DUAL PSUEDO-COMPLEMENTED ALMOST DISTRIBUTIVE LATTICES

G. C. Rao* & Naveen Kumar Kakumanu¹

Department of Mathematics, Andhra University, Visakhapatnam, Andhra Pradesh – 530003, India E-mail: gcraomaths@yahoo.co.in; ramanawinmaths@gmail.com

(Received on: 16-12-11; Accepted on: 05-01-12)

ABSTRACT

The concept of a dual pseudo-complemented Almost Distributive Lattice is introduced. Necessary and sufficient conditions for an Almost Distributive Lattice to become a dual pseudo-complemented Almost Distributive Lattice are derived. It is proved that a dual pseudo-complemented Almost Distributive Lattice is equationally definable. A one to one correspondence between the set of all dual pseudo-complementations on an ADL A and the set of all maximal elements of A is obtained. Also proved that the set $A_* = \{x_* \land m \mid x \in A\}$ is a Boolean algebra.

Keywords: Almost Distributive Lattice; Maximal element; Principal ideal; Dual pseudo-complementation.

AMS Subject Classification: 06D15, 06D99.

INTRODUCTION

A pseudo-complemented lattice is a lattice A such that to each $x \in A$, there exists an element $x^* \in A$ such that $x \land y = 0$ for any $y \in A$ if and only if $y \le x^*$. In [6], Swamy, U.M., Rao, G.C. and Nanaji Rao, G. introduced the concept of Pseudo-Complementation on Almost Distributive Lattice and studied its properties. They observed that an Almost Distributive Lattice (ADL) A can have several pseudo-complementations and they discussed the relation between the maximal elements and the pseudo-complementations on A. Unlike in lattices, the dual of an ADL is not an ADL, in general. For this reason, in this paper, the concept of a dual pseudo-complementation in an ADL is introduced and important properties of a dual pseudo-complementation in an ADL are derived. It is proved that dual pseudo-complementation on an ADL is equationally definable. A number of characterizations for an ADL to become a dual pseudo-complementated ADL are obtained.

1. PRELIMINARIES

In this section, we give the necessary definitions and important properties of an ADL taken from [5]

Definition 1.1: [5] An algebra $(A, V, \Lambda, 0)$ of type (2, 2, 0) is called an Almost Distributive Lattice (ADL) if it satisfies the following axioms:

(i)
$$x \lor 0 = x$$

(ii)
$$0 \land x = 0$$

(iii)
$$(x \lor y) \land z = (x \land z) \lor (y \land z)$$

(iv)
$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$

(v)
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

(vi)
$$(x \lor y) \land y = y$$
 for all $x, y, z \in A$.

The binary relation \leq defined on an ADL A by $x \leq y$ if and only if $x \wedge y = x$ or equivalently $x \vee y = y$, is a partial ordering on A. A non-empty subset I of an ADL A is called an ideal of A if $x \vee y \in I$ and $x \wedge a \in I$ for any $x, y \in I$ and $a \in A$. The principal ideal of A generated by x is denoted by $x \in I$. The set $x \in I$ of all

principal ideals of A forms a distributive lattice under the operations \vee , \wedge defined by $(x] \vee (y] = (x \vee y]$ and $(x] \wedge (y] = (x \wedge y]$ in which (0] is the least element. If A has a maximal element m, then (m] is the greatest element of PI(A).

Theorem 1.2: [5] Let A be an ADL and $x, y \in A$. Then the following are equivalent:

- (i) $(x] \subseteq (y]$
- (ii) $y \wedge x = x$
- (iii) $y \lor x = y$
- (iv) $[y] \subseteq [x]$

For other properties of an ADL, we refer to [5].

2. DUAL PSEUDO-COMPLEMENTATION ON ADLS

We begin with the following definition of a dually pseudo-complementation in an ADL.

