International Journal of Mathematical Archive-3(1), 2012, Page: 313-317 Available online through <u>www.ijma.info</u> ISSN 2229 – 5046

Some Fixed Point Theorems for A_w^* -maps

M. Akram^{*} and Z. Afzal¹

¹Department of Mathematics, GC University, Katchery Road Lahore 54000, Pakistan

Email: dr.makram@gcu.edu.pk, makram71@yahoo.com, zeeshanlove4every1@gmail.com

(Received on: 19-11-11; Accepted on: 10-12-11)

ABSTRACT

In this paper, we introduce the idea of A_w^* -mapping for w-distance and proved some results for fixed point and common fixed point for A_w^* -mappings. These results, generalized and improved the corresponding results of A.Latif, Suzuki and others.

AMS (2000) Mathematics Subject Classification: 47H10, 54H25.

Key Words: A_w^* -maps, Fixed points, Multi-valued maps, w-distance.

1 INTRODUCTION:

In [6], Kada et al., have introduced a notion of *w*-distance on a metric space and improved several results replacing the involved metric by a generalized distance. Using this generalized distance, Suzuki and Takahashi in [12] introduced notions of single-valued and multi-valued weakly contractive maps and proved some fixed point results for such maps. Consequently, they generalized the Banach contraction principle and Nadler's (see [10]) fixed point results . While, in [13] Suzuki generalized Kannan's [7] fixed point result in *w*-distance. Further fixed point results concerning *w*-distance can be found in [6,7,11]. In [2], M. Akram, et al., introduced the general class of contraction called A-contraction and proved that the class of A-contraction is a proper super class of Kannan's contractions including several other famous contractions like Bianchini's [4] and Reich's [11] contractions. In [1] M. Akram et al., using the idea of A-contractions, proved several fixed point theorems for single valued maps on generalized complete metric spaces. In [3], M. Akram, et al., introduced general multi-valued A^* -maps and proved some fixed point theorems for these maps. In this paper, using the concept of w-distance, we define A^*_w -maps and proved some fixed point and common fixed point results for these maps. These results generalizes the results of [9] and others, for general class of maps called A^*_w -maps.

2 PRELIMINARIES:

Throughout this paper, X is a metric space with metric d. Let 2^X denote a set of all nonempty subsets of X, Cl(X) a family of all nonempty closed subsets of X. Consider a multi-valued map $T: X \to 2^X$. An element $x \in X$ is said to be a fixed point of T if $x \in T(x)$. Let R_+ denote the set of all non-negative real numbers and A^* stands for the set of all functions $\alpha: R_+^3 \to R_+$ satisfying

1. α is continuous on the R_{+}^{3} of all triplets of non-negative reals (with respect to the Euclidean metric on R^{3});

2. α is non-decreasing in each coordinate variables;

3. $a \le kb$ for some $k \in [0,1)$, whenever $a \le \alpha(a,b,b)$ or $a \le \alpha(b,a,b)$ or $a \le \alpha(b,b,a)$ for all a, b.

Definition: 2.1 A map $\phi: X \to R$ is called Lower Semi-Continuous if for any sequence $\{x_n\} \subset X$ with $x_n \to x \in X$ imply that $\phi(x) \leq \liminf_{n \to \infty} \phi(x_n)$.

Kada et all. [6], introduced a concept of *w*-distance as follows:

Definition: 2.2 A function $w: X \times X \rightarrow [0, \infty)$ is called w-distance on X if it satisfies the following conditions, for any $x, y, z \in X$:

1. $w(x, z) \le w(x, y) + w(y, z)$

2. the map $w(x, .): X \to [0, \infty)$ is lower semi-continuous.

3. for any $\varepsilon > 0$, there exist a $\delta > 0$ such that $w(z, x) \le \delta$ and $w(z, y) \le \delta$ imply that $w(x, y) \le \varepsilon$.

International Journal of Mathematical Archive- 3 (1), Jan. - 2012

The metric d on X is a simple example of w-distance on X. Many other examples of w-distance can be found in [8, 10, 13].

