

ON SOMEWHAT SLIGHTLY FUZZY ω-CONTINUOUS MAPPINGS

M. Sudha*, E. Roja and M. K. Uma

Department of Mathematics, Sri Sarada College for Women, Salem-16, Tamil Nadu, India

E-mail: sudhaslm05@yahoo.com

(Received on: 19-12-11; Accepted on: 09-01-12)

ABSTRACT

In this paper the concepts of somewhat slightly fuzzy ω -continuous and somewhat slightly fuzzy ω -open mappings are introduced. Several characterizations and some interesting properties are also discussed. Also interrelations among the mappings introduced are discussed with relevant examples.

Keywords: Somewhat fuzzy ω -continuous map, somewhat slightly fuzzy ω -continuous map, fuzzy ω -dense set, fuzzy dense* set, slightly fuzzy ω -open map, somewhat slightly fuzzy ω -open map.

2000 Mathematics Subject Classification: 54A40, 03E72.

1. INTRODUCTION:

The fuzzy concept has penetrated almost all branches of Mathematics since the introduction of the concept of fuzzy set by Zadeh [7]. Fuzzy sets have applications in many fields such as information [3] and control [5]. The theory of fuzzy topological spaces was introduced and developed by Chang [1]. The concept of somewhat pairwise continuous functions was introduced by Uma, Roja and Balasubramanian [6]. The concept of ω -continuous mappings was introduced and studied by Sheik John in [2]. The concept of slightly fuzzy continuous mappings was introduced by Sudha, Roja and Uma [4]. In this paper we introduce a new class of fuzzy set called fuzzy ω -open set. The motivation of this paper is to introduce somewhat slightly fuzzy ω -continuous mappings. Some interesting properties and characterizations of these mappings are discussed with necessary examples.

2. PRELIMINARIES:

Definition : 2.1 [6] Let (X, T) and (Y, S) be any two bitopological spaces. A function f: (X, T) \rightarrow (Y, S) is called somewhat fuzzy continuous if $\lambda \in S$ and f⁻¹(λ) $\neq 0 \Rightarrow$ there exists $\mu \in T$ such that $\mu \neq 0$ and $\mu \leq f^{-1}(\lambda)$.

Definition: 2.2 [2] A subset A of a topological space (X, T) is called ω -closed in (X, T) if cl(A) \subseteq U whenever A \subseteq U and U is semi-open in (X, T).

A subset A is called ω -open in (X, T) if its complement, A^c is ω -closed.

Definition: 2.3 [4] Let (X, T) and (Y, S) be any two fuzzy topological spaces. A mapping f: (X, T) \rightarrow (Y, S) is said to be slightly fuzzy continuous if for every fuzzy set $\alpha \in I^X$ and every fuzzy clopen set μ with f (α) $\leq \mu$, there exists a fuzzy open set σ with $\alpha \leq \sigma$ such that f (σ) $\leq \mu$.

3. MAIN RESULTS:

3.1 Somewhat slightly fuzzy ω-continuous mappings:

In this section we introduce and investigate some properties of somewhat slightly fuzzy ω -continuous mappings. Also we obtain some characterizations of these mappings.

Definition: 3.1.1Let (X,T) be a fuzzy topological space. A fuzzy set $\lambda \in I^{\Lambda}$ is called fuzzy ω -open in (X, T) if int $(\lambda) \ge \mu$ whenever $\lambda \ge \mu$ and μ is fuzzy semi-closed in (X, T). The complement of a fuzzy ω -open set is fuzzy ω -closed.

Notation: 3.1.1

(a) ω -int (λ) denotes the fuzzy ω -interior of a fuzzy set λ in a fuzzy topological space (X, T).

(b) ω -cl (λ) denotes the fuzzy ω -closure of a fuzzy set λ in a fuzzy topological space (X, T).

Definition: 3.1.2 Let (X, T) and (Y, S) be any two fuzzy topological spaces. A map f: $(X, T) \rightarrow (Y, S)$ is called fuzzy ω -continuous if $f^{-1}(\lambda)$ is fuzzy ω -open in (X, T) for every fuzzy open set λ in (Y, S).

