International Journal of Mathematical Archive-3(2), 2012, Page: 595-602 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

M-CONTINUITY AND ITS DECOMPOSITIONS

¹R. G. Balamurugan, ²S. Vijaya and ³O. Ravi*

¹Department of Mathematics, Cauvery International School, Manaparai, Trichy District, Tamil Nadu, India E-mail: rgbala2010@yahoo.com

²Department of Mathematics, Madurai Institute of Engineering and Technology, Pottapalayam, Sivagangai District, Tamil Nadu, India E-mail: viviphd.11@gmail.com

³Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India E-mail: siingam@yahoo.com

(Received on: 04-01-12; Accepted on: 09-02-12)

ABSTRACT

*T*he aim of this paper is to introduce the notions of *R*-locally *m*-closed sets and π -locally *m*-closed sets and some new subsets of minimal spaces and to obtain decompositions of *M*-continuity.

2010 Mathematics Subject Classification: 54C10, 54C08, 54C05.

Key words and Phrases: R-locally m-closed set, π -locally m-closed set, Λ_{mr} -set, $\Lambda_{m\pi}$ -set, (Λ, m) -closed set, (Λ, mr) -closed set, $(\Lambda, m\pi)$ -closed set.

1. INTRODUCTION

In [4] Maki introduced the notions of minimal structures and minimal spaces. Popa and Noiri [6] introduced a new notion of M-continuous functions as a function defined between sets satisfying some minimal conditions. In 1970, the notion of generalized closed (briefly, g-closed) sets were introduced and investigated by Levine [3]. Recently, many modifications of g-closed sets have defined and investigated. One among them is mg-closed sets which were introduced by Noiri and studied in [5]. In [5], he also introduced locally m-closed sets in minimal spaces.

In this paper, we introduce the notions of R-locally m-closed sets and π -locally m-closed sets, some new subsets of minimal spaces and obtain decompositions of M-continuity. Also we investigate some properties and characterizations of these sets with some theorems, examples and counter examples.

2. PRELIMINARIES

Definition 2.1[4]: A subfamily $m_x \subseteq P(X)$ is said to be a minimal structure on X if $\phi, X \in m_x$. The pair (X, m_x) is called a minimal space (or an m-space). A subset A of X is said to be m-open if $A \in m_x$. The complement of an m-open set is called m-closed set. We set m-Int(A)= $\bigcup \{U: U \subseteq A, U \in m_x\}$ and m-Cl(A) = $\cap \{F: A \subseteq F, X = F \in m_x\}$.

Lemma 2.2 [6]: Let (X, m_x) be an m-space and $A \subset X$. Then $x \in m$ -Cl(A) if and only if $U \bigcap A \neq \phi$ for every $U \in m_x$ containing x.

A minimal space (X, m_x) has the property [B] if the union of any family of subsets belonging to m_x belongs to m_x .

Proposition 2.3 [6]: Let (X, m_x) be a minimal space.

(i) For any two subsets A, B of X, the following properties hold:
(a) A⊂m-Cl(A) and A = m-Cl(A) if A is a m-closed set.

- (b) m-Int(A) \subset A and A = m-Int(A) if A is an m-open set.
- (c) $A \subset B \Longrightarrow m\text{-Cl}(A) \subset m\text{-Cl}(B)$ and $A \subset B \Longrightarrow m\text{-Int}(A) \subset m\text{-Int}(B)$.
- (d) m-Cl(m-Cl(A)) = m-Cl(A).
- (e) $(m-Cl(A))^{c} = m-Int(A^{c})$ and $(m-Int(A))^{c} = m-Cl(A^{c})$.
- (f) $m-Cl(\phi) = \phi$; m-Cl(X) = X; $m-Int(\phi) = \phi$; m-Int(X) = X.

(ii) The following are equivalent.

- (a) m_x has the property [B].
- (b) If m-Int(A) = A, then $A \in m_x$.
- (c) If m-Cl(B) = B, then $X B \in m_x$.