Definition: 2.3 A multi-valued map $T: X \to 2^X$ is A_w^* -map if there exists a w-distance function w such that for any $x \in M, u \in T(x)$ there exist $v \in T(y)$ for all $y \in M$, and

$$w(u,v) \le \alpha(w(x,y), w(x,u), w(y,v)),$$

for some $\alpha \in A^*$.

In particular, if we take w = d, then A_w^* -map becomes an A^* -map as defined in [3].

Definition: 2.4 A multi-valued map $T: X \to 2^X$ is said to be K_w -map if there exists a nonnegative number $r \in [0,1)$ and a w-distance function w such that for any $x \in M, u \in T(x)$ there exist $v \in T(y)$ for all $y \in M$, w satisfies the inequality $w(u, v) \leq r(w(x, u) + w(y, v))$.

The following Lemma concerning *w*-distance is very important.

Lemma: 2.5 [8] Let X be metric space with metric d and let w be the w-distance on X. Let $\{x_n\}$ and $\{y_n\}$ be sequences in X. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be a sequences in $[0,\infty)$ converging to 0, and let $x, y, z \in X$, then the following hold:

(a) If $w(x_n, y) \le \alpha_n$ and $w(x_n, z) \le \beta_n$ for any $n \in N$, then y = z; in particular, if w(x, y) = 0 and w(x, z) = 0. Then y = z;

(b) If $(x_n, y_n) \leq \alpha_n$ and $w(x_n, z) \leq \beta_n$ for any $n \in N$, then $\{y_n\}$ converges to z; (c) If $w(x_n, x_m) \leq \alpha_n$ for any $n, m \in N$ with m > n, then $\{x_n\}$ is Cauchy sequence; (d) If $w(y, x_n) \leq \alpha_n$ for any $n \in N$, then $\{x_n\}$ be Cauchy sequence.

3. MAIN RESULTS:

Now, for m > n, we have

In the sequel, we take X complete and M a non-empty closed subset of X.

Theorem 3.1 Let $T: M \to Cl(M)$ be a multi-valued A_w^* -map such that for any $x \in M$, there exists $u \in Tx$, there exist $v \in Ty$ for all $y \in M$ and

$$\inf\{w(x, u) + w(x, Tx) : x \in X\} > 0$$

for every $u \in X$ with $u \in T(u)$. Then T has a fixed point.

Proof. Let u_0 be an element of M, and $u_1 \in T(u_0)$ be fixed. Since T is A_w^* -map, there exist $u_2 \in T(u_1)$ s.t.

$$w(u_1, u_2) \le \alpha(w(u_0, u_1), w(u_0, u_1), w(u_1, u_2))$$

$$\le k \ w(u_0, u_1),$$

where $k \in [0,1)$. By repeating this process, we have

$$w(u_n, u_{n+1}) \le k^n w(u_0, u_1).$$

$$\begin{split} w(u_m, u_n) &\leq w(u_n, u_{n+1}) + w(u_{n+1}, u_{n+2}) + \ldots + w(u_{m-1}, u_m) \\ &\leq k^n \ w(u_0, u_1) + k^{n+1} \ w(u_0, u_1) + \ldots + k^{m-1} \ w(u_0, u_1) \\ &\leq (k^n + k^{n+1} + \ldots + k^{m-1}) \ w(u_0, u_1) \\ &\leq \{k^n (1 - k^m) / (1 - k)\} \ w(u_0, u_1) \to 0 \ as \ n \to \infty. \end{split}$$