Definition: 3.1.3 Let (X, T) and (Y, S) be any two fuzzy topological spaces. A mapping f: (X, T) \rightarrow (Y, S) is said to be slightly fuzzy continuous if for every fuzzy set $\alpha \in I^X$ and every fuzzy clopen set μ with f (α) $\leq \mu$, there exists a fuzzy ω -open set σ with $\alpha \leq \sigma$ such that f (σ) $\leq \mu$.

Definition: 3.1.4 Let (X, T) and (Y, S) be any two fuzzy topological spaces. A mapping $f: (X, T) \to (Y, S)$ is said to be somewhat fuzzy ω -continuous if every fuzzy open set λ in (Y, S) with $f^{-1}(\lambda) \neq 0$ implies that there exists a fuzzy ω -open set $\mu \neq 0$ such that $\mu \leq f^{-1}(\lambda)$.

Definition: 3.1.5 Let (X, T) and (Y, S) be any two fuzzy topological spaces. A mapping f: (X, T) \rightarrow (Y, S) is said to be somewhat slightly fuzzy ω -continuous if for every fuzzy set $\alpha \in I^X$ and for every fuzzy clopen set μ in (Y, S) with $f^{-1}(\mu) \neq 0$ and $f(\alpha) \leq \mu$, there exists a fuzzy ω -open set $\sigma \neq 0$ such that $\alpha \leq \sigma$ and $\sigma \leq f^{-1}(\mu)$.

Every slightly fuzzy continuous mapping is slightly fuzzy ω -continuous but the converse is not true as shown by the following example.

Example: 3.1.1 Let $X = \{a, b\}$. Define $T = \{0, 1, \lambda_1, \lambda_2, \lambda_3\}$, $S = \{0, 1, \mu_1, \mu_2\}$, $Q = \{0, 1, \gamma_1, \gamma_2\}$ where $\lambda_1, \lambda_2, \lambda_3, \mu_1, \mu_2, \gamma_1, \gamma_2 : X \rightarrow [0, 1]$ are such that $\lambda_1(a) = 0.3$, $\lambda_1(b) = 0.4$, $\lambda_2(a) = 0.7$, $\lambda_2(b) = 0.6$, $\lambda_3(a) = 0.5$, $\lambda_3(b) = 0.5$, $\mu_1(a) = 0.5$, $\mu_2(a) = 1$, $\mu_2(b) = 0.7$, $\gamma_1(a) = 0.1$, $\gamma_1(b) = 0.2$, $\gamma_2(a) = 0.9$, $\gamma_2(b) = 0.8$. Clearly T, S, Q are fuzzy topologies on X. Define f: (X, T) \rightarrow (X, S) as f (a) = b, f (b) = a. Let g: (X, Q) \rightarrow (X, S) be the identity function.

Then g is slightly fuzzy ω -continuous. Define the fuzzy set $\alpha : X \to [0, 1]$ as $\alpha (a) = 0.4$, $\alpha (b) = 0.5$. Now g $(\alpha) \le \mu_1$, where μ_1 is the fuzzy clopen set in (X, S). But γ_2 is a fuzzy open set in (X, Q) with $\alpha \le \gamma_2$ such that g $(\gamma_2) \le \mu$. Hence g is not slightly fuzzy continuous. It is easy to verify that f is slightly fuzzy continuous.

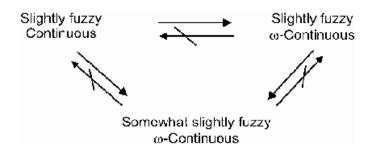
Every slightly fuzzy continuous mapping is somewhat slightly fuzzy ω-continuous but the converse is not true as shown by the following example.

Example: 3.1.2 In Example 3.1.1, g is somewhat slightly fuzzy ω -continuous but not slightly fuzzy continuous. It is easy to verify that the mapping f in the same example is slightly fuzzy continuous.

Every slightly fuzzy ω -continuous mapping is somewhat slightly fuzzy ω -continuous but the converse is not true as shown by the following example.

