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ABSTRACT 

In this paper the dispersion of a solute in an oscillatory flow of a Newtonian fluid in circular pipe in the presence of a 
uniform transverse magnetic field is studied. Periodic body acceleration is also applied. Exact solution of the equation 
governing the flow is obtained using the finite Hankel and Laplace transform technique. Generalized dispersion 
method is employed to solve the diffusion equation and obtained an exact solution. It is observed that the dispersion 
coefficient assumes positive and negative values as the solute moves forward and backward due to the oscillating 
nature of the flow. The effect of magnetic field on dispersion coefficient is found to decrease the dispersion coefficient. 
The presence of body acceleration is observed to enhance dispersion coefficient. The effects of magnetic field and body 
acceleration on mean concentration are also discussed. 
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1. INTRODUCTION: 
 
Human beings often undergo accelerative disturbances in many situations. For example, while landing and taking off 
air crafts, travelling in a tractor, operating a jack hammer and due to sudden movements of body during sports 
activities, the human body experiences external accelerations. It is observed that prolonged exposure to such 
acceleration resulted in several disorders like headache, loss of vision, increase in pulse rate, abdominal pain, venous 
pooling of blood in neck, lungs, brain etc. To protect the body from these ill effects several protective devices have 
been designed [6]. On the other hand, if accelerations are given to the body, by properly timing with respect to heart 
beat it is found that they have therapeutic effects on systemic circulation [2]. Experiments conducted on pigs showed 
that in the case of a cardiogenic shock, blood pressure and cardiac output increased when acceleration was given to the 
body in synchrony with heart beat. This method was suggested to be a salient feature for assisting circulation, 
particularly in the case of patients who are to be treated for cardiogenic shock.  
 
The study of dispersion of a soluble matter in a solvent flowing in channels or pipes has importance in many chemical 
and biological systems.  It is observed that oscillatory flow effects the entire dispersion process when the amplitude of 
the pressure gradient is larger than the mean pressure gradient. Using the method of moments, Aris [1] investigated the 
dispersion of a solute in an oscillatory flow. It is observed that the effective molecular diffusivity contained terms 
proportional to the sequence of the amplitude of the pressure pulse. Chatwin [4] analyzed the dispersion of a passive 
contaminant along the axis of a tube in which the flow is driven by a longitudinal pressure gradient varying 
harmonically with time. He showed that strong oscillatory effects dominate the character of contaminant cloud over 
time intervals of many periods. Smith [14], in his study showed that the sensitivity to time of release of contaminant 
during a cycle and the importance of the location of a discharge source on the flow. Jaeger and Kurzweg [7] obtained 
the dispersion coefficient in an oscillatory flow and observed that it is proportional to the sequence of the amplitude of 
the oscillation and the first power of frequency in the Womersley number to vary from 3 to 15. Watson [16] studied the 
exact analysis for the diffusion in an oscillatory flow in a pipe of arbitrary cross section. The resultant flux of the 
diffusing substance has been analytically evaluated for the cases of a circular pipe and channel. The general behaviour 
of the flux for an arbitrary cross – section in the limiting cases of slow and fast oscillations were discussed. Sarkar and 
Jayaraman [13] analysed the dispersion of a solute in an annulus in the presence of an oscillatory flow field. Ramana 
and Sarojamma [11] investigated the phenomenon of dispersion of a solute in blood vessels when the body is subjected 
to a periodic body acceleration using the generalized dispersion model. They observed that the body acceleration 
enhances the dispersion coefficient in large and small arteries.  
 
In this paper, a mathematical model is developed to understand the effects of magnetic field and external accelerations 
on the phenomenon of dispersion of a solute in blood flows.  
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2 MATHEMATICAL FORMULATION: 
 
Consider the flow of blood modelling in an artery assuming it to be a circular tube and blood is modeled as a 
Newtonian fluid. A uniform transverse magnetic field of strength B0 is applied. For ∗t  > 0, the flow is subjected to a 
periodic body acceleration G in the axial direction. Let 0a  be the amplitude, fb the frequency in Hz and φ  the lead 

angle of G with respect to the heart action, bω = bfπ2 is the circular frequency. The body acceleration G is given by 
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where 0A  is the constant component of pressure gradient, 1A  is the amplitude of the fluctuating component,        

pω =  2 π pf  and pf  is  the pulse frequency. 
 
We assume that the flow is laminar and axi-symmetric and frequency of body acceleration fb is so small that the wave 
effects can be neglected. 