Definition 2.4 [8]: A subset A of a minimal space (X, m_x) is said to be

- (a) regular m-open if A = m-Int(m-Cl(A)),
- (b) m-semi open if $A \subset m$ -Cl(m-Int(A)),
- (c) m- π -open if it is the finite union of regular m-open sets of A.

Definition 2.5 [5]: A subset A of a minimal space (X, m_x) is said to be mg-closed if m-Cl(A) \subset U whenever A \subset U and U is m-open in X.

Definition 2.6[5]: A subset A of an m-space (X, m_x) is said to be locally m-closed if $A = U \cap V$ where U is m-open and V is m-closed.

Lemma 2.7 [8]: For the subsets of a minimal space (X, m_x) satisfying property [B], every m- π -open set is an m-open set but not conversely.

Example 2.8: Let (X, m_x) be a minimal space satisfying property [B], such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{c\}, \{a, b\}, \{a, c\}, X\}$. Then $A = \{a, c\}$ is an m-open set but not an m- π -open set.

Remark 2.9 [8]: The implication in Lemma 2.7 will not hold if m_x does not have property [B] as shown in the following Example 2.10.

Example 2.10: Let (X, m_x) be a minimal space such that $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{a\}, \{b\}\}$. Then $A = \{a, b\}$ is an m- π -open set but not an m-open set.

Lemma 2.11 [8]: For the subsets of a minimal space (X, m_x), every regular m-open set is an m- π -open set but not conversely.

Example 2.12: Let (X, m_x) be a minimal space such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{a\}, \{b\}, X\}$. Then $A = \{a, b\}$ is an m- π -open set but not a regular m-open set.

Remark 2.13 [1]: For the subsets of a minimal space (X, m_x), every m-open set is m-semi open set but not conversely.

Definition 2.14 [6]: A function $f: (X, m_x) \rightarrow (Y, m_y)$ is said to be M-continuous if for each $x \in X$ and each $V \in m_y$ containing f(x), there exists $U \in m_x$ containing x such that $f(U) \subset V$.

Lemma 2.15 [6]: For a function $f: (X, m_x) \rightarrow (Y, m_y)$ where m_x satisfies property [B], the following are equivalent. 1. f is M-continuous;

2. $f^{1}(V)$ is m_{x} -open for every m_{y} -open set V of Y;

3. $f^{1}(K)$ is m_{x} -closed for every m_{y} -closed set K of X.

3. STRONGER FORMS OF LOCALLY m-CLOSED SETS

Definition 3.1: A subset A of an m-space (X, m_x) is said to be (a) R-locally m-closed if $A = U \cap V$ where U is regular m-open and V is m-closed,

(a) K-locally in-closed if A = 0 + 1 where 0 is regular in-open and v is in-closed,

(b) π -locally m-closed if $A = U \cap V$ where U is m- π -open and V is m-closed.

Definition 3.2: A subset A of an m-space (X, m_x) is said to be

(a) m-rg-closed if m-Cl(A) \subset U whenever U is regular m-open in X and A \subset U,

(b) m- π g-closed if m-Cl(A) \subset U whenever U is m- π -open in X and A \subset U,

(c) m ω -closed if m-Cl(A) \subset U whenever U is m-semi open in X and A \subset U.

Lemma 3.3 [9]: For the subsets of an m-space (X, m_x), the following implications hold. m-closed \Rightarrow m ω -closed \Rightarrow mg-closed.

Lemma 3.4: For the subsets of an m-space (X, m_x) satisfying property [B], we have the following implications. mg-closed \Rightarrow m- π g-closed \Rightarrow m- π g-closed.

Lemma 3.5: Let (X, m_x) be an m-space and $A \subset X$. If A is m-closed, then

- (i) A is locally m-closed set but not conversely.
- (ii) A is R-locally m-closed set but not conversely.

(iii) A is π -locally m-closed set but not conversely.

Remark 3.6: None of the implications in Lemmas 3.3, 3.4 and 3.5 is reversible as seen in the following Examples.