Example: 3.1.3 Let $X = \{a, b\}$. Define $T = \{0, 1, \lambda\}$, $S = \{0, 1, \mu_1, \mu_2\}$, $Q = \{0, 1, \gamma\}$ where $\lambda, \mu_1, \mu_2, \gamma : X \rightarrow [0, 1]$ are such that $\lambda(a) = 1$, $\lambda(b) = 0.9$, $\mu_1(a) = 0$, $\mu_1(b) = 0.2$, $\mu_2(a) = 1$, $\mu_2(b) = 0.8$, $\gamma(a) = 0.9$, $\gamma(b) = 0.7$. Clearly T, S, Q are fuzzy topologies on X. Define f: $(X, T) \rightarrow (X, S)$ as f (a) = a, f (b) = a. Let g : $(X, Q) \rightarrow (X, S)$ be the identity function. Then f is somewhat slightly fuzzy ω -continuous. Define the fuzzy set $\alpha : X \rightarrow [0, 1]$ as $\alpha(a) = 0.8$, $\alpha(b) = 0.8$. Now f (α) $\leq \mu_2$, where μ_2 is the fuzzy clopen set in (X, S). But there exists no fuzzy ω -open set σ in (X, T) with $\alpha \leq \sigma$ such that f (σ) $\leq \mu_2$. Hence f is not slightly fuzzy ω -continuous. It is easy to verify that g is slightly fuzzy ω -continuous.

The following diagram gives the interrelations:



Definition: 3.1.6 A fuzzy set λ in a fuzzy topological space (X, T) is called fuzzy ω -dense (resp. fuzzy dense*) set if there exists no fuzzy ω -closed (resp. fuzzy clopen) set μ in (X, T) such that $\lambda < \mu < 1$.

Notation: 3.1.2 Let (X, T) be a topological space. For a fuzzy set $\lambda \in I^{\Lambda}$, int*(λ) and cl*(λ) are defined as follows:

- (a) $\operatorname{int}^*(\lambda) = \vee \{ \mu \in T / \mu \le \lambda \text{ and } \mu \text{ is fuzzy clopen} \}$
- (b) $cl^*(\lambda) = \wedge \{\mu \in T \mid \mu \ge \lambda \text{ and } \mu \text{ is fuzzy clopen} \}$

Example: 3.1.4 Let $X = \{a, b\}$. Define $T = \{0, 1, \lambda_1, \lambda_2\}$ where λ_1, λ_2 : $X \to [0, 1]$ are defined as $\lambda_1(a) = 0.1$, $\lambda_1(b) = 0.2$, $\lambda_2(a) = 0.8$, $\lambda_2(b) = 0.7$. Clearly T is a fuzzy topology on X. Define a fuzzy set $\lambda : X \to [0, 1]$ such that $\lambda(a) = 0.9$, $\lambda(b) = 0.8$. Clearly λ is a fuzzy ω -dense set in (X, T).

Example: 3.1.5 Let $X = \{a, b\}$. Define $T = \{0, 1, \mu_1, \mu_2\}$ where $\mu_1, \mu_2 : X \rightarrow [0, 1]$ are defined as $\mu_1(a) = 0.1$, $\mu_1(b) = 0.2$, $\mu_2(a) = 0.9$, $\mu_2(b) = 0.8$. Clearly T is a fuzzy topology on X. Define a fuzzy set $\lambda: X \rightarrow [0, 1]$ such that $\lambda(a) = 0.8$, $\lambda(b) = 0.9$. Clearly λ is a fuzzy dense* set in (X, T).

Proposition: 3.1.1 Let (X, T) and (Y, S) be any two fuzzy topological spaces and let $f: (X, T) \rightarrow (Y, S)$ be any mapping. Then the following conditions are equivalent:

(a) f is somewhat slightly fuzzy ω -continuous.

(b) If λ is a fuzzy clopen set such that $f^{-1}(\lambda) \neq 1$ and $\lambda \leq f(1 - \alpha)$, for every $\alpha \in I^Y$, then there exists a proper fuzzy ω -closed set $\mu \leq 1 - \alpha$ in (X, T) such that $\mu \geq f^{-1}(\lambda)$.

(c) If λ is a fuzzy ω -dense set in (X, T) then f (λ) is a fuzzy dense* set in (Y, S) with every fuzzy clopen set $\mu \leq f(1 - \alpha)$, for every $\alpha \in I^X$.

