A COMMON FIXED POINT THEOREM FOR SIX MAPPINGS IN PROBABILISTIC METRIC SPACES SATISFYING IMPLICIT RELATION AND VARIANTS OF R-WEAK COMMUTATIVITY

Shikha Chaudhari*

R. H. Government Postgraduate College, Kashipur- 244713, (U. S. Nagar), Uttarakhand, India

E-mail: shikharawat20aug@gmail.com

(Received on: 26-01-12; Accepted on: 24-02-12)

ABSTRACT

 $m{T}$ he aim of the present paper is to prove a common fixed point theorem for six mappings via **variants** of R-weakly commuting mapping in **probabilistic** metric spaces satisfying implicit relations.

Mathematies subject classification: 47H10. 54H25.

Keywords: Probabilistie metric spaces, reciprocally continuous mappings, compatible mappings, R-weakly commuting mappings of type (i), (ii) and (iii), implicit relation, common fixed point

1. INTRODUCTION

In 1942, K. Menger [6] introduced the notion of probabilistic metric space (briefly, PM-space) as a generalization of metric space. The development of fixed point theory in PM- spaces was due to Schweizer and Sklar [11. Sehgal [12] initiated the study of contraction mapping theorems in PM- spaces.

The notions of improving commutativity of mappings have been extended to PM- spaces by various mathematicians. Singh and Pant [14] extended the notion of weak commutativity (introduced by Sessa [13] in metric space). Mishra [8] extended the notion of compatibility (introduced by Jungck [2] in metric space). Ciric and Milovanovic Arandjelovic [1] extended the notion of pointwise R-weak commutativity (introduced by Pant [9] in metric space. In 2007, Kohli and Vashishtha [3] extended the notion of R-weak commutativity and its variants to probabilistic metric spaces. Our result open up for common fixed point theorems for six mappings via above variants.

2. PRELIMINARIES

In this section, we give definitions which are used in the paper. Let R⁺ denotes the set of all non –negative real numbers.

Definition: 2.1 ([11]). A mapping F: $R \rightarrow R^+$ is called a distribution function if it is non – decreasing and left continuous with $\inf_{t \in \mathbb{R}} F(t) = 0$ and $\sup_{t \in \mathbb{R}} F(t) = 1$

The Heaviside function H is a distribution function defined by

$$\mathbf{H}(\mathbf{t}) = \begin{cases} 0 & if \ t \le 0 \\ 1 & if \ t > 0 \end{cases}$$

Definition: 2.2 ([11]) Let X be a non – empty set and let L denote the set of all distribution functions. An orderd pair (X, F) is called probabilistic metric spaces if F is a mapping from X x X to L satisfying the following conditions.

- (1) $F_{x,y}(t) = H(t)$ if and only if x=y
- (2) $F_{x,y}(0) = 0$
- (3) $F_{x,y}(t) = F_{y,x}(t)$
- (4) If $F_{x,y}(t) = 1$ and $F_{y,z}(s) = 1$, then $F_{x,z}(t+s) = 1$ for all $x, y, z \in X$ and $t, s \ge 0$

Corresponding author: Shikha Chaudhari, *E-mail: shikharawat20aug@gmail.com

Definition: 2.3 ([11]). A t-norm is a function T: $[0, 1] \times [0, 1] \rightarrow [0, 1]$ satisfying following conditions:

- (1) T(a,1)=a for all $a \in [0,1]$, T(0,0)=0
- (2) T(a, b) = T(b, a)
- (3) $T(c, d) \ge T(a, b)$ for $c \ge a, d \ge b$
- (4) T (T(a, b),c) =T(a, T(b, c)) for all a, b, c €[0,1]

Example of t-norms are $T(a, b) = min \{a, b\}$, T(a, b) = ab and $T(a, b) = max \{a+b-1, 0\}$

Definition: 2.4 ([11]) A Menger probabilistic metric space (X, F, T) is an ordered triad, where T is a t-norm and (X, F) is a probabilistic metric space satisfying.

```
F_{x,z} (t+s) \geq T( F_{x,y} (t), F_{y,z} (s) ) for all x, y, z \inX and t, s \geq 0
```

Definition: 2.5 A sequence $\{x_n\}$ in (X, F, T) is said to converge to a point $x \in X$ if for every $\varepsilon > 0$, $\lambda > 0$, there exists a positive integer $N(\varepsilon, \lambda)$ such that

 $F_{X_{n,x}}(\varepsilon) > 1-\lambda$ for all $n \ge N(\varepsilon,\lambda)$

Definition: 2.6 ([11]) A sequence $\{x_n\}$ in (X, F,T) is said to be a cauchy sequence if for every $\varepsilon > 0$ and $\lambda > 0$, there exists a positive integer $N(\varepsilon,\lambda)$ such that $F_{X_nX_m}(\varepsilon) > 1-\lambda$ for all $n,m \ge N(\varepsilon,\lambda)$

Definition: 2.7 ([11]). A Menger space (X, F, T) with continuous t-norm is said to be complete if every Cauchy sequence in X converges to a point in X.