Example 3.7: Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{b\}, \{a, b\}, \{a, c\}\}$. Then $A = \{b, c\}$ is an mo-closed set but not an m-closed.

Example 3.8: Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{c\}\}$. Then $A = \{a\}$ is an mg-closed set but not an m ω -closed.

Example 3.9: Let (X, m_x) be an m-space satisfying property [B] such that $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{c\}, \{a, b\}, \{a, c\}\}$. Then $A = \{a\}$ is an m- π g-closed set but not an mg-closed.

Example 3.10: Let (X, m_x) be an m-space satisfying property [B] such that $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{a, b\}$ is an m-rg-closed set but not an m- π g-closed.

Example 3.11: Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{a\}, \{b\}\}$. Then (i) $A = \{b\}$ is locally m-closed set but not a m-closed set.

(ii) $A = \{a\}$ is both R-locally m-closed set and π -locally m-closed set but not a m-closed.

Proposition 3.12: Let (X, m_x) be an m-space and A a subset of X. 1. If A is m- π -open, then A is π -locally m-closed set.

2. If A is R-locally m-closed set, then A is π -locally m-closed set.

Proposition 3.13: Let (X, m_x) be an m-space satisfying property [B] and A a subset of X. Then the following holds.

If A is π -locally m-closed set, then A is locally m-closed set.

Remark 3.14: The converses of the above Propositions 3.12 and 3.13 need not be true as shown in the following examples.

Example 3.15: Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{a\}, \{b\}, X\}$. Then $A = \{a, c\}$ is π -locally m-closed set but not m- π -open.

Example 3.16: Let (X, m_x) be an m-space such that $X = \{a, b, c, d\}$ and $m_x = \{\phi, \{a\}, \{b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, x\}$. Then $A = \{a, b, c\}$ is π -locally m-closed set but it is not R-locally m-closed set.

Example 3.17: Let (X, m_x) be an m-space satisfying property [B] such that $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{c\}, \{a, b\}, \{a, c\}\}$. Then $A = \{a\}$ is locally m-closed set but not π -locally m-closed set.

Remark 3.18: For the subsets of an m-space (X, m_x) satisfying property [B], by Propositions 3.12 and 3.13, we have the following implications.

R-locally m-closed set $\Rightarrow \pi$ -locally m-closed set \Rightarrow locally m-closed set.

Theorem 3.19: A subset A of an m-space (X, m_x)satisfying property [B] is m-closed if and only if it is

(i) locally m-closed and mg-closed. [4]

(ii) R-locally m-closed and m-rg-closed.

(iii) π -locally m-closed and m- π g-closed.

Proof: (i) Necessity is trivial. We prove only sufficiency. Let A be locally m-closed set and mg-closed set. Since A is locally m-closed, $A = U \cap V$, where U is m-open and V is m-closed. So, we have $A = U \cap V \subset U$. Since A is mg-closed, m-Cl(A) \subset U. Also $A = U \cap V \subset V$ and V is m-closed, then m-Cl(A) \subset V. Consequently, we have m-Cl(A) $\subset U \cap V = A$ and hence A is m-closed.

(ii) and (iii) It is similar to that of (i).

Theorem 3.20: For a subset A of an m-space (X, m_x) satisfying property [B], the following are equivalent.

- (i) A is m-closed.
- (ii) A is R-locally m-closed and mg-closed.
- (iii) A is R-locally m-closed and m-rg-closed.

Theorem 3.21: For a subset A of an m-space (X, m_x) satisfying property [B], the following are equivalent.

- (i) A is m-closed.
- (ii) A is π -locally m-closed and m ω -closed.
- (iii) A is locally m-closed and mg-closed.

Theorem 3.22: For a subset A of an m-space (X, m_x) satisfying property [B], the following are equivalent.

- (i) A is m-closed.
- (ii) A is locally m-closed and mω-closed.
- (iii) A is locally m-closed and mg-closed.