 
Under the above mentioned assumptions, the equation of motion for flow, following [12, 15] in cylindrical polar co-
ordinates  (r, θ, z) can be written in the non-dimensional form as 
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where ρ is the density of blood, µ  is the coefficient of viscosity of blood, σ  is the electrical conductivity of the blood, 

w represents the non dimensional velocity, w 0  is velocity in plane Poiseuille flow
 
,  R is the radius of the tube 
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The initial and boundary conditions in the non dimensional form are given by 
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w and  w2∇  are all finite at r = 0                                         (5b)   
 
w = 0 and  w2∇  = 0 at r = 1                                            (5c) 
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By applying Laplace transform and Hankel transform to equation (3) we obtain the required solution as         
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We consider the dispersion of a bolus of a solute which is initially of z s  units in length and of uniform concentration 
C0. For a fully developed, laminar flow in a tube, the unsteady convective diffusion equation which describes the local 
concentration C of the solute as a function of longitudinal (axial) coordinate z, transverse (radial) co-ordinate r and time 
t can be written in non-dimensional form as  
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The initial and boundary conditions are  
 
 C (0, r, z) = 1  if  z  ≤ 2/zs                                                (9a) 
 

           C (0, r, z) = 0    if  z  > 2/zs                                                         (9b) 
 
 C(t, r, ∞ ) = 0                                                      (9c) 
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3. METHOD OF SOLUTION: 
 
Following the solution procedure of [5] we assume the concentration C (t, r, z) as a series expansion in n
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is the mean concentration over a cross section 
 
Multiply equation (7) by 2r and integrating with respect to r from 0 to 1, we get 
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If we introduce (10) into (12), the following dispersion model for Cm is obtained as    
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and δ i,2 is the Kronecker delta. The first two terms on the right hand side of (13) describe the transport of Cm in the 
axial direction z through convection and diffusion respectively, and therefore the coefficients K1 and K2 are termed as 
the convection and diffusion coefficients for Cm.  For a steady flow in the absence of the magnetic field, K1 = 0 and    
K2 = 1/Pe 2 + 1/192 [5]. But, both the dispersion coefficients K1 and K2 are harmonic functions of time when 
dispersion is considered in an oscillatory flow field [8].                                            

Substituting (10) in (7), using equation (13) and equating the coefficients of n
m
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, gives the partial differential 

equation for  fn as     
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where    f -1 = 0  and  f 0 = 1.  
 
From equation (9), the initial and boundary conditions on f n are obtained as 
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Equations (14) and (15) lead to coupled system of partial equations with boundary and initial conditions described by 
equations (16) 
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Using equation (15) and f 0 = 1, the partial differential equation in f n for n = 1 can be expressed as,  
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From equation (16), we get initial and boundary conditions for f1 as 
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Solving the non-homogeneous partial differential equation (18) satisfying the conditions (19a - b), the expression for 
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where nµ ’s are zeros of the Bessel’s function J1. 
 
Using (20) and (14) we get the expression for K2 as 
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                        (23) 
Solution for Mean Concentration Cm: 
 
Neglecting 3K (t) and higher order coefficients, the generalized dispersion model leads to 
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 The initial and boundary conditions for C m  are given by  
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The solution of the mean concentration for equation (24) with the help of the condition (25) is given by 
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4. RESULTS AND DISCUSSION: 

 
The objective of the present investigation is to understand the combined effect of body acceleration and magnetic field 
on the dispersion of solutes in blood flows in human beings modelling blood as a Newtonian fluid. To obtain a 
quantitative idea of the effects of body acceleration on the phenomenon of dispersion of solutes in blood flow, the 
results are discussed in large and small arteries. The relevant data for various arteries is compiled from published 
literature [3, 9, 10, 17] and is presented in Table 1 
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Table: 1 Data for different arteries 
 

Sl. No. Artery 
Radius 

(×10 -2m) 
Average Velocity 

(× 10 -2m s -1) 
A0 

(×10 Kg m-2 s -1) 

A1 
(×10 Kg m-2 s -1) 

1 Aorta 1.0 45.6 7.3 1.46 
2 Femoral 0.5 50.0 32.0 6.4 
3 Carotid 0.4 50.0 50.0 10.0 
4 Coronary 0.15 98.25 698.65 139.74 

 
The dispersion process in oscillatory flows varies from that of steady flow case. In an oscillator flow it is possible that 
the flow might have changed direction before the dispersion process had time to become fully effective. Due to 
fluctuations in velocity the dispersion coefficient assumes both positive and negative values. In a period of oscillation 
owing to the reversal flow the solute would be carried backward along with flow and thus negative values for 
dispersion are induced. Therefore, in a period of oscillation the dispersion of solutes contracts at each flow reversal. In 
addition to the fluctuating character of the dispersion of solute, the dispersion is further influenced by the body 
acceleration and magnetic field. 
 