Definition 2.1: Let $(A,V,\Lambda,0)$ be an ADL. Then a unary operation * on A is called a dual pseudo-complementation on A if, for any $x,y \in A$, it satisfies the following conditions:

$$\mathbf{d_1}$$
: if $x \vee y = m$, then $(x_* \vee y) \wedge m = y \wedge m$.

d₂: $x \vee x_*$ is a maximal element of A.

$$\mathbf{d_3:}(x \wedge y)_* = x_* \vee y_*.$$

An ADL A with a dual pseudo-complementation is called a dually Pseudo-Complemented Almost Distributive Lattice (or simply dual PCADL). Here afterwards, A stands for a dual PCADL $(A,V,\Lambda,*,0,m)$ with a maximal element m.

In the following theorem, some important fundamental properties of * which will be frequently used are given and they can be proved directly from the definition.

Theorem 2.2: For any $x, y \in A$, we have the following:

- (i) $m_* = 0$.
- (ii) If x is maximal, then $x_* = 0$.
- (iii) $(x \wedge m)_* = x_*$.
- (iv) $(x \wedge y)_* = (y \wedge x)_*$ and $(x \vee y)_* = (y \vee x)_*$.
- (v) $0_* \wedge m = m$.
- (vi) $m_{**} \wedge m = m$.
- (vii) $x_{**} \wedge m \leq x \wedge m$ and $x \wedge x_{**} = x_{**}$.

Theorem 2.3: For any $x, y \in A$, we have the following:

- (i) If $x \le y$, then $y_* \le x_*$ and $x_{**} \le y_{**}$.
- (ii) $x_* = x_{***}$.
- (iii) $x_* = 0 \Leftrightarrow x_{**} \land m = m$.
- (iv) $x \wedge m = m \Leftrightarrow x_{**} \wedge m = m$.

Proof: Suppose $x \le y$. Then $x = x \land y$. Thus $x_* = (x \land y)_* = (y \land x)_* = y_* \lor x_*$ and hence $y_* \le x_*$. Similarly, we get $x_{**} \le y_{**}$. Thus we get (i). Since $x_{**} = x \land x_{**}$, we get $x_{***} = (x \land x_{**})_* = x_* \lor x_{***} = x_*$ (by Theorem 2.2 (vii)). We get (iii), by using the facts that $x_* \land x_* = x_*$ and hence $x_* \land x_* = x_*$. Now we prove (iv). Now if $x \land x_* = x_*$, then $x_* = x_* = x_*$ and hence $x_* \land x_* = x_*$. Converse follows from Theorem 2.2 (vii).

Corollary 2.4: For any $x, y \in A$, we have the following:

(i)
$$x_{**} = (x \wedge y)_{**} \vee x_{**}$$
.

(ii)
$$x_{**} = x_{**} \wedge (x \vee y)_{**}$$
.

In a distributive lattice, the dual pseudo-complementation is unique (if it exists). But, in an ADL, there can be several dual pseudo-complementations. Now we prove the following.

Lemma 2.5: Let A be an ADL and * and \bot be dual pseudo-complementations on A. Then, for any $x, y \in A$, we have the following:

(i)
$$X_{+} \wedge X_{*} = X_{*}$$
 and $X_{+} \vee X_{*} = X_{+}$.

(ii)
$$x_{*\perp} = x_{\perp\perp}$$
.

(iii)
$$x_* = y_* \Leftrightarrow x_\perp = y_\perp$$
.

(iv) X_* is maximal $\iff X_+$ is maximal.

(v)
$$x_{+} = x_{*} \wedge 0_{+}$$
.

(vi)
$$x_* \wedge x_{**} = 0 \iff x_+ \wedge x_{++} = 0.$$

Proof: Since $(x \lor x_\perp) \land m = m$, we get $(x_* \lor x_\perp) \land m = x_\perp \land m$. Now $x_\perp \land x_* = x_\perp \land m \land x_* = (x_* \lor x_\perp) \land m \land x_* = (x_\perp \lor x_*) \land x_* = x_*$ and hence $x_\perp \lor x_* = x_\perp$. Thus we get (i).