Theorem 3.23: For a subset A of an m-space (X, m_x) satisfying property [B], the following are equivalent.

- (i) A is m-closed.
- (ii) A is R-locally m-closed and mm-closed.
- (iii) A is π -locally m-closed and mg-closed.
- (iv) A is π -locally m-closed and m- π g-closed.

Theorem 3.24

For a subset A of an m-space (X, m_x) satisfying property [B], the following are equivalent.

- (i) A is m-closed.
- (ii) A is R-locally m-closed and mg-closed.
- (iii) A is R-locally m-closed and m- π g-closed.
- (iv) A is R-locally m-closed and m-rg-closed.

Remark 3.25

1. The notions of locally m-closed sets and mg-closed sets (resp. mm-closed sets) are independent.

2. The notions of π -locally m-closed sets and mg-closed sets (resp. m ω -closed sets, m- π g-closed sets) are independent.

3. The notions of R-locally m-closed sets and mg-closed sets (resp. m ω -closed sets, m-rg-closed sets, m- π g-closed sets) are independent.

Example 3.26

(i) Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{c\}, \{a, b\}, \{a, c\}, X\}$. Then $A = \{b, c\}$ is both mg-closed set and m ω -closed set but it is not locally m-closed set.

(ii) Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{a\}, \{c\}, X\}$. Then $A = \{c\}$ is locally m-closed set but it is not mg-closed set.

(iii) Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{a\}, \{b\}, X\}$. Then $A = \{a\}$ is locally m-closed set but it is not m ω -closed.

Example 3.27

(i) Let (X, m_x) be an m-space satisfying property [B] such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{c\}, \{a, b\}, \{a, c\}, X\}$. Then $A = \{b, c\}$ is both mg-closed set and m ω -closed set but it is neither R-locally m-closed set nor π -locally m-closed set. Moreover it is both m-rg-closed set and m- π g-closed set.

(ii) Let (X, m_x) be an m-space satisfying property [B] such that $X = \{a, b, c, d\}$ and $m_x = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}$. Then $A = \{a\}$ is both R-locally m-closed set and π -locally m-closed set but it is neither mg-closed set nor m ∞ -closed set. Moreover it is neither m-rg-closed set nor m π g-closed set.

4. ON NEW SUBSETS OF MINIMAL SPACES

Definition 4.1 [2]: Let A be a subset of a minimal space (X, m_x). Then the m-kernel of the set A, is denoted by $\Lambda_m(A)$, is the intersection of all m-open supersets of A.

Definition 4.2[2]: A subset A of a minimal space (X, m_x) is called Λ_m -set if $A = \Lambda_m(A)$.

Definition 4.3 [2]: A subset A of an m-space (X, m_x) is called (Λ, m) -closed if $A = U \cap V$ where U is Λ_m -set and V is m-closed.

Lemma 4.4:

- (i) Every locally m-closed set is (Λ, m) -closed.
- (ii) Every m-closed set is (Λ, m) -closed but not conversely.[2]

Example 4.5: Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{a\}, \{b\}, X\}$. Then $A = \{a\}$ is (Λ, m) -closed set but not m-closed.

Lemma 4.6 [2]: For a subset A of an m-space (X, m_x) satisfying property [B], the following conditions are equivalent.

(i) A is (Λ, m) -closed.

(ii) $A = L \cap m\text{-Cl}(A)$ where L is Λ_m -set. (iii) $A = \Lambda_m(A) \cap m\text{-Cl}(A)$.

 $(\mathbf{m}) \mathbf{n} = \mathbf{n}_{\mathbf{m}}(\mathbf{n}) + \mathbf{m} \operatorname{Cr}(\mathbf{n}).$

Lemma 4.7: A subset $A \subset (X, m_x)$ is mg-closed if and only if m-Cl(A) $\subset \Lambda_m(A)$.