Definition: 2.8 Two self mappings f and g of a probabilistic metric space (X, F) are said to be weakly commuting if $F_{fgx,gfx}(t) \ge F_{fx,gx}(t)$ for each $x \in X$ and t > 0

Definition: 2.9 ([8]). Two self mappings f and g of a probabilistic metric space (X, F) will be called compatible if and only if $F_{\text{fgxn gfxn}}(\mathbf{t}) \to \mathbf{1}$ for all t > 0 whenever $\{x_n\}$ is a sequence is such that $f_{xn}, g_{xn} \to z$ for some zex.

Definition: 2.10 ([1]) Two self mappings f and g of a probabilistic metric space (X, F) are said to be pointwise R-weakly commuting if given $x \in X$, there exists R>0 such that $F_{\mathbf{fgx,gfx}}(t) \ge F_{\mathbf{fx,gx}}(t/R)$ for $(t) \ge 0$

Note: It is easy to see that weakly commuting mappings are pointwise R-weakly commuting with R=1.

Definition: 2.11 Two self mappings f and g of a probabilistic metric space(X, F) are said to be reciprocally continuous if $fgx_n \rightarrow fz$ and $gfx_n \rightarrow gz$, whenever $\{x_n\}$ is a sequence such that $f_{xn}, g_{xn} \rightarrow z$ for some $z \in X$.

Definition: 2.12 ([3]) Two self mappings f and g of a probabilistic metric space(X, F) are said to be

- (i) R-weakly commuting of type (i) if there exists a positive real number R such that $F_{ffx,gfx}$ (t) $\geq F_{fx,gx}$ (t/R) for each x in and each $t\geq 0$.
- (ii) R-weakly commuting of type (ii) if there exists a positive real number R such that $F_{\text{fgx,ggx}}(t) \ge F_{\text{fx,gx}}(t/R)$ for each x in and each $t \ge 0$.
- (iii) R-weakly commuting of type (iii) if there exists a positive real number R such that $F_{\text{ffx,ggx}}(t) \ge F_{\text{fx,gx}}(t/R)$ for each x in X and each t>0.

Remark: See Example 3.4, Ex 3.5, Ex 3.6, Ex 3.7, Ex 3.8, in ([3])

3. IMPLICIT RELATIONS

In [7] Mihet established a fixed point theorem concerning probabilistic contraction satisfying an implicit relation. In [10], Popa used the family F_4 of implicit-real functions to find the fixed point of two pairs of semi-compatible mappings in a d-compatible topological space. Here F_4 deuotes the family of all real continuous function $f: (R^+)^4 \to R$ satisfying the following properties:

 (F_k) There exists $k \ge 1$ such that every $u \ge 0$ with $f(u, v, u, v, v) \ge 0$ or $f(u, v, v, u) \ge 0$, we have $u \ge kv$

 (F_u) F (u, u, 0, 0) < 0 for all u > 0.

In our result, we deal with the class ϕ of all real continuous functions ϕ : $(R_+)^4 \to R$, non – decreasing in first argument and satisfying

(3.I) for $u, v \ge 0$, $\varphi(u, v, u, v) \ge 0$ or $\varphi(u, v, v, u) \ge 0$ implies $u \ge v$

 $(3.II) \phi (u, u, 1, 1) \ge 0 \text{ for all } u \ge 1$

4 Lemma: Let (X, F, T) be a complete Menger space where T denotes a continuous t-norm. Further, let (A,SH) and (B,TR) be R-weakly commuting mappings of type (i) (respectively type (ii) respectively type (iii) of X satisfying A(X)

$$C TR (X), B(X) C SH(X)$$

$$(4.1)$$

$$\phi(f_{Ax,By} (kt), F_{SHx,TRy} (t), F_{Ax,SHx} (t), F_{By,TRy} (t), (kt) \ge 0$$
(4.2)

$$\phi(f_{Ax,By}(kt), F_{SHx,TRy}(t), F_{Ax,SHx}(kt), F_{By,TRy}(t), (t) \ge 0$$
 (4.3)

for all $x, y \in X$, t > 0, $k \in (0,1)$ and for some $\phi \in \Phi$. Then the continuity of one of mappings in the compatible pairs (A, SH) or (B, TR) on (X, F, T) implies their reciprocal continuity.