(a) \Rightarrow (b) Suppose f is somewhat slightly fuzzy ω -continuous and let λ be any fuzzy clopen set in (Y, S) such that $f^{-1}(\lambda) \neq 1$ and $\lambda \leq f(1-\alpha)$, for every $\alpha \in I^X$. Then clearly $1-\lambda$ is fuzzy clopen in (Y, S) with $f^{-1}(1-\lambda) \neq 0$ and $f(\alpha) \leq 1-\lambda$. Then by (a), there exists a fuzzy ω - open set $\eta \neq 0$ in (X, T) such that $\alpha \leq \eta$ and $\eta \leq f^{-1}(1-\lambda)$. That is $1-\eta$ is fuzzy ω -closed and $1-\eta \geq 1-f^{-1}(1-\lambda)=f^{-1}(\lambda)$. Put $1-\eta=\mu$. Then μ is a proper fuzzy ω -closed set in (X, T) such that $\mu \geq f^{-1}(\lambda)$.

(b) \Rightarrow (c) Let λ be a fuzzy ω -dense set in (X, T) and suppose that f (λ) is not a fuzzy dense* set in (Y, S) with every fuzzy clopen set $\mu \le f(1 - \alpha)$, for every $\alpha \in I^X$. Then there exists a fuzzy clopen set η such that $f(\lambda) < \eta < 1$. Since $\eta < 1$, $f^{-1}(\eta) \ne 1$. Now η is a fuzzy clopen set such that $f^{-1}(\eta) \ne 1$ and $\eta \le f(1 - \alpha)$, for every $\alpha \in I^X$. Then by (b), there exists a proper fuzzy ω -closed set $\gamma \le 1 - \alpha$ such that $\gamma \ge f^{-1}(\eta)$. But $f^{-1}(\eta) > f^{-1}(f(\lambda)) = \lambda$. That is $\gamma \ge \lambda$. Therefore there exists a proper fuzzy ω -closed set γ such that $\gamma \ge \lambda$. This is a contradiction, since λ is a fuzzy ω -dense set. Therefore f (λ) is a fuzzy dense* set in (Y, S) with every fuzzy clopen set $\gamma \le f(1 - \alpha)$, for every $\alpha \in I^X$.

(c) \Rightarrow (a) Let λ be a fuzzy clopen set such that $f^{-1}(\lambda) \neq 0$ and $f(\alpha) \leq \lambda$, for every $\alpha \in I^X$. Then $\lambda \neq 0$. We want to show that f is somewhat slightly fuzzy ω -continuous. That is to show that there exists a fuzzy ω -open set $\sigma \neq 0$ such that $\alpha \leq \sigma$ and $\sigma \leq f^{-1}(\lambda)$. That is to show that $\alpha \leq \sigma$ and ω -int $(f^{-1}(\lambda)) \neq 0$ in (X, T). Suppose that $\alpha \leq \sigma$ and ω -int $(f^{-1}(\lambda)) = 0$, in (X, T). Then ω -cl $(1 - f^{-1}(\lambda)) = 1$, in (X, T). This means $1 - f^{-1}(\lambda)$ is fuzzy ω -dense in (X, T). Then by (c), $f(1 - f^{-1}(\lambda))$ is a fuzzy dense* set with every fuzzy clopen set $\mu \leq f(1 - \alpha)$, for every $\alpha \in I^X$. But $f(1 - f^{-1}(\lambda)) = f(f^{-1}(1 - \lambda)) \leq 1 - \lambda < 1$. Since $1 - \lambda$ is fuzzy clopen and $f(1 - f^{-1}(\lambda)) \leq 1 - \lambda$, $cl^*(f(1 - f^{-1}(\lambda))) \leq 1 - \lambda$. That is $1 \leq 1 - \lambda$, which implies $\lambda = 0$. This is a contradiction, since $\lambda \neq 0$. Therefore $\alpha \leq \sigma$ and ω -int $(f^{-1}(\lambda)) \neq 0$. This implies that f is somewhat slightly fuzzy ω -continuous. This proves (c) \Rightarrow (a).

Proposition: 3.1.2 Let (X, T) and (Y, S) be any two fuzzy topological spaces and let $f: (X, T) \rightarrow (Y, S)$ be a somewhat slightly fuzzy ω -continuous mapping. Let $A \subset X$ be such that $\psi_A \land \mu \neq 0$ for all $0 \neq \mu \in T$. Let T/A be the induced fuzzy topology on A. Then f/A : $(A, T/A) \rightarrow (Y, S)$ is somewhat slightly fuzzy ω -continuous.