Proof: Suppose that $A \subset X$ is mg-closed set. Let $x \in m$ -Cl(A). Suppose $x \notin \Lambda_m(A)$. Then there exists an m-open set U containing A such that $x \notin U$. Since A is mg-closed set, $A \subset U$ and U is m-open implies that m-Cl(A) $\subset U$ and so $x \notin m$ -Cl(A), a contradiction. Therefore m-Cl(A) $\subset \Lambda_m(A)$. Conversely, suppose m-Cl(A) $\subset \Lambda_m(A) \subset U$. Therefore A is mg-closed.

Theorem 4.8: For a subset A of an m-space (X, m_x) satisfying property [B], the following conditions are equivalent.

- (i) A is m-closed.
- (ii) A is mg-closed and locally m-closed.
- (iii) A is mg-closed and (Λ, m) -closed.

Proof: (i) \Rightarrow (ii) \Rightarrow (iii) Obvious.

(iii) \Rightarrow (i) Since A is mg-closed, so by Lemma 4.7, m-Cl(A) $\subset \Lambda_m(A)$. Since A is (Λ , m)-closed, so by Lemma 4.6,

 $A = \Lambda_m(A) \cap m$ -Cl(A) = m-Cl(A). Hence A is m-closed.

The following two examples show that the concepts of mg-closed sets and (Λ, m) -closed sets are independent.

Example 4.9: Let (X, m_x) be an m-space such that $X = \{a, b, c, d\}$ and $m_x = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}$. Then $A = \{a, c\}$ is (Λ, m) -closed set but not mg-closed.

Example 4.10: Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{b\}, \{a, b\}, \{a, c\}, X\}$. Then $A = \{b, c\}$ is mg-closed set but not (Λ, m) -closed.

Definition 4.11: Let A be a subset of a minimal space (X, m_x). Then

- (i) The m-r-kernel of the set A, denoted by m-r-ker(A), is the intersection of all regular m-open supersets of A.
- (ii) The m- π -kernel of the set A, denoted by m- π -ker(A), is the intersection of all m- π -open supersets of A.

Definition 4.12: A subset A of a minimal space (X, m_x) is called

(i) Λ_{mr} -set if A = m-r-ker(A).

(ii) $\Lambda_{m\pi}$ -set if $A = m-\pi$ -ker(A).

Definition 4.13: A subset A of an m-space (X, m_x) is called

(i) (Λ, mr) -closed if $A = L \cap F$ where L is Λ_{mr} -set and F is m-closed.

(ii) (Λ , m π)-closed if $A = L \cap F$ where L is $\Lambda_{m\pi}$ -set and F is m-closed.

© 2012, IJMA. All Rights Reserved

Lemma 4.14: Every m-closed set is (Λ, mr) -closed but not conversely.

- (i) Every π -locally m-closed set is $(\Lambda, m\pi)$ -closed.
- (ii) Every m-closed set is $(\Lambda, m\pi)$ -closed but not conversely.
- (iii) Every R-locally m-closed set is (Λ, mr) -closed.

Example 4.15: Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{a\}, \{b\}, X\}$. Then

- 1. $A = \{a\}$ is (Λ, mr) -closed set but not m-closed.
- 2. $A = \{a\}$ is $(\Lambda, m\pi)$ -closed set but not m-closed.

Lemma 4.16: For a subset A of an m-space (X, m_x) satisfying property [B], the following are equivalent.

(a) 1. A is (Λ, mr) -closed . 2. A = L \cap m-Cl(A) where L is Λ_{mr} -set. 3. A = m-r-ker(A) \cap m-Cl(A).

(b) 1. A is $(\Lambda, m\pi)$ -closed.

2. A = L \cap m-Cl(A) where L is $\Lambda_{m\pi}$ -set.

3. A = m- π -ker(A) \cap m-Cl(A).

Lemma 4.17

- (i) A subset $A \subset (X, m_x)$ is m- π g-closed if and only if m-Cl(A) \subset m- π -ker(A).
- (ii) A subset $A \subset (X, m_x)$ is m-rg-closed if and only if m-Cl(A) \subset m-r-ker(A).

