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ABSTRACT 

 The barrier and penalty functions methods are one of the Lagrangian multiplier methods for solving both 

constrained nonlinear equation and optimization problems. In this paper we introduce a new method called 

exponential method to solve optimization problem on convex function under linear constraints. It presents some 

variety of the method. The global behavior of this method will be given. Theorems and algorithms for the 

method are also given in this paper. The main result of this method as follows; that is, every penalty (barrier) 

parameters value that converging to infinity, the exponential penalty (barrier) function has unique minimizer 

(maximizer), respectively. And then, the sequence of the minimizers (maximizers), will converge to the minimizer 

of the original problem.  
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1. INTRODUCTION: 

This paper is concerned with the study of the exponential 

method for solving a convex function under linear constraints 

problem. This is one of classical, almost exhausted area of 

mathematics. Therefore our aim is to investigate the 

performance of the method rather than to generate new 

theorems by means of this method. 

 

This paper is laid out as follows. In Section 2 we formulate 

outline of the problem. In order to do this, in Section 3 we 

present general properties and main theorems for the 

exponential penalty method. Finally, in Section 4 we develop a 

duality method called exponential barrier method for the 

problem. In this section we summary the general properties and 

main theorem concerning the method.  

 

2 STATEMENT OF THE PROBLEM: 

We shall consider the convex function under linear 

constraints problem as follows.  

Let A be an m × n matrix, and b be column vector with m 

components. We consider the problem in following form: 

 

Minimize )(xc  

subject to bAx = , 

where )(xc  be a convex function. In what follows it is 

supposed that m < n and that the solution x* to the problem  

exists. Let f* denotes the optimum value of the problem. In this 

paper we solve the problem using exponential method 

including both penalty and barrier terms. 
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3 EXPONENTIAL PENALTY METHOD: 

Let us introduce the exponential penalty function 

),,( βαxE p associated with the problem as follows: 

),,( βαxE p  = )(xc  + { }�
=

−β−α
m

i
ibxiA

ii1
)(exp     (1)                                 

where α = (α1, …,αm) > 0 be a penalty parameter of the 

function and β = (β1, …,βm ) > 0 . The penalty is formed from a 

sum of exponential of constraint violations and the parameter 

αi determines the amount of the penalty.      

                 

It is easy to show that ),,( βαxE p  is a convex function 

for each α and β. This property is stated in the following 

theorem.  

 

Theorem 1 (Convexity) The exponential penalty function 

),,( βαxE p  is convex in its domain. 

Proof: It is straightforward to prove convexity of ),,( βαxE p  

using the convexity of )(xc  and { }�
=

−β−α
m

i
ibxiA

ii1
)(exp

Then this theorem is proven.  

 

As a consequence of this theorem we derive the local and 

global behavior of the exponential penalty function defined by 

(1) which is stated in the theorem.  

 

Theorem 2 (Local and global behavior)       

(a) ),,( βαxE p  has a finite unconstrained minimizer in its 

domain and the set Mσ of unconstrained minimizers of 

),,( βαxE p  in its domain is convex and compact for every 

parameters α and β. 
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(b) Any unconstrained local minimizer of ),,( βαxE p  in its 

domain is also a global unconstrained minimizer of 

),,( βαxE p . 

 

Proof: It follows from Theorem 1 that the smooth function 

),,( βαxE p  achieves its minimum in its domain. We conclude 

that ),,( βαxE p  has at least one finite unconstrained 

minimizer. Then the Theorem 2 (a) is established. 

 

By Theorem 1 ),,( βαxE p  is convex, so any local 

minimizer is also a global minimizer. Thus the set Mσ of 

unconstrained minimizers of ),,( βαxE p  is bounded and 

closed, because the minimum value of ),,( βαxE p  is unique, 

and it follows that Mσ is compact. Clearly, the convexity of Mσ 

follows from the fact that set of optimal points ),,( βαxE p  is 

convex. Theorem 2 (b) has been verified.  