Proof: Suppose that λ is a fuzzy clopen set in (Y, S) with $f^{-1}(\lambda) \neq 0$ and $f(\alpha) \leq \lambda$, for every $\lambda \in I^{X}$. Since f is somewhat slightly fuzzy ω -continuous, there exists a fuzzy ω -open set $\mu \neq 0$ in (X, T) such that $\mu \geq \alpha$ and $\mu \leq f^{-1}(\lambda)$.

Now clearly μ/A is fuzzy ω -open in (A, T/A) and $\mu/A \neq 0$, since $\psi_A \land \mu \neq 0$ for all $\mu \in T$. Also $\mu/A \ge \alpha/A$ and

$$(f/A)^{-1} (\lambda) (x) = \lambda (f/A) (x)$$

= $\lambda f (x)$, for $x \in A$
= $f^{-1} (\lambda (x))$, for $x \in A$
 $\geq \mu (x)$, for $x \in A$
= $\mu/A (x)$.

That is, $\mu/A \leq (f/A)^{-1}(\lambda)$. This shows that f/A is some what slightly fuzzy ω -continuous.

Proposition: 3.1.3 Let (X, T) and (Y, S) be any two fuzzy topological spaces and $X = A \cup B$ where A and B are subsets of X such that ψ_A , $\psi_B \in T$. Let f: $(X, T) \rightarrow (Y, S)$ be such that f/A and f/B are somewhat slightly fuzzy ω -continuous. Then f is somewhat slightly fuzzy ω -continuous.

Proof: Let λ be any fuzzy clopen set in (Y, S) with $f^{-1}(\lambda) \neq 0$ and $f(\alpha) \leq \lambda$, for every $\lambda \in I^X$. Consider $(f/A)^{-1}(\lambda)$ and $(f/B)^{-1}(\lambda)$. Since $f^{-1}(\lambda) \neq 0$, we must have atleast either $(f/A)^{-1}(\lambda) \neq 0$ or $(f/B)^{-1}(\lambda) \neq 0$. Also $(f/A)(\lambda/A) \leq \lambda$ and $(f/B)(\lambda/B) \leq \lambda$ where $\alpha/A \in I^A$ and $\alpha/B \in I^B$. Let us suppose that $(f/A)^{-1}(\lambda) \neq 0$ and $(f/A)(\lambda/A) \leq \lambda$, for every $\alpha/A \in I^A$. Then by assumption, there exists a fuzzy ω -open set $0 \neq \mu/A$ in (A, T/A) such that $\mu/A \geq \alpha/A$ and $\mu/A \leq (f/A)^{-1}(\lambda)$. Then $\mu \neq 0$ is fuzzy ω -open in (X, T) such that $\mu \geq \alpha$ and $\mu \leq f^{-1}(\lambda)$]. Since ψ_A is fuzzy open and therefore is fuzzy ω -open. Clearly $\mu/A \wedge \psi_A \neq 0$ is fuzzy ω -open in (X, T) such that $\mu/A \wedge \psi_A \geq \alpha/A$ and $\mu/A \wedge \psi_A \leq f^{-1}(\lambda)$. Therefore f is somewhat slightly fuzzy ω -continuous.

3.2 Somewhat slightly fuzzy ω-open mappings:

In this section we introduce somewhat slightly fuzzy ω -open mappings. Also we discuss some interesting properties and obtain characterizations of these mappings.

Definition: 3.2.1 Let (X, T) and (Y, S) be any two fuzzy topological spaces. A mapping f: $(X, T) \rightarrow (Y, S)$ is called fuzzy ω -open if for every fuzzy ω -open set λ in (X, T) the image f (λ) is fuzzy ω -open in (Y, S).

Definition: 3.2.2 Let (X, T) and (Y, S) be any two fuzzy topological spaces. A mapping $f: (X, T) \rightarrow (Y, S)$ is called somewhat fuzzy ω -open if for every fuzzy ω -open set $\lambda \neq 0$ in (X, T), there exists a fuzzy ω -open set $\mu \neq 0$ in (Y, S) such that $\mu \leq f(\lambda)$.

Definition: 3.2.3 Let (X, T) and (Y, S) be any two fuzzy topological spaces. A mapping f: $(X, T) \rightarrow (Y, S)$ is slightly fuzzy ω -open if for every fuzzy ω -open set λ in (X, T) with $\lambda \leq \alpha$ for every $\alpha \in I^X$, the image f (λ) is a fuzzy clopen set in (Y, S) such that f $(\lambda) \leq f(\alpha)$.

