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ABSTRACT 
 

The present paper concerns with the study of the validity of the upper bound for the complex wave velocity of an 
unstable perturbation wave of an inviscid heterogeneous parallel shear flows [1]. Graph are also plotted which shows 
the reduction of Howard’s [2] semi circle for the bound of the complex wave velocity  
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INTRODUCTION: 
 
The fundamental equation of instability of inviscid parallel shear flow confined within two rigid horizontal boundaries 

in the concept of linear stability theory is the Taylor Goldstein equation is given by  
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with the boundary condition     ( ) ( ) 021 == zwzw                                                            (2) 
 

Where D =  
dz
d

  z  is real independent variable such that 21 zzz ≤≤  , )(zw  is the z  dependence of stream 

function perturbation and stand for dependent variable, )(zU is basic velocity field, ir iccc +=  is the complex wave 

velocity such that rc  and ic are respectively the real and imaginary part of c  which is constant , 2k  is the square 

wave number which is constant and satisfy the inequality ∞<< 20 k , 
dz
dz ρ

ρ
β 1)( −=   denotes the non-

homogeneity field and is non negative everywhere in the flow domain and ρ  denotes the density field. 
 
The requirement of non trivial solution of equation (1) satisfying equation (2) posses a double eigen value problem for 

rc  and ic  for prescribed value of  2k   and the flow unstable if such solution exist for which the imaginary part ic  of 
c  is greater than zero. 
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DISCUSSION: 
 
Howard’s [2] have proved that the phase velocity rc  and the amplification factor 0>ic  must lie in the upper half of 

the ir cc - plane bounded by the semi circle 
2
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where aU =min  and bU =max . 
 
Khan R A el [1] have given a necessary  condition for the existence of non-trivial non-singular solution ),( cw  of the 

double eigen-value problem for rc  and ic , for given )(zU ,  ρ  and 2k  and described by equations (1) and (2) with 
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Provided  β  vanishes at the point of inflexion ],[ 21 zzzz s ∈=   and  
βg

UUU s )(" −
 remains well defined 

],[ 21 zzz∈∀  . 
 
VALIDITY OF THE RESULT: 
 

Consider zU sinh=  and 
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Consider zU 3sinh=    and   
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Then   ( ) 00sinh0,3sinh9 =====′′ sss zUUandzzU  
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Consider for nzU sinh=  we got a generalize form. 
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GRAPHICAL VALIDATION OF THE RESULT: 
 
Equation (4) can be written as 
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 since U and β  are the functions of z  
 
For the positive value of )(zf  , we have plotted the graphs of equation (5) which clearly shows the reduction in 
Howard’s semi circle (3). 
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To draw the graphs, equations (3) and (5) are written in the following form  
 
( )( ) 02 =+−− irr cbcac  and ( )( ) ( ) 0)(12 =++−− zfcbcac irr      

 
Graphs are plotted for rc  and ic  in the range 0.1,0.0 == ba  

 
( graph 1 )  for 0.2)( =zf  

 
 

Graphs are plotted for rc  and ic  in the range 0.1 , 1.0a b= =  

 
( graph 2 )  for 0.2)( =zf  
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Graphs are plotted for rc  and ic  in the range 0.1 , 1.0a b= =  

 
( graph 3 )  for ( ) 3.0f z =  

 
Graphs are plotted for rc  and ic  in the range 0.2 , 1.0a b= =  

 
( graph 4 )  for ( ) 4.0f z =  

 
 
The above graph shows the significant reduction in the Howard [2] semi circular region and thus graphical validation of 
result [1] are correct i.e. we can have different wave velocity for which the result are true. 
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