The results have been discussed in aorta, femoral, carotid and coronary arteries for different values of amplitudes of 
body acceleration, Hartmann number M, Schmidt’s number Sc and the slug input length zs . 
 
Fig. 1 (a-d) describes the distribution of mean concentration along the axial direction at different times ( 4rn TnT = for 

0 ≤ n ≤ 7 and T r = Sc22 απ ), when the slug input length zs = 0.02, a0 = 0.98, Sc = 100, M=1 and the phase angle 
φ =π /3. It is observed that in all the arteries the peak value of the mean concentration Cm decreases as the dispersion 
time decreases and subsequently the profile becomes flattened. The peak value for T1 is attained at origin in all arteries 
and the peak value drifts to the right of origin for the subsequent time values. The peak value in aorta is attained in the 
vicinity of origin. However, as the radius of the artery decreases the peak is drifted very much away from origin. In 
femoral and carotid the peak value of   Cm is attained in the intervals (0, 0.5) while in coronary it is attained in 0 < z < 
18. 
 
Fig 2 (a-d) depicts the variation of mean concentration Cm versus axial distance for different values of the amplitude of 
the body acceleration when Sc = 100, M=1 and the phase angle φ =π /3.. It is seen that in aorta, when the amplitude of 
the body acceleration is 0.98 there is no much variation when compared to the corresponding case in the absence of 
body acceleration. But when a0 =1.96 there is a significant decrease in the peak of the mean concentration. The peak 
value of the mean concentration is drifted towards the right of the origin. However, in femoral and carotid arteries the 
mean concentration is decreased significantly by the presence of body acceleration and further decreased with increase 
in amplitude of body acceleration. In femoral artery the peak value of mean concentration in the presence of body 
acceleration is reduced from 0.999 to 0.644 (a0 = 0.98). When a0 = 1.96 it is half of the peak value of that in the absence 
of the body acceleration. It is observed that the effect of body acceleration in coronary on Cm is not appreciable.  
 
Fig 3(a-d) presents the variation of mean concentration versus the axial distance when Sc = 100 and a0 = 0.98 for 
different values of Hartmann number. It is observed that the presence of magnetic field increases the mean 
concentration. As the intensity of the magnetic field (i.e., Hartmann number) increases Cm is also increased. In aorta 
there is a two fold increase in the peak value of Cm when M = 2 to that of the value in the absence of the magnetic field. 
The points of the peak values are drifted towards the origin as M increases. A similar behavior is noticed in femoral and 
carotid arteries. But in coronary artery the influence of magnetic field is relatively less. The peak value of mean 
concentration increases from 0.5062 to 0.7885 when M takes the value from 0 to 2 in coronary artery. 
 
Fig 4 (a-d) shows the variation of dispersion coefficient K2 versus time when Sc = 1, M = 7 for different values of 
amplitude of body acceleration. Due to the oscillatory nature of the flow, K2 shows an oscillatory behavior. It assumes 
positive and negative values due to the forward and backward movement of the solute. It is also observed that it is 
harmonic. The presence of body acceleration increases the magnitude of the dispersion coefficient. When M = 7 and a0 
=1.96 the maximum value of K2 in aorta is twice that of the corresponding case in the absence of body acceleration. In 
femoral and carotid arteries the impact of body acceleration is very meager and in coronary artery the effect of body 
acceleration is negligible. 
 
Fig 5(a-d) describes the effect of magnetic field on K2 in one cycle of time. It is noticed that the presence of the 
magnetic field decreases the dispersion coefficient in all arteries. The negative values of K2 are not symmetrical with 
reference to origin. In aorta in the presence of magnetic field (M = 1) the maximum value of K2 is reduced to 3.025 
from 4.2357 when M = 0. When M = 2, the maximum value of K2 is three times less than that of the non-magnetic  
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case. When M = 3, 4 the maximum and minimum values are symmetrical about the origin. For M = 4 the maximum 
value of K2 is reduced by 12 times of that value corresponding to M = 1.When M = 7, K2 is almost uniformly zero. 
A similar trend is noticed in the rest of the three arteries qualitatively. However, the magnitude of the dispersion 
coefficient increases with decrease in the size of the artery. 
 
Fig 6 (a-d) describes the mean concentration Cm along the axial direction for different values of Ar, the ratio of 
amplitudes of the body acceleration to that of the pressure gradient. When the amplitude of body acceleration is half of 
the amplitude of the pressure gradient, the peak value of the mean concentration in aorta occurs at z =1 and when it is 
equal the point of peak value drifts to the right of z =1 and it decreases from 0.0173 to 0.0154. With an increase in Ar 
the point of peak value of Cm drifts further and the magnitude is also decreased in aorta. In the remaining arteries also  
Cm shows a similar behavior qualitatively. 
 