Definition: 3.2.4 Let (X, T) and (Y, S) be any two fuzzy topological spaces. A mapping $f : (X, T) \to (Y, S)$ is called somewhat slightly fuzzy ω -open if for every fuzzy ω -open set λ in (X, T) with $\lambda \neq 0$ and $\lambda \leq \alpha$ for every $\alpha \in I^X$, there exists a fuzzy clopen set μ in (Y, S) with $\mu \neq 0$ and $\mu \leq f(\alpha)$ such that $\mu \leq f(\lambda)$. That is int* $(f(\lambda)) \neq 0$ and there exists a fuzzy clopen set μ such that $\mu \leq f(\alpha)$ for $\lambda \leq \alpha$, for every $\alpha \in I^X$.

Clearly every fuzzy ω -open mapping is somewhat fuzzy ω -open, but the converse is not true as shown by the following example.

Example: 3.2.1Let $X = \{a, b\}$. Define $T = \{0, 1, \lambda_1, \lambda_2\}$, $S = \{0, 1, \mu\}$, where $\lambda_1, \lambda_2, \mu : X \rightarrow [0, 1]$ are defined as $\lambda_1 (a) = 0, \lambda_1 (b) = 1, \lambda_2 (a) = 1, \lambda_2 (b) = 0, \mu (a) = 0, \mu (b) = 0.3$. Let f: $(X, T) \rightarrow (X, S)$ be the identity function. Define the fuzzy set $\gamma : X \rightarrow [0, 1]$ as $\gamma (a) = 1, \gamma (b) = 0.6$. Now γ is fuzzy ω -open in (X, T) but $\gamma = f(\gamma)$ is not fuzzy ω -open in (X, S). Therefore f is not fuzzy ω -open. But $\lambda_1 \neq 0$ is fuzzy ω -open in (X, T) and μ is fuzzy ω -open in (X, S) such that $\mu \neq 0$ and $\mu \leq \lambda_1 = f(\lambda)$. Therefore f is somewhat fuzzy ω -open.

Clearly every slightly fuzzy ω -open mapping is somewhat slightly fuzzy ω -open but the converse is not true as shown by the following example.

Example: 3.2.2 Let X = {a, b}. Define T = {0, 1, λ }, S = {0, 1, δ_1 , δ_2 }, where λ , δ_1 , δ_2 : X \rightarrow [0, 1] are defined as

 λ (a) = 0.1, λ (b) = 0.1, δ_1 (a) = 0.05, δ_1 (b) = 0.02, δ_2 (a) = 0.95, δ_2 (b) = 0.98. Let f: (X, T) \rightarrow (X, S) be the identity function. Now $\lambda \neq 0$ is fuzzy ω -open in (X, T). For $\lambda \leq \alpha$, for every $\alpha \in I^X$, δ_1 is a fuzzy clopen set in (X, S) with $\delta_1 \neq 0$ and $\delta_1 \leq f(\alpha)$ such that $\delta_1 \leq f(\lambda)$. Therefore f is somewhat slightly fuzzy ω -open. But $\lambda = f(\lambda)$ is not fuzzy clopen in (X, S) such that f (λ) $\leq f(\alpha)$. Therefore f is not slightly fuzzy ω -open.

Proposition: 3.2.1Let (X, T), (Y, S) and (Z, R) be any three fuzzy topological spaces. If $f : (X, T) \rightarrow (Y, S)$ and g: (Y, S) \rightarrow (Z, R) are somewhat slightly fuzzy ω -open mappings then gof: (X, T) \rightarrow (Z, R) is a somewhat slightly fuzzy ω -open mapping.

Proof: Let λ be a fuzzy ω -open set in (X, T) with $\lambda \neq 0$ and $\lambda \leq \alpha$, for every $\alpha \in I^X$. Since f is somewhat slightly fuzzy ω -open, there exists a fuzzy clopen set μ in (Y, S) with $\mu \neq 0$ and $\mu \leq f(\alpha)$ such that $\mu \leq f(\lambda)$.