Hence, by lemma(1.4), $\{u_n\}$ is a Cauchy sequence. From the completeness of X, we get that $\{u_n\}$ converges to some $v_0 \in X$. Since M being closed, we have $v_0 \in M$. Let $n \in N$ be fixed. Since $\{u_m\}$ converges to some v_0 and $w(u_n, \cdot)$ is lower semi-continuous, we get

$$w(u_n, v_0) \le \liminf (u_n, u_m) \le \{k^n(1 - k^m)/(1 - k)\} w(u_0, u_1)$$

So, as $n \to \infty$, we have $w(u_n, v_0) \to 0$. Assume that $v_0 \in T(v_0)$. Then by hypothesis, we have

$$0 < \inf\{w(u, v_0) + w(u, Tu) : u \in X\} \\ \leq \inf\{w(u_n, v_0) + w(u_n, Tu_n) : n \in N\} \\ \leq \inf\{w(u_n, v_0) + w(u_n, u_{n+1}) : n \in N\}$$

© 2012, IJMA. All Rights Reserved

M. Akram^{*} and Z. Afzal¹/Some Fixed Point Theorems for A_w^* -maps/IJMA- 3(1), Jan.-2012, Page: 313-317

 $\leq \inf\{k^n(1-k^m)/(1-k) \ w(u_0,u_1) + \ k^n w(u_0,u_1): n \in N\} = 0.$

Which is impossible and hence $v_0 \in T(v_0)$.

Note that Theorem 3.1 of [9] becomes the corollary of our Theorem 3.1 as below.

Corollary: 3.2 Let $T: M \to Cl(M)$ be a multi-valued K_w -map such that

$$\inf\{w(x, u) + w(x, T(x)) : x \in X\} > 0,$$

for every $u \in X$ with $u \in T(u)$. Then T has a fixed point.

Proof: Define $\alpha: R_+^3 \to R^+$ by $\alpha(u, v, w) = r(u + v)$, where 0 < r < 1/2. One can easily see that $\alpha \in A^*$. For any $x \in M, u \in T(x)$ there exist a $v \in T(y)$ for all $y \in M$. If we take u = w(x, u), v = w(y, v) and w = w(x, y), in the definition of K_w -map, we have

$$w(u, v) \le h(w(x, u) + w(y, v)) = h(u + v) = \alpha(u, v, w).$$

This gives $w(u, v) \le \alpha(w(x, y), w(x, u), w(y, v))$. That is T is a A_w^* -map. Hence by Theorem 3.1, we have the conclusion.

Theorem 3.3 Each A_w^* -map $T: M \to Cl(M)$ has a fixed point, provided that for any iterative sequence $\{u_n\}$ in M with $u_n \to v_0 \in M$, the sequence of real numbers $\{w(v_0, u_n)\}$ converges to zero.

Proof. In a similar way, as in Theorem 3.1, there exists a convergent iterative sequence $\{u_n\}$ such that $u_n \rightarrow v_0 \in M$ with

$$w(u_n, v_0) \le \liminf_{m \to \infty} w(u_n, u_m) \le \{k^n (1 - k^m) / (1 - k)\} \ w(u_0, u_1)$$

$$w(u_n, u_{n+1}) \le k^n \ w(u_0, u_1).$$

and

Note that $w(u_n, v_0) \to 0$ as $n \to \infty$. Further since $u_n \in T(u_{n-1})$ and T is a A_w^* -map therefore there is $v_n \in T(v_0)$ such that

$$w(u_n, v_n) \le \alpha(w(u_{n-1}, v_0), w(u_{n-1}, u_n), w(v_0, v_n)).$$

For this we use definition of lower semi-continuous

$$w(v_0, \lim_{n\to\infty} v_n) \leq \liminf_{n\to\infty} w(u_n, v_n) \leq \lim_{n\to\infty} w(u_n, v_n).$$

By using this expression given above, we get

$$\begin{split} \lim_{n \to \infty} w(u_n, v_n) &\leq \lim_{n \to \infty} (\alpha(w(u_{n-1}, v_0), w(u_{n-1}, u_n), w(v_0, v_n))) \\ &\leq \alpha(\lim_{n \to \infty} w(u_{n-1}, v_0), \lim_{n \to \infty} w(u_{n-1}, u_n), \lim_{n \to \infty} w(v_0, v_n)) \\ &\leq \alpha(0, 0, w(v_0, \lim_{n \to \infty} v_n)) \\ &\leq \alpha(0, 0, \lim_{n \to \infty} w(u_n, v_n)) \\ &\leq k(0) = 0. \end{split}$$

Thus $w(u_n, v_n) \to 0$ as $n \to \infty$. Then by Lemma 2.5, we get that $v_n \to v_0$. As $v_n \in T(v_0)$, and $T(v_0)$ is closed, $v_0 \in T(v_0)$.