Now
$$x_{*\perp} = (x_{\perp} \wedge x_*)_{\perp} = (x_* \wedge x_{\perp})_{\perp} = x_{\perp\perp}$$
. To prove (iii), suppose $x_* = y_*$.

Then $x_{\perp} = x_{\perp \perp \perp} = x_{* \perp \perp} = y_{* \perp \perp} = y_{\perp \perp} = y_{\perp}$. By symmetry, we get the converse. (iv) follows from (i). Now $x_* \wedge 0_{\perp} = x_{\perp} \wedge x_* \wedge 0_{\perp} = x_{\perp} \wedge 0_{\perp} = x_{\perp}$ (since $x_{\perp} \leq 0_{\perp}$). Thus we get (v). Suppose $x_* \wedge x_{**} = 0$.

Then
$$x_{\perp} \wedge x_{\perp \perp} = x_{\perp} \wedge x_{*\perp} = (x_* \wedge 0_{\perp}) \wedge (x_{**} \wedge 0_{\perp}) = 0$$
.

Hence $x_{\perp} \wedge x_{\perp \perp} = 0$. By symmetry, we get the converse.

If (A, V, Λ) is a finite distributive lattice and if we define, for any $x \in A$, $x_* = \Lambda \{ y \in A \mid x \vee y = 1 \}$. Then * is a dual pseudo-complementation on A. Using this, we prove the following.

Theorem 2.6: If A is a finite ADL, then A is a dual PCADL.

Proof: Let A be a finite ADL and m be a maximal element of A with respective \leq . Then $([0,m],\vee,\wedge)$ is a distributive lattice and hence a dual pseudo-complemented lattices. For any $x \in A$, define $x_{\perp} = (x \wedge m)_*$ where $(x \wedge m)_*$ is the dual pseudo-complement of $x \wedge m$ in [0,m]. Let $x,y \in A$. Now

$$(x \lor x_{\perp}) \land m = (x \land m) \lor (x_{\perp} \land m)$$

$$= (x \wedge m) \vee ((x \wedge m)_* \wedge m)$$

= $(x \wedge m) \vee (x \wedge m)_*$
= m .

Suppose
$$x \vee y = m$$
. Then $(x_{\perp} \vee y) \wedge m = ((x \wedge m)_* \wedge m) \vee (y \wedge m)$
$$= (x \wedge m)_* \vee (y \wedge m)$$
$$= (y \wedge m) \text{ (since } (x \wedge m) \vee (y \wedge m) = m).$$

Finally,
$$(x \wedge y)_{\perp} = ((x \wedge y) \wedge m)_* = (x \wedge m)_* \vee (y \wedge m)_* = x_{\perp} \vee y_{\perp}$$
. Hence A is a dual PCADL.

Theorem 2.7: For any $x, y \in A$, the following are equivalent:

(i)
$$(x \lor y) \land m = m$$
.

(ii)
$$(x_{**} \vee y) \wedge m = m$$
.

(iii)
$$(x_{**} \vee y_{**}) \wedge m = m$$
.

(iv)
$$(x \lor y_{**}) \land m = m$$
.

Proof: (i) \Rightarrow (ii): Suppose $(x \lor y) \land m = m$. Then $(x \land m) \lor (y \land m) = m$ and hence, by definition $((x \land m)_* \lor (y \land m)) \land m = y \land m$. Thus, we get $(x_* \lor y) \land m = y \land m$.

Now
$$(x_{**} \lor y) \land m = (x_{**} \land m) \lor [(x_* \lor y) \land m] = (x_{**} \lor x_* \lor y) \land m = m$$
. (ii) \Rightarrow (iii) follows from (i) \Rightarrow (ii). Since $x_{**} \land m \le x \land m$, we get (iii) \Rightarrow (iv). Similarly, since $y_{**} \land m \le y \land m$, we get (iv) \Rightarrow (i).