Theorem 4.18: For a subset A of an m-space (X, m_x) satisfying property [B], the following are equivalent.

- (a) 1. A is m-closed.
 - 2. A is m- π -closed and π -locally m-closed.
 - 3. A is m- π g-closed and (Λ , m π)-closed.
- (b) 1. A is m-closed.
 - 2. A is m-rg-closed and R-locally m-closed.
 - 3. A is m-rg-closed and (Λ, mr) -closed.

Remark 4.19: By Examples 4.20 and 4.21, we realize that the following concepts are independent.

- 1. $(\Lambda, m\pi)$ -closed sets and m- π g-closed sets.
- 2. (Λ, mr) -closed sets and m-rg-closed sets.

Example 4.20: Let (X, m_x) be an m-space satisfying property [B], such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{a\}, \{b\}, X\}$. Then

(i) $A = \{a\}$ is $(\Lambda, m\pi)$ -closed but not m- π g-closed.

(ii) $A = \{c\}$ is m- π g-closed but not (Λ , m π)-closed.

Example 4.21

(i) Let (X, m_x) be an m-space satisfying property [B], such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{b\}, \{a, c\}, X\}$. Then $A = \{b, c\}$ is m-rg-closed but not (Λ, mr) -closed.

(ii) Let (X, m_x) be an m-space satisfying property [B], such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{a\}, \{b\}, X\}$. Then $A = \{a\}$ is (Λ , mr)-closed but not m-rg-closed.

5. DECOMPOSITIONS OF M-CONTINUITY

Definition 5.1: A function $f: (X, m_x) \rightarrow (Y, m_y)$ where m_x satisfies property [B] is said to be M-g-continuous(resp. M-rg-continuous, M- ω -continuous, M- π g-continuous) if $f^1(A)$ is mg-closed (resp. m-rg-closed, m ω -closed, m- π g-closed) in (X, m_x) for every m-closed set A of (Y, m_y) .

Definition 5.2: A function $f: (X, m_x) \rightarrow (Y, m_y)$ where m_x satisfies property [B] is called

(i) locally M-continuous if $f^{1}(A)$ is locally m-closed in (X, m_x) for every m-closed set A of (Y, m_y) .

(ii) R-locally M-continuous if $f^{1}(A)$ is R-locally m-closed in (X, m_x) for every m-closed set A of (Y, m_y) .

(iii) π -locally M-continuous if $f^{1}(A)$ is π -locally m-closed in (X, m_{x}) for every m-closed set A of (Y, m_{y}) .

Theorem 5.3: A function $f: (X, m_x) \rightarrow (Y, m_y)$ where m_x satisfies property [B] is M-continuous if and only if it is (i) locally M-continuous and M-g-continuous.

(ii) R-locally M-continuous and M-rg-continuous

(iii) π -locally M-continuous and M- π g-continuous.

Proof: It is an immediate consequence of Theorem 3.19. © 2012, IJMA. All Rights Reserved

Theorem 5.4: Let (X, m_x) be an m-space satisfying property [B]. For a function f: $(X, m_x) \rightarrow (Y, m_y)$, the following are equivalent.

- (1) f is M-continuous.
- (2) f is R-locally M-continuous and M-g-continuous.
- (3) f is R-locally M-continuous and M-rg-continuous.

Proof: It is an immediate consequence of Theorem 3.20.

Theorem 5.5: Let (X, m_x) be an m-space satisfying property [B]. For a function $f : (X, m_x) \rightarrow (Y, m_y)$, the following are equivalent.

- (1) f is M-continuous.
- (2) f is π -locally M-continuous and M- ω -continuous.
- (3) f is locally M-continuous and M-g-continuous.

Proof: It is an immediate consequence of Theorem 3.21.

Theorem 5.6: For a function $f: (X, m_x) \rightarrow (Y, m_y)$ where m_x satisfies property [B], the following are equivalent.

