_{k+1} (\lambda_n(t))$

$$> 1 - \varepsilon$$
 for all $n \ge N$.

Consequently $F_{x_n,x_m}(t) > \varepsilon$ whenever $m > n \ge N$.

Hence $\{x_n\}$ is a Cauchy sequence.

We conclude this paper with an open problem:

Open Problem 2.6: Is the above theorem still true if φ is not necessarily a member of Φ but is such that φ is increasing and $\varphi^n(t) \to \infty$ as $n \to \infty \ \forall \ t > 0$?

REFERENCES:

- [1] Hadzic. O: A Generalization of the contraction principle in probabilistic metric spaces, Univ. u. Nvom Sadu Zb. Road, Prirod-Mat. Fak. 10(1980), 13-21 (1981).
- [2] Satya Murty. K: A Study of recent fixed point theorems in Menger spaces, M. Phil Dissertation, 2010.
- [3] Schweizer. B and Sklar. A: Statistical spaces, Pacific. J. Math., 10, (1960), 313-334.
- [4] Sharma. B. K and Sahu. D. R: 2-compatibility and its Applications, Kyungpook Math. J. 36 (1996), 171-181.