Theorem 2.8: For any $x, y \in A, (x \vee y)_{**} = x_{**} \vee y_{**}.$

Proof: From theorem 2.3 (i), we get $x_{**} \vee y_{**} \leq (x \vee y)_{**}$. Since for any $x, y \in A$, $((x \vee y) \vee (x \vee y)_*) \wedge m = m$, by Theorem 2.7, we get $[x_{**} \vee y_{**} \vee (x \vee y)_*] \wedge m = m$. Thus $((x \vee y)_{**} \vee x_{**} \vee y_{**}) \wedge m = (x_{**} \vee y_{**}) \wedge m$ and hence $(x \vee y)_{**} = x_{**} \vee y_{**}$.

In the following two theorems we prove that dual PCADL is equationally definable.

Theorem 2.9: Let A be an ADL with a maximal element m. A unary operation * on A is a dual pseudo-complementation on A if and only if, for any $x, y \in A$, the following conditions hold:

(i)
$$(x \lor x_*) \land m = m$$
.

(ii)
$$(x_{**} \lor x) \land m = x \land m$$
.

(iii)
$$(x \lor y)_{**} = x_{**} \lor y_{**}$$
.

(iv)
$$(m_* \vee x) \wedge m = x \wedge m$$
.

$$(v) (x \wedge y)_* = x_* \vee y_*.$$

Proof: Suppose A satisfies conditions (i) to (v). It is enough to prove $\mathbf{d_1}$ of definition 2.1. For this, first we prove that (a). $(x \wedge m)_* \wedge m = (x_* \vee m_*) \wedge m = (m_* \vee x_*) \wedge m = x_* \wedge m$ (by (iv)).

(b).
$$x_{***} \wedge m = (x_{***} \vee m_*) \wedge m$$
 (by (iv))
= $(x_{**} \wedge m)_* \wedge m$ (by (v))

$$= (x_{**} \wedge x \wedge m)_* \wedge m \text{ (by (ii))}$$
$$= (x_{***} \vee x_* \vee m_*) \wedge m = x_* \wedge m \text{ (by (a) and (iv))}.$$

Let $x, y \in A$ such that $x \vee y = m$.

Then
$$y \wedge m = (m_* \vee y) \wedge m$$
 (by (iv))
$$= \left\{ \left[(x_* \vee x_{**}) \wedge m \right]_* \vee y \right\} \wedge m$$
 (by (i))
$$= \left[((x_* \vee x_{**}) \wedge m)_* \wedge m \right] \vee (y \wedge m)$$

$$= \left[(x_* \vee x_{**})_* \wedge m \right] \vee ((y_{**} \vee y) \wedge m)$$
 (by (a) and (ii))
$$= ((x \wedge x_*)_{**} \vee y_{**} \vee y) \wedge m$$
 (by (v))
$$= \left[((x \wedge x_*) \vee y)_{**} \vee y \right] \wedge m$$
 (by (iii))
$$= \left[((x \vee y) \wedge (x_* \vee y))_{**} \vee y \right] \wedge m$$

$$= \left[(m \wedge (x_* \vee y))_{**} \vee y \right] \wedge m$$

$$= \left[(x_* \vee y)_{**} \vee y \right] \wedge m$$

$$= (x_{***} \vee y_{**} \vee y) \wedge m$$
 (by (iii))
$$= (x_* \vee y) \wedge m$$
 (by (b) and (ii)).

Hence A is a dual PCADL. Conversely, if A is a dual PCADL, then conditions (i) to (v) are already proved.

Theorem 2.10: Let A be an ADL with a maximal element m. A unary operation * on A is a dual pseudo-complementation if and only if, for any $x, y \in A$, it satisfies the following conditions:

(i)
$$(x_* \vee y) \wedge m = ((x \vee y)_* \vee y) \wedge m$$
.

(ii)
$$(m_* \vee x) \wedge m = x \wedge m$$
.

(iii)
$$m_{**} \wedge m = m$$
.

(iv)
$$(x \wedge y)_* = x_* \vee y_*$$
.