Remark: For proof see {(Lemma 4.2([4]))}

5. COMMON FIXED POINT THEOREM:

Theorem: Let (X, F, T) be a complete Menger space whenever T denotes a continuous t-norm. Further, let (A, SH) and (B, TR) be R-weakly commuting mappings of type

- (i) (respectively type
- (ii) respectively type
- (iii) of X satisfying (4.1), (4.2) and (4.3) for all x,y ε X, t > 0, k ε (0.1) and for some $\varphi \varepsilon \varphi$.

If one of the mapping in compatible pair (A, SH) or (B, TR) is continuous implies their reciprocal continuity then A, B.S, T.H and R have a common fixed point in X.

Proof: Let $u_0 \in X$, By (4.1), we define the sequences $\{u_n\}$ and $\{v_n\}$ in x such that for all $n = 0, 1, 2, \dots$

Now,
$$V_{2n+1} = Au_{2n} = TRu_{2n+1}$$

$$V_{2n+2} = Bu_{2n+1} = SHu_{2n+2}$$

Bv (4.2)

$$\phi(F_{Au2n,\,Bu2n+1}\,(kt),\,F_{SHu2n,\,TRu2n+1}\,(t),\,F_{Au2n,\,SHu2n}\,(t),\,F_{Bu2n+1,\,TRu2n+1}\,(kt) \geq 0$$

$$\phi(F_{v2n+1, v2n+2}(kt), (F_{v2n, v2n+1}(t), (F_{v2n+1, v2n}(t), (F_{v2n+2, v2n+1}(kt) \ge 0))$$

Using (3.I), we get

$$F_{v2n+1}, v_{2n+2}(kt) \ge F_{v2n,v2n+1}(t)$$

Similarly, by (4.3) and using (3.II), we get

$$F_{v2n+2}, v_{2n+3} (kt) \ge f_{v2n+1}, v_{2n+2} (t)$$

Thus, for any n and t we have

$$F_{vn}$$
, $v_{n+1}(kt) \ge F_{vn-1}$, $v_n(t)$

Hence, by Lemma [see lemma 2.12 of ([4])]

 $\{v_n\}$ is a cauchy sequence in X, since X is complete,

 $\{v_n\}$ converges to z.

Its subsequences $\{A_{u2n}\}, \{Bu_{2n+1}\},$

 $\{SH_{U2n}\}\$ and $\{TRu_{2n+1}\}\$ also converge to z.

Now, suppose that (A, SH) is a compatible pair and SH is continuous. Then, by Lemma 4, A and SH are reciprocally continuous, then $ASHu_{2n} \rightarrow Az$ and $SHA_{u2n} \rightarrow SHz$. Compatibility of A and SH gives

 F_{ASHu2n} , $_{SHAu2n}$ (t) \rightarrow 1, i.e $F_{AZ,SHZ}$ (t) \rightarrow 1 as $n\rightarrow\infty$, Hence, Az=SHz

Since, A(X) **c** TR(X), there exists a point u in X such that Az = TRu

By (4.2),

 $\phi(F_{Az,Bu}(kt),F_{SHz,TRu}(t),F_{Az,SHz}(t),F_{Bu,TRu}(kt)) \ge 0$

That is, $\varphi(F_{Az,Bu}(kt),1,1,F_{Bu,Az}(kt)) \ge 0$

Using (3.I), we get $(F_{Az,Bu}(kt) \ge 1 \text{ for all } t>0$

which gives $F_{AZ,Bu}$ (kt)= 1

Hence, AZ=Bu

Thus, AZ=SHz=Bu=TRu

Since, A and SH are R – weakly commuting mappings of type (i), there exists R > 0 such that

 $F_{AAz,SHAz}(t) \ge F_{Az,SHz}(t/R) = 1$

That is ASHz=SHAz

and AAZ=ASHZ=SHAZ=SHSHZ.

Similarly, since B and TR are R-weakly commuting mapping of type (i), we have

BBu = BTRu=TRBu=TRTRu

Again, by (4.2), putting x =Az and y=u, we get

 $\phi(F_{\text{AAz,Bu}}\left(kt\right),\,F_{\text{SHAz}},\,{}_{\text{TRu}}(t),\,F_{\text{AAz,SHAz,}}\left(t\right),\,F_{\text{Bu,TRu}}(kt))\!\!\geq\!\!0$

That is $\varphi(F_{AAz,Az}(kt),F_{AAz},A_z(t),1,1)\geq 0$

As φ is non-decreasing in the first argument, we have

 $\phi(F_{AAz,Az}(t),F_{AAz},A_z(t),1,1) \ge 0$

Using (3.II), we have

 $F_{AAz,Az}(t) \ge 1$ for all $t \ge 0$. This gives $(F_{AAz,Az}(t)=1,$

implying AAz = Az and Az = AAz = SHAz,

Thus, Az is a common fixed point of A, and SH.