The variation of ratio of frequencies of body acceleration to that of pressure gradient (Fr) on dispersion coefficient is 
shown in Fig 7 (a-d). In aorta, when frequency of body acceleration is half of the pressure gradient, K2 assumes 
negative values attaining a minimum and starts increasing and assumes positive values again attaining a maximum 
value and shows a periodical behavior in the remaining cycle. When the frequencies are equal, K2 increases, assuming 
positive values and then decreases assuming negative values and shows the  same behavior in  the rest of the cycle as in 
the case Fr = 0.5 when the frequency of body acceleration is twice that of the pressure gradient, it is qualitatively same 
as in the case Fr = 0.5. In rest of all arteries a similar behavior is noticed. 
 
Fig 8 (a-d) illustrates the mean concentration for different values of Hartmann number in the four arteries when the 
observation point is inside the slug input. It is observed that the presence of magnetic field enhances the Cm and it 
reduces with increase in time. A similar behavior is noticed in the remaining arteries also. Fig 9 (a-d) shows the 
distribution of mean concentration when the point of observation is outside the slug. In aorta it is noticed that there is a 
sudden rise in Cm and attains its peak value and drops significantly in course of time. The presence of magnetic field 
and increase in magnetic field reduces the value of Cm  and the drop in its value after attaining its peak value is also 
controlled. In femoral the peak values are observed to be the same.  In carotid qualitatively a similar behavior as in 
aorta is noticed. But the peak values are observed to be attained almost at the same time for all of M. In coronary the 
effect of magnetic field as Cm versus time is negligible. 
 
5 CONCLUSIONS: 
 
The dispersion of a solute in blood flow under the influence of periodic body acceleration and a uniform transverse 
magnetic field is studied. The governing equations of flow and dispersion are solved employing finite Hankel and 
Laplace transformation and generalized dispersion model. The study brings out the development of the mass transport 
due to the introduction of a solute in terms of the convection and dispersion coefficients. The results are discussed in 
large and small arteries. Due to the fluctuations in the velocity owing to the oscillatory flow the dispersion coefficient 
assumes positive and negative values. The effect of magnetic field is found to decrease the dispersion coefficient and is 
significant in aorta. In aorta K2 is reduces by 12 times of the corresponding value when M = 1. While in the other 
arteries the effect of magnetic field on K2 is not as prominent as in aorta. The effect of body acceleration on the 
dispersion coefficient K2 in aorta is found to be significant where as in femoral and carotid arteries its effect is meager, 
while in coronary artery it is negligible. The mean concentration Cm is found to increase in aorta, femoral and carotid 
arteries and in coronary artery it is relatively less. 
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Fig 2: Variation of Cm with z for different values of a0 at zs = 0.02, Sc = 100, M=1 in (a) Aorta (b) Femoral (c) Carotid 
(d) Coronary 

 
 
 
 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3: Variation of Cm with z for different values of M at zs = 0.02, Sc = 100 in (a) Aorta (b) Femoral (c) Carotid  
 (d) Coronary  
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Fig 4: Variation of K2 with t for different values of a0 at Sc = 1, M = 7 in  (a) Aorta (b) Femoral (c) Carotid 
(d) Coronary 

Fig 5: Variation of K2 with t for different values of M at Sc = 1, a0 = 0.98   in  (a) Aorta (b) Femoral (c) Carotid 
(d) Coronary 
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Fig 6: Variation of Cm with z for different values of Ar when Sc = 1, M=1   in (a) Aorta (b) Femoral (c) Carotid 
(d) Coronary 

 

Fig 7:  Variation of K2 with t for different values of  Fr when Sc = 1  in (a) Aorta (b) Femoral (c) Carotid (d) Coronary 
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Fig 4.9(c,d). Variation of Cm with t for different values of M at zs = 0.02,  

Sc = 1, z = 0.005 in (c) Carotid (d) Coronary 
 
 
 
 
 
 
 
 
 
 
 

Fig 8: Variation of Cm with t for different values of M at zs = 0.02, Sc = 1, z = 0.005 in (a) Aorta (b) Femoral 
(c) Carotid (d) Coronary 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 9: Variation of Cm with t for different values of M at zs = 0.02, Sc = 1,z = 0.05 in (a) Aorta  (b) Femoral 
    (c) Carotid (d) Coronary 
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