Proof: Suppose * is a dual pseudo-complementation on A. Clearly, we have (ii), (iii) and (iv). Since $(x \lor y \lor (x \lor y)_*) \land m = m$, we get $(y \lor (x \lor y)_*) \land m = (x_* \lor y \lor (x \lor y)_*) \land m = (x_* \lor y) \land m$.

Conversely, suppose that * satisfies conditions (i) to (iv). Let $x, y \in A$ such that $x \vee y = m$.

Then
$$(x \lor y)_* \land m = [(x \lor y)_* \lor y] \land m$$
 (by (i))
$$= (m_* \lor y) \land m = y \land m$$
 (by (ii)). Thus we get \mathbf{d}_1 of def 2.1.

Now
$$(x_* \lor x) \land m = ((x_* \land m) \lor x) \land m$$

$$= \{ [(m_* \lor x) \land m]_* \lor x \} \land m \text{ (by (ii))}$$

$$= ((m_* \lor x)_* \lor x) \land m \text{ (since } (x \land m)_* \land m = x_* \land m \text{)}$$

$$= (m_{**} \lor x) \land m \text{ (by (i))}$$

$$= m$$

Hence A is a dual PCADL.

Theorem 2.11: Let A be an ADL with a maximal element m. Then the following are equivalent:

- (i) A is a dual PCADL.
- (ii) $[a, a \lor m]$ is a dual pseudo-complemented lattice for all $a \in A$.
- (iii) [0, m] is a dual pseudo-complemented lattice.

Proof: (i) \Rightarrow (ii): Suppose A is a dual PCADL and $a \in A$. For $x \in A$, define $x_{\perp} = a \lor (x_* \land m)$. Let $x, y \in [a, a \lor m]$ such that $x \lor y = a \lor m$. Then $(x \lor y) \land m = m$ and hence $(x_* \lor y) \land m = y \land m$. This implies $(x_* \lor y) \land m_1 = y \land m_1 = y$ where $m_1 = a \lor m$. Therefore $x_* \land m_1 \le y$ and

hence $x_{\perp} = a \vee (x_* \wedge m) \leq y$. Conversely, suppose $x_{\perp} \leq y$.

Then $x \vee x_{\perp} = (x \vee x_{\perp}) \wedge m_1 = [x \vee a \vee (x_* \wedge m)] \wedge m_1 = m_1 = a \vee m$. Hence $[a, a \vee m]$ is a dual pseudo-complemented lattice. (ii) \Rightarrow (iii) is trivial. Now we show that (iii) \Rightarrow (i). Suppose [0, m] is a dual pseudo-complemented lattice under the unary operation \bot . For $x \in A$, define $x_* = (x \wedge m)_{\perp}$.

Then $(x \lor x_*) \land m = [(x \land m) \lor (x_* \land m)] = (x \land m) \lor (x \land m)_{\perp} = m$. Suppose $x, y \in A$ such that $x \lor y = m$. Then $(x \land m) \lor (y \land m) = m$.

Thus $(x \wedge m)_{\perp} \leq y \wedge m$ and hence $(x_* \vee y) \wedge m = (x_* \wedge m) \vee (y \wedge m) = (x \wedge m)_{\perp} \vee (y \wedge m) = y \wedge m$. Finally, $(x \wedge y)_* = (x \wedge y \wedge m)_{\perp} = [(x \wedge m) \wedge (y \wedge m)]_{\perp} = (x \wedge m)_{\perp} \vee (y \wedge m)_{\perp} = x_* \vee y_*$. Hence A is a dual PCADL. If A is an ADL, then the set PI(A) of all principal ideals of A forms a distributive lattice [5]. Now, we prove the following.

Theorem 2.12: Let A be an ADL. Then A is a dual PCADL if and only if PI(A) is a dual pseudo-complemented lattice.