Theorem 3.2 of [9] becomes the special case of our Theorem 3.3 as bellow.

Corollary: 3.4 Each K_w -map $T: M \to Cl(M)$ has a fixed point, provided that for any iterative sequence $\{u_n\}$ in M with $u_n \to v_0 \in M$, the sequence of real numbers $\{w(v_0, u_n)\}$ converges to zero.

Theorem: 3.5 Let $\{T_n\}$ be a sequence of multi-valued maps of M into Cl(M). For any two maps $T_i, T_j \in \{T_n\}$ and for any $x, y \in M$ there exists $u \in T_i(x)$ and $v \in T_i(y)$ with

$$w(u,v) \le \alpha(w(x,y), w(x,u), w(y,v)),$$

and for each $n \ge 1$, $\inf\{w(x, u) + w(x, T_n(x)) : x \in X\} > 0$, for any $u \in T_n(u)$.

Then the sequence $\{T_n\}$ has a common fixed point.

Proof. Let u_0 be an arbitrary element of M and let $u_1 \in T_1(u_0)$, then there is $u_2 \in T_2(u_1)$ such that $w(u_1, u_2) \le k \ w(u_0, u_1)$. So, there exist a sequence $\{u_n\}$ such that $u_{n+1} \in T_{n+1}(u_n)$ for all $n \ge 1$. Then as $n \to \infty$, we get that $\{u_n\}$ is a Cauchy sequence in X. Let $p = \lim_{n\to\infty} u_n$ in M. Now we show that $p \in \bigcap_{n \ge 1} T_n(p)$. Let T_m be any arbitrary member of $\{T_n\}$. Since $u_n \in T_n(u_{n-1})$, by hypothesis there is $s_n \in T_m(p)$ such that

$$w(u_n, s_n) \le \alpha(w(u_{n-1}, p), w(u_{n-1}, u_n), w(p, s_n))$$

when $n \to \infty$, we have $w(u_{n-1}, p) \to 0$ and $w(u_{n-1}, u_n) \to o$

$$\lim_{n \to \infty} w(u_n, s_n) \le \alpha(0, 0, \lim_{n \to \infty} w(u_n, s_n))$$
$$\le k(0) = 0.$$

This implies that $w(u_n, s_n) \to 0$ as $n \to \infty$ and we get the following

$$w(u_n, p) \le \liminf w(u_n, u_m) \le \{k^n(1-k^m)/(1-k)\} \ w(u_0, u_1) \to 0, n \to \infty.$$

This implies that $w(u_n, p) \to 0$ as $n \to \infty$. Now, assume that $p \in T_m(p)$. Then by given hypothesis and for n > m and $m \ge 1$, we have

$$\begin{split} 0 &< \inf\{w(u,p) + w(u,T_m(u)): u \in X\} \\ &\leq \inf\{w(u_{m-1},p) + w(u_{m-1},T_m(u_{m-1})): m \in N\} \\ &\leq \inf\{w(u_{m-1},p) + w(u_{m-1},u_m): m \in N\} \\ &\leq \inf\{k^{m-1}(1-k^n/1-k) \ w(u_0,u_1) + k^{m-1} \ w(u_0,u_1): m \in N\} = 0. \end{split}$$

which is impossible and hence $p \in T_m(p)$. But T_m is an arbitrary, hence p is a common fixed point.

Next corollary, is the Theorem 3.3 of [9].