Now ω -int (f (λ)) is fuzzy ω -open in (Y, S) with ω -int (f (λ)) $\neq 0$ and ω -int (f(λ)) $\leq f(\alpha)$, for every $f(\alpha) \in I^{1}$. Since g is somewhat slightly fuzzy ω -open there exist a fuzzy clopen set γ in (Z, R) with $\gamma \neq 0$ and $\gamma \leq g(f(\alpha))$ such that $\gamma \leq g(\omega$ -int (f (λ)). But g (ω -int (f (λ)) $\leq g(f(\lambda))$. Thus there exists a fuzzy clopen set γ in (Z, R) with $\gamma \neq 0$ and $\gamma \leq g(g(\alpha))$ and $\gamma \leq g(g(\alpha))$. Therefore gof is some what slightly fuzzy ω -open.

Proposition: 3.2.2Let (X, T) and (Y, S) be any two fuzzy topological spaces and let $f: (X, T) \rightarrow (Y, S)$ be a one-to-one and onto mapping. Then the following conditions are equivalent:

(a) f is somewhat slightly fuzzy ω -open.

If λ is a fuzzy ω -closed set in (X, T) such that $f(\lambda) \neq 1$ and $\lambda > \alpha$ for every $\alpha \in I^{\lambda}$, then there exists a fuzzy clopen set μ in (Y, S) with $\mu \neq 1$ and $\mu > f(\alpha)$ such that $\mu > f(\lambda)$.

Proof: (a) \Rightarrow (b) Let λ be a fuzzy ω -closed set in (X, T) such that $f(\lambda) \neq 1$ and $\lambda > \alpha$, for every $\alpha \in I^X$. Then $1 - \lambda$ is a fuzzy ω -open set in (X, T) with $f(1 - \lambda) \neq 0$ and $1 - \lambda \leq 1 - \alpha$, for every $\alpha \in I^X$. So $1 - \lambda \neq 0$. Since f is somewhat slightly fuzzy ω -open, there exists a fuzzy clopen set δ in (Y, S) with $\delta \neq 0$ and $\delta \leq f(1 - \alpha)$ such that $\delta \leq f(1 - \lambda)$. Now $1 - \delta$ is a fuzzy clopen set in (Y, S) with $1 - \delta \neq 1$ and $1 - \delta > f(\alpha)$ such that $1 - \delta > f(\lambda)$. Putting $1 - \delta = \mu$, (b) is proved.

(b) \Rightarrow (a) Let λ be any fuzzy ω -open set in (X, T) with $\lambda \neq 0$ and $\lambda \leq \alpha$, for every $\alpha \in I^X$. Then $1 - \lambda$ is a fuzzy ω -closed set in (X, T) with $1 - \lambda \neq 1$ and $1 - \lambda > 1 - \alpha$, for every $\alpha \in I^X$. Now f $(1 - \lambda) = 1 - f(\lambda) \neq 1$. For, if $1 - f(\lambda) = 1$, then f $(\lambda) = 0$, which implies $\lambda = 0$. Hence by (b), there exists a fuzzy clopen set μ in (Y, S) with $\mu \neq 1$ and $\mu > f(1 - \alpha)$ such that $\mu > f(1 - \lambda)$. That is $1 - \mu \neq 0$ and $1 - \mu \leq f(\alpha)$ such that $1 - \mu \leq f(\lambda)$. Let $1 - \mu = \gamma$. Then γ is a fuzzy clopen set in (Y, S) with $\gamma \neq 0$ and $\gamma \leq f(\alpha)$ such that $\gamma \leq f(\lambda)$. Therefore f is somewhat slightly fuzzy ω -open.

REFERENCES:

[1] Chang. C.L. Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.

[2] Sheik John. M. A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph. D., Thesis, Bharathiar University, Coimbatore, 2002.

[3] Smets.M. The degree of belief in a fuzzy event, Inform. Sci., 25 (1981), 1-19.

[4] Sudha.M., Roja.E. and Uma. M. K., Slightly fuzzy continuous mappings, East Asian Mathematics Journal, 25 (2009), 1-8.

[5] Sugeno.M. An introductory Survey of fuzzy control, Inform. Sci., (1985), 59-83.

[6] Thangaraj.G. and Balasubramanian.G., On somewhat fuzzy continuous functions, The Journal of Fuzzy Mathematics, 11 (2003), 725-736.

[7] Zadeh. L.A., Fuzzy sets, Information and Control, 8 (1965), 338-353.