Proof: Suppose $(A, \vee, \wedge, *, 0, m)$ is a dual PCADL. For any $a \in A$, define $(x]_+ = (x_*]$. Let $x, y \in A$ such that $(x] \vee (y] = A$. Then $m = (x \vee y) \wedge m$, so that $y \wedge m = (x_* \wedge m) \vee (y \wedge m)$ and hence $(x_*] \subseteq (y]$. Also $(x] \vee (x_*] = (x \vee x_*] = ((x \vee x_*) \wedge m] = (m] = A$. Hence PI(A) is a dual pseudo-complemented lattice.

Conversely, suppose $(PI(A), \vee, \wedge, +)$ is a dual pseudo-complemented lattice. For $x \in A$, define $x_* = a \wedge m$ where $(x]_+ = (a]$. Since (a] = (b] if and only if $a \wedge m = b \wedge m$, we get that * is well defined. We also get that $(x]_+ = (x_*]$. Let $x, y \in A$ such that $x \vee y = m$. Then $(x] \vee (y] = A$ and hence $(x]_+ \subseteq (y]$. Therefore $x_* \wedge m \leq y \wedge m$. Now, $(m] = (x] \vee (x]_+ = (x \vee x_*]$ and hence $(x \vee x_*) \wedge m = m$. Therefore $x \vee x_*$ is a maximal. Finally, let $x, y \in A$ suppose $(x]_+ = (a]$ and $(y]_+ = (b]$.

Then $(x \cap y]_+ = ((x] \cap (y])_+ = (x]_+ \vee (y]_+ = (x_*] \vee (y_*] = (x_* \vee y_*].$

Hence by definition, $(x \wedge y)_* = x_* \vee y_*$.

Thus A is a dual PCADL.

Theorem 2.13: Let N be the set of all maximal elements in A and DPC(A) be the set of all dual pseudo-complementations on A. For any $n \in N$, define $*_n : A \to A$ by $x_{*_n} = x_* \wedge n$ for all $x \in A$. Then $(A, \vee, \wedge, *_n, 0, n)$ is a dual PCADL and the map $\varphi : N \to DPC(A)$ defined by $\phi(x) = x_*$ is a bijection.

Proof: First we prove that φ is well-defined. Let $x, y \in A$ such that $x \vee y$ is maximal.

Then
$$(x_{*_n} \lor y) \land n = ((x_* \land n) \lor y) \land m \land n = y \land m \land n = y \land n$$

and $(x \lor x_{*_n}) \land n = (x \land n) \lor (x_* \land n) = (x \lor x_*) \land n = m \land n = n$.

Therefore $x \vee x_*$ is maximal.

Now $(x \wedge y)_{*_n} = (x \wedge y)_* \wedge n = (x_* \vee y_*) \wedge n = (x_* \wedge n) \vee (y_* \wedge n) = x_{*_n} \wedge y_{*_n}$. Therefore $*_n$ is a dual pseudo-complementation on A. Let n_1 and n_2 be two maximal elements such that $*_{n_1} = *_{n_2}$.

Then
$$n_1 = 0_* \wedge n_1 = 0_{*_{n_1}} = 0_{*_{n_2}} = 0_* \wedge n_2 = n_2$$
.

Finally, we prove φ is onto. Let $\bot \in DPC(A)$.

Then $n_0=0_\perp$ and for any $x\in A$, $x_{*_{n_0}}=x_*\wedge 0_\perp=x_\perp$ (by lemma 2.5 (v)). Thus φ is a bijection.

Let A be an ADL. It may be recalled that (A, \leq) is a partial ordered set if we define $x \leq y$ if and only if $x \wedge y = x$ or equivalently $x \vee y = y$, for any $x, y \in A$. Now we prove the following.

Theorem 2.14: (A_*, \leq) is a Boolean algebra, where $A_* = \{a_* \land m \mid a \in A\}$.