 

As consequence of Theorem 2 we derive the monotonicity 

behavior of the minimum value of the exponential penalty 

function ),,( βαxE p . To do this,  for any αk , βk > 0 we denote 

x
k and ),,(

kkk

p xE βα  as an unconstrained minimizer and 

unconstrained minimum value of ),,( βαxE p , respectively. 

We now give the following monotonicity theorem. 

 

Theorem 3 (Monotonicity) Let }{ k
β  be a bounded sequence 

of positive real number and }{ k
α  be an increasing sequence 

of positive penalty parameters such that ∞→α
k

 as ∞→k

Then }{ ),,(
kkk

p xE βα  is non-increasing. 

 

Proof: Let xk and xk +1 denote global minimizers of exponential 

penalty function for the penalty parameters αk and αk +1. By the 

definition of xk and xk +1 as minimizers and αk  ≤ αk +1, then for 

a sufficiently large k,  we have 

)(
1+k

xc  + { }�
=

−β−α
+++

m

i
ibxiA

kkk

1
)(exp

111   ≤ 

)(
k

xc + { }�
=

−β−α
++

m

i
ibxiA

kkk

1
)(exp

11 ,   (2a)                                
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k
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=

−β−α
++

m

i
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1
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11  ≤  )(
k

xc +  

{ }�
=

−β−α
m

i
ibxiA

kkk

1
)(exp ,                                        (2b) 

                                                                                      

 )(
k

xc + { }�
=

−β−α
m
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)(exp

 ≤ )(
1+k

xc +

{ }�
=

−β−α
+

m

i
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1
)(exp

1 .                                     (2c) 

 

Using inequalities (2a) and (2b), we obtain 

)(
1+k

xc  + { }�
=

−β−α
+++

m

i
ibxiA

kkk

1
)(exp

111   

≤ )(
k

xc + { }�
=

−β−α
m

i
ibxiA

kkk

1
)(exp . 

 

It means that 

  ),,(
111 +++

βα
kkk

p xE   ≤ ),,(
kkk

p xE βα , 

 

as required in theorem. Hence, the theorem is established.  

 

Using the definition of ),,(
kkk

p xE βα  and Theorem 3, 

we have 

    
)(

1+k
xc   ≤ ),,(

111 +++
βα

kkk

p xE   

                        ≤ ),,(
kkk

p xE βα .                                         (3)                                   

Assume that }{
k

x is sequence such that bAx
k

=  and 

that 

    
)(

k
xc  → f * as k → ∞.                                                       (4)                                                                

By using (3),  

    f * ≤…≤ ),,(
111 +++

βα
kkk

p xE   

               ≤ ),,(
kkk

p xE βα .                                          (5)                                    

Therefore, the sequence }{ ),,(
kkk

p xE βα  of 

exponential penalty function values is non increasing and 

bounded from below, and must converge monotonically from 

above to a limit, say g *, where g *≥f *. 

 

Suppose that g * > f *. In this case, we define a positive 

number  

γ := ( )** fg −
2
1 . 

 

It follows from (4) that there exist a positive real number 

0k  such that for all 0kk ≥ , 

)(
k

xc  ≤  g * − γ.                                                              (6)                                                                       

Since αk > 0 , }{ k
β be a bounded sequence and αk   → ∞, 

 { }�
=

−β−α
m

i
ibxiA

kkk

1
)(exp  → 0 as k → ∞. 

So, there exist 1k  such that for all 1kk ≥ , 

   

{ }�
=

−β−α
m

i
ibxiA

kkk

1
)(exp  < 

2
1 γ.                               (7)   

                                                                          

If we apply (6)−(7) and take },max{ 10 kkk ≥ , the result 

is 

),,(
kkk

p xE βα  = )(
k

xc
  
+ { }�

=
−β−α

m

i
ibxiA

kkk

1
)(exp

 

 

                       ≤ g* − γ + 
2
1 γ  

= g* − 
2
1 γ.                                                   (8) 

Taking ∞→k  and using (8), we have 

                   g * ≤ g* − 
2
1 γ, 

that is, 

                      γ ≤ 0, 
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which contradicts with the assumption that γ > 0. We conclude 

that g * = f * and ),,(
kkk

p xE βα → f * as k → ∞, which 

gives result of the following theorem.  