Corollary: 3.6 Let $\{T_n\}$ be a sequence of multi-valued maps of M into Cl(M). Suppose that there exist a constant $0 \le r < 1/2$ such that for any two maps $T_i, T_j \in \{T_n\}$ and for any $x \in M, u \in T_i(x)$, there exists $v \in T_j(y)$ for all $y \in M$ with

$$w(u, v) \le r \{w(x, u) + w(y, v)\},\$$

and for each $n \ge 1$, $\inf\{w(x, u) + w(x, T_n(x)) : x \in X\} > 0$,

for any $u \in T_n(u)$. Then the sequence $\{T_n\}$ has a common fixed point.

Theorem: 3.7 Let $\{T_n\}$ be a sequence of multi-valued maps of M into Cl(M). For any two maps $T_i, T_j \in \{T_n\}$ and for any $x, y \in M$ there exists $u \in T_i(x)$ and $v \in T_i(y)$ with

$$w(u, v) \le \alpha(w(x, y), w(x, u), w(y, v)).$$

Then $\{T_n\}$ has a common fixed point, provided that for any iterative sequence $\{u_n\}$ in M with $u_n \to v_0 \in M$. The sequence of real numbers $\{w(v_0, u_n)\}$ converges to 0.

Proof. This result can be proved in a similar way, as Theorem 3.5 is proved.

Theorem 3.4 of [9] becomes the corollary of our theorem given above as follows.

Corollary 3.8 Let $\{T_n\}$ be a sequence of multi-valued maps of M into Cl(M). Suppose that there exit a constant $0 \le r < 1/2$ such that for any two maps T_i , T_j and for any $x \in M$, $u \in T_i(x)$. There exists $v \in T_j(y)$ for all $y \in M$ with

$$w(u.v) \le r \{w(x,u) + w(y,v)\}.$$

Then $\{T_n\}$ has a common fixed point, provided that for any iterative sequence $\{u_n\}$ in M with $u_n \to v_0 \in M$. The sequence of real numbers $\{w(v_0, u_n)\}$ converges to zero.

REFERENCES:

[1] M. Akram, A. A. Siddique, A. A. Zafar, Common fixed point theorems for self maps of a generalized metric space satisfying A-contraction type condition, Int. Journal of Math. Analysis, Vol. 5, (2011),757 - 763.

[2] M. Akram, A.A. Siddique, A. A. Zafar, A general class of contractions: *A*-contractions, Novi Sad J. Math. Vol. 38, (2008), 25-33.

[3] M. Akram, A. A. Siddique, A. A. Zafar, Some fixed point theorems for multi-valued A^* - mappings, Korean J. Math. Science Vol. 10, (2003),7-12.

[4] R. Bianchini, Su un problema di S.Reich riguardante la teori dei punti fissi, Boll. Un. Math, Ital., Vol. 5 (1972), 103-108.

[5] Y. Feng and S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi Type mappings, J. Math. Anal. Appl., 317 (2006), 103-112.

[6] O. Kada, T. Susuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon., 44 (1996), 381-391.

[7] R. Kannan, Some results on fixed points, Bull. math. Calcutta, 6 (1968), 405-408.

[8] T.H. Kim, K. Kim and J.S. Ume, Fixed point theorems on complete metric spaces, Panamer. Math. J., 7 (1997), 41-51.

[9] A. Latif, Fixed point results for multivalued maps, Int. J. Contemp. Math. Science, Vol. 2, (2007), no. 23, 1129-1136.

[10] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488.

[11] Reich S., Kannan's fixed point theorem, Boll.Un.Math.Ital., Vol.4 (1971), 1-11.

[12] T. Suzuki and W. Takahashi, Fixed point theorems and characterizations of metric completeness, Topol. Methods Nonlinear Anal., 8 (1996), 371-382.

[13] T. Suzuki, Several fixed point theorems in complete metric spaces, Yokohama Math. J., 44 (1997), 61-72.

[14] W. Takahashi, Nonlinear functional analysis: Fixed point theory and its applications, Yokohama Publishers, 2000.

[15] J. S. Ume, B. S. Lee and S. J. Cho, Some results on fixed point theorems for multivalued mappings in complete metric spaces, IJMMS, 30 (2002),319-325.