Proof: For any $x \in A$, we have $0 \le x$ and hence $x_* \le 0_*$. So that, for any $x, y \in A$, $(x \land y)_* = x_* \lor y_* = y_* \lor x_*$, and hence $(x_* \lor y_*) \land m$ is the l.u.b of $x_* \land m, y_* \land m$ in (A_*, \le) . Also, since $x \land m \le (x \lor y) \land m$ and $y \land m \le (x \lor y) \land m$, we get $x_* \ge (x \lor y)_*$ and $y_* \ge (x \lor y)_*$. Thus $(x \lor y)_* \land m$ is lower bound of $x_* \land m, y_* \land m$ in (A_*, \le) . Suppose $t_* \land m \in A_*$ such that $t_* \land m \le x_* \land m$ and $t_* \land m \le y_* \land m$.

Then $x_{**} \leq t_{**}$, $y_{**} \leq t_{**}$ and hence $x_{**} \vee y_{**} \leq t_{**}$. Thus $t_* \wedge m \leq (x_{**} \vee y_{**})_* \wedge m$. If we write $(x_* \wedge m)\overline{\Lambda}(y_* \wedge m) = (x_{**} \vee y_{**})_* \wedge m$, then $(x_* \wedge m)\overline{\Lambda}(y_* \wedge m)$ is the g.l.b of $x_{**} \wedge m$, $y_{**} \wedge m$ in the poset (A_*, \leq) .

Hence $\left(A_*,V,\overline{\Lambda},0,0_*\wedge m\right)$ is a bounded lattice. For any $x\in A_*$, $\left(x_*\vee x_{**}\right)\wedge m=m=0_*\wedge m$ and $\left(x_*\wedge m\right)\overline{\Lambda}\left(x_{**}\wedge m\right)=\left(x_{**}\vee x_{***}\right)_*\wedge m=0$. Thus $\left(A_*,V,\overline{\Lambda},0,0_*\wedge m\right)$ is a complemented lattice.

Finally, we prove the distributivity. Let $x_* \wedge m$, $y_* \wedge m$, $z_* \wedge m \in A_*$. Then

$$((x_* \wedge m)\overline{\Lambda}(y_* \wedge m)) \vee ((x_* \wedge m)\overline{\Lambda}(z_* \wedge m)) = ((x_{**} \vee y_{**})_* \wedge m) \vee ((x_{**} \vee z_{**})_* \wedge m)$$

$$= [(x_{**} \vee y_{**}) \wedge (x_{**} \vee z_{**})]_* \wedge m$$

$$= [x_{**} \vee (y_{**} \wedge z_{**})]_{**} \wedge m$$

$$= [x_{***} \vee (y_{**} \wedge z_{**})_{**}]_* \wedge m$$

$$= [x_{*} \vee (y_{**} \vee z_{**})_*]_* \wedge m$$

$$= [x_* \vee (y_* \vee z_*)_*]_* \wedge m$$

$$= (x_* \wedge m)\overline{\Lambda}((y_* \wedge m) \vee (z_* \wedge m)).$$

Hence $\left(A_*,V,\overline{\Lambda},0,0_*\wedge m\right)$ is a Boolean algebra.

REFERENCES:

- [1] Frink, O.: Pseudo-complements in semi-lattice, Duke Math J. 29, 505 -514(1962).
- [2] G. Epstein and A. Horn: P-algebras, an abstraction from Post algebras, Vol. 4, Number 1, 195-206,1974, Algebra Universalis.
- [3] Gratzer, G.: Lattice Theory: First concepts and Distributive Lattices, W. H. Freeman and Company, San Fransisco, 1971.
- [4] Lee, K.B.: Equational class of distributive pseudo-complemented lattices, Cand. J. Math. 22, 881-891(1970).
- [5] Swamy, U.M. and Rao, G.C., Almost Distributive Lattices, J. Aust. Math. Soc. (Series A), Vol.31 (1981), 77-91.
- [6] Swamy, U.M., Rao, G.C. and Rao, G.N., Pseudo-complementation on Almost Distributive Lattices, Southeast Asain Bulletin of Mathematics, Vol.24(2000), 95-104.

[1The author research is supported by U.G.C under XI Plan]