- (1) f is M-continuous.
- (2) f is locally M-continuous and M- ω -continuous.
- (3) f is locally M-continuous and M-g-continuous.

Proof: It is an immediate consequence of Theorem 3.22.

Theorem 5.7

Let (X, m_x) be an m-space satisfying property [B]. For a function $f: (X, m_x) \rightarrow (Y, m_y)$, the following are equivalent.

- (1) f is M-continuous.
- (2) f is R-locally M-continuous and M- ω -continuous.
- (3) f is π -locally M-continuous and M-g-continuous.
- (4) f is π -locally M-continuous and M- π g-continuous.

Proof: It is an immediate consequence of Theorem 3.23.

Theorem 5.8: Let (X, m_x) be an m-space satisfying property [B]. For a function $f : (X, m_x) \rightarrow (Y, m_y)$, the following are equivalent.

- (1) f is M-continuous.
- (2) f is R-locally M-continuous and M-g-continuous.
- (3) f is R-locally M-continuous and M- π g-continuous.
- (4) f is R-locally M-continuous and M-rg-continuous.

Proof: It is an immediate consequence of Theorem 3.24.

Definition 5.9: A function $f : (X, m_x) \rightarrow (Y, m_y)$ where m_x satisfies property [B] is said to be (Λ, M) -continuous (resp. $(\Lambda, M\pi)$ -continuous, (Λ, Mr) -continuous) if $f^{-1}(\Lambda)$ is (Λ, m) -closed (resp. $(\Lambda, m\pi)$ -closed, (Λ, mr) -closed) in (X, m_x) for every m-closed set A of (Y, m_y)

Theorem 5.10: For a function $f: (X, m_x) \rightarrow (Y, m_y)$, satisfying property [B], the following are equivalent.

- (1) f is M-continuous.
- (2) f is M-g-continuous and locally M-continuous.
- (3) f is M-g-continuous and (Λ, M) -continuous.

Proof: It is an immediate consequence of Theorem 4.8.

Theorem 5.11: For a function $f: (X, m_x) \rightarrow (Y, m_y)$ satisfying property [B], the following are equivalent.

- (a) 1. f is M-continuous.
 - 2. f is M- π g-continuous and π -locally M-continuous.
 - 3. f is M- π g-continuous and (A, M π)-continuous.
- (b) 1. f is M-continuous.
 - 2. f is M-rg-continuous and R-locally M-continuous.
 - 3. f is M-rg-continuous and (Λ, Mr) -continuous.

Proof: It is an immediate consequence of Theorem 4.18.

REFERENCES

[1] J. Antony Rex Rodrigo, O. Ravi, R. G. Balamurugan and K. Vijayalakshmi, A unified theory for modifications of \hat{g} -closed sets, International Journal of Advances in Pure and Applied Mathematics, 1 (1) (2011), 53-67.

[2] F. Cammaroto and T. Noiri, On Am-sets and related topological spaces, Acta Math. Hungar., 109(3)(2005), 261-279.

[3] N. Levine, Generalized closed sets in topology, Rend.Circ.Mat.Palermo(2), 19(1970), 89-96.

[4] H. Maki, On generalizing semi-open and preopen sets, Report for Meeting on Topological Spaces Theory and its Applications, August 1996, Yatsushiro College of Technology, 13-18.

[5] T. Noiri, A unified theory for modifications of g-closed sets, Rendiconti del circolo matematico di Palermo, Serie II, Tomo LVI (2007), 171-184.

[6] V. Popa and T. Noiri, On M-continuous functions, Anal. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor., (2), 18 (23) (2000), 31-41.

[7] O. Ravi, R. Senthilkumar, A. R. Thilagavathi and K. Indirani, m- $I_{\pi g}$ -closed sets and M- $I_{\pi g}$ -continuity, submitted.

[8] E. Rosas, N. Rajesh and C. Carpintero, Some new types of open and closed sets in Minimal Structures $-I^1$, International Mathematical Forum, 44 (4) (2009), 2169 – 2184.