Now, we show that Az is a common fixed point of A,S and H. Putting x=Hz and y=u in(4.2), we have

 $\phi(F_{AHz,Bu}(kt),F_{SHHz},T_{Ru}(t),F_{AHz,SHHz},(t),F_{Bu,TRu}(kt))\geq 0$

 $\phi(F_{\text{HAz,Az}}(kt), F_{\text{HSHz,Az}}(t), F_{\text{HAz,HSHz,}}(t), F_{\text{Az,Az}}(kt)) \ge 0$

 $\phi(F_{HAz,Az}(kt),F_{HAz,Az}(t),F_{HAz,HAz}(t),F_{Az,Az}(kt)) \ge 0$

 $\phi(F_{HAz,Az}(kt),F_{HAz,Az}(t),1,1)\geq 0$

As φ is non-decreasing in the first argument

 $\phi \; (F_{\text{HAz,Az}}(t), F_{\text{HAz,Az}}(t), \; 1, 1) \ge 0$

 $F_{HAz,Az}(t) \ge 1$ for all t > 0

Thus, HAZ=AZ

AZ is the common fixed point of A, S and H.

Similarly, we can show that Az is the common fixed point of B, T and R. Thus, Az is the common fixed point of A, S, H, B, T and R. Again, we can prove the above theorem by taking other variants of R-weak commutativity.

That is R-weak commutativity of type (ii) and respectively of type (iii),

Example: 5.1 Let x = [0,1] with the metric d defined by d(x,y) = |x-y|. For each t > 0, let $f_{x,y}(t) = H(t-d(x,y))$, for all x > 0, y = 1, y = 1,

Let, fx =1 and gx =
$$\begin{cases} 1 & \text{if x is rational} \\ 0 & \text{if x is irrational} \end{cases}$$

for each $x \in X$. Clearly, $f(x) \subset g(x)$, f is continuous and g is discontinuous on [0,1]. Let $r: [0,1] \to [0,1]$ be defined by $r(t) = (t)^{1/2}$ for $0 < t \le |$. Then r(t) > t for 0 < t < | and $F_{fx,fy}(t) \ge r(F_{gx,gy}(t))$ for all x, y in X. Moreover, f and g are g-weakly commuting mappings. Thus, g is the unique common fixed point of g and g. Furthermore, g and g are g-weakly commuting mappings of type (i) as well as type (ii) and type (iii).

REFERENCES:

- [1] Lj. B. Ciric and M.M. Milovanovic Arandjelovic, Common fixed point theorem for R-weak commuting mappings in Menger spaces, J. Indian Acad. Math. 22 (2000), 199-210.
- [2] G, Jungck, Compatible mappings and common fixed points, Int., J. Math. Math. Sci. 9 (1986), 771-779.
- [3] J. K. Kohli and S. Vashishtha, Common fixed point theorems in probabilistic metric spaces, Acta Math. Hungar 115 (1-2) (2007), 37-47
- [4] J. K. Kohli, S. Vashishtha and Durgesh Kumar, A common fixed point theorem for six mappings in Probabilistic metric spaces satisfying contractive type Implicit relations, Int. J. Math, 2010, no.2, 63-74.
- [5] S. Kumar and B. D. Pant, A common fixed point theorem in Probabilistic metric spaces using implicit relation, Filomat 22:2 (2008), 43-52.
- [6] K. Menger, Statistical metrics, Proc. Nat Acad, Sci, U.S.A. 28 (1942), 535-537.
- [7] D. Mihet, A generalization of a contraction Principle in Probabilistic metric spaces, PartII, Int. J. Math. Math. Sci. 2005 (2005), 729-736.
- [8] S. N. Mishra, Common fixed points of Compatible mappings in PM spaces, Math. Japan 36(1991), 283-289.
- [9] R. P. Pant, Common fixed Points of non-Commuting mappings, J. Math. Anal. Appl. 188 (1994), 436-440.
- [10] V. Popa, Fixed points for non –surjective expansion mappings, satisfying an implicit relation, Bul. Stiint. Univ. Baia Mare Ser. B Fasc. Mat-Inform, 18(2002), 105-108.
- [11] B. Schweizer and A.Sklar, Probabilistic metric spaces, North Holland Amsterdam, 1983.

- [12] V. M. Sehgal, Some fixed point theorems in functional analysis and probability, Ph. D. Dissertation, Wayne State Univ. 1966.
- [13] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math . (Beograd) (N.S) 32 (46) (1982), 149-153.
- [14] S.L Singh and B. D. Pant, Common fixed points of weakly Commuting mappings on non-Archimedean Menger spaces, Vikram Math. J. 6 (1986), 27-31.