 

Theorem 4 (Convergence of exponential penalty function) 

Let }{ k
β be a bounded sequence and }{ k

α  be an increasing 

sequence of positive penalty parameters such that ∞→α
k

 

as. Assume that }{
k

x is sequence such that bAx
k

=  and 

that )(
k

xc  → f * as k → ∞. Then ),,(
kkk

p xE βα  → f * as 

k → ∞.  

 

The implication of this theorem is remarkable strong. For 

the problem that is studied in this paper, the exponential 

penalty function has a finite unconstrained minimizer for every 

value of the penalty parameter, and every limit point of a 

minimizing sequence for the barrier function is a constrained 

minimizer of the problem.  

 

4 EXPONENTIAL BARRIER METHOD: 

In this section we present an exponential barrier function 

method to solve the problem. This idea is derived from the 

exponential penalty function presented in Section 2. The 

exponential barrier function is given by  

),,( σµx
b

E  = )(xc  − { }�
=

−σµ
m

i i
bx

i
A

ii1
)(exp

  

(9)                                   

where µ = (µ1,… µm) > 0 is a barrier parameter of the function 

and β = (β1,…, βm) > 0. The barrier is formed from a sum of 

exponential of constraint violations and the parameter µ 

determines the amount of the barrier.  

 

We summary the concavity, local and global optimality, 

monotonicity and convergence behaviors of the function 

defined in (9) for solving the problem. All proofs of these 

behaviors are omitted because similar with the proofs in 

Section 3.   

 

Theorem 5 (Concavity) The exponential barrier function 

),,( σµx
b

E  is concave in its domain.  

 

Theorem 6 (Local and global behavior) For every µ > 0 and 

σ > 0 we have 

 

(a) ),,( σµx
b

E  has a finite unconstrained maximizer in its 

domain for and the set Mµ of unconstrained maximizers of 

),,( σµx
b

E  in its domain is convex and compact. 

(b) Any unconstrained local maximizer of ),,( σµx
b

E  in its 

domain is also a global unconstrained maximizer of 

),,( σµx
b

E . �  

Theorem 7 (Monotonicity) Let }{ k
σ  be a bounded sequence 

of positive real number and }{ k
µ  be an increasing sequence 

of positive barrier parameters such that ∞→µ
k

 as ∞→k . 

Then }{ ),,(
kkk

x
b

E σµ  is non-decreasing.  

 

 

Theorem 8 (Convergence of exponential barrier function) 

Let }{ k
σ  be a bounded sequence of positive real number and 

}{ k
µ  be an increasing sequence of positive barrier parameters 

such that ∞→µ
k

 as ∞→k . Assume that }{
k

x is 

sequence such that bAx
k

=  and that )(
k

xc  → f * as k → 

∞. Then ),,(
kkk

x
b

E σµ → f * as k → ∞. �  

 

The implication of this theorem is remarkable strong. For 

the problem that is studied in this paper, the exponential barrier 

function has a finite unconstrained maximizer for every value 

of the barrrier parameter, and every limit point of a 

maximizing sequence for the barrier function is a constrained 

minimizer of the problem.  

 

Theorems 4 and 8 have a weakness. That is, it assumes that 

the sequence }{
k

x is taken such that }{ )(
k

xc  has a limit 

point f *. However, this situation can be remedied by taking 

sequence }{
k

x of minimizers (maximizers) of 

),,(
kkk

p xE βα  ( ),,(
kkk

b xE σµ ). The proofs of these 

results will appear elsewhere. 
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