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________________________________________________________________________________________________ 

 

ABSTRACT 

 

The aim of this paper is to investigate a mathematical model of stability and persistence in an interacting mutualism. 

Four interacting population where one of them a mutualist, interact with the other three species lead to mutualism 

between them. 

 

The models represent two species predator-prey or competition system in which a third species acts as a mutualist with 

either the predator, the prey, or one of the competitors. Stability and persistence are investigated. 

 

Key words:  Facultative mutualism, prey-predator, population interacting in a food chain. 

 

A. M. S. C.: 92D25, 34D20, 92D40. 

________________________________________________________________________________________________ 

 

1. INTRODUCTION: 

 

In this paper we investigate a model of four interacting populations where one of them, a mutualist, interacts with the 

other three so as to benefit, and receive benefit, from one of those three. We are interested in establishing persistence 

and stability criteria, which can be interpreted as the survival of all biological populations. There are now many papers 

in the literature dealing with mulualistic system. Most of these papers deal with two-dimensional systems modeling 

direct mutualism between two populations and ignore all other populations interactions, see ([1], [3], [4], [6]).Recently, 

some papers have been appeared which deal with cases where the mutualism is due to or influenced by the interacting 

with a third population, see ([4], [7], [8], [9], [10], [13], [14]). 

 

The persistence in biological system in a context related to this paper has been discussed in [5], [7], [8], [9], [10], [11]. 

We utilize the definition of persistence developed in [5], [12]. 

 

Definition:  Let )(tN  be such that 0)( >oN . Then we say that )(tN  persists if liminf ( ) 0N t >  as ∞→t . 

Further, we say that )(tN persists uniformly if there exists 0>δ such that liminf ( )N t δ≥ as ∞→t . Finally, a 

system in 
n

R  persists (uniformly) if all components persist (uniformly). 

 

2. MODEL: 

 

We describe a general system that models a mutualist interacting with populations in a food chain. The mathematical 

formulation of facultative relationships between the mutualist and two different trophic levels of the food chain are also 

described. 

________________________________________________________________________________________________ 
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We consider the autonomous system 
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                                                                     (2.1)                                        

 

as a model of a mutualist-food chain interaction with continuous birth and death process. )(tu  represents the density 

of the mutualist at time t , )(),(),( tztytx  denote the prey and predator densities respectively. If 0≡u  system 

(2.1) reduces to food chain model. The functions 3212121 ,,,,,,,, cccssppgh  are sufficiently smooth so that the 

solutions of (2.1) exist uniquely and are continuable for all positive time. The function h represents the specific growth 

rate of the mutualist. 

 

We assume that h  has the following properties, see ([6], [13], [16] ): 

( 1H ) (0, , , ) 0, ( , , , ) 0.
h

h x y z u x y z
u

∂
> ≤

∂
 

( 2H ) There exists a unique function 0),,( >zyuL , such that ( ( , , ), , , ) 0h L x y z x y z = . 

( 3H ) ( , , , ) 0, ( , , , ) 0, ( , , , ) 0,
x y z

h u x y z h u x y z h u x y z> ≤ ≤  

 

( 1H ) implies that, independent of zyx ,,  populations, u  is capable of growing even when rare. Also, the growth 

rate is assumed to be density-dependent and decreases as the population increases. )( 2H  implies that ),,( zyxL  is 

the mutualist carrying capacity and in part specifies in what way the prey and predator become part of the mutualist's 

environment. )( 3H  implies that u  derives benefit from the prey population and that there might be a cost to the 

mutualist due its interactions with the predators. 

 

Also, )( 1H  implies 

)( 4H As ,0 lim ( ,0,0) , ( , , ) 0, ( , , ) 0,x yt L x L L x y z L x y z→ ∞ < = < ∞ > ≤ ,0),,( ≤zyxLz  which 

implies that the mutualist has a finite carrying capacity. 

 

The function ),( xug  is the specific growth rate of the prey in the absence of any predation. We assume that g  

satisfies: 

 

)( 1G ( ,0) 0, ( , ) 0.xg u g u x> <  

)( 2G There exists a unique 0)( >uk  such that ,0))(,( >ukug  ∞<< kuk )( , where 

Lu

ukk
≤≤

=
0

)(max . 

)( 1G  implies that the prey population is capable of surviving in the presence or absence of the mutualist and the 

growth rate in the absence of predation is density-dependent. )( 2G  implies that )(uk  is the carrying capacity of the 

prey in the absence of predation. 

 

In the case that 0),( >xugu , then, even in the absence of predation, u  acts as a mutualist with respect to x . If 

0<ug , then there is a cost to x for associating with u , and u  can be mutualist of x  only by its effect upon 

predator. If 0),( ≡xugu , the relationship between u  and x  without predation is commensal. 

 

The functions ),,(),,,( 21 zxupyxup  and ),,( zyuq  denote the predator's functional response to the prey and 

mutualist densities. 
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We assume 

)( 1P ( ,0,0) 0, 1, 2
i

p u i= =  

          
1 1( , , ) 0, ( , , ) 0,

x y
p u x y p u x y> >  

          
2 2( , , ) 0, ( , , ) 0.x zp u x y p u x z≥ ≥  

 

)( 2P 1 20, 0.
u u

p p≤ ≥  

 

The functions 21, pp  are the competition functions and condition )( 1P  states that competition between x  and y , 

and x  and z  occurs when both populations are presented, and is an increasing function of their population. )( 2P  

implies the fact that the mutualism may decrease the competitive effect of y  on x  or may increase the competitive of 

x  on z .   

 

Also, we assume 

)( 1Q ( ,0,0) 0, ( , , ) 0,
u

q u q u y z= ≤ ( , , ) 0, ( , , ) 0.
y z

q u y z q u y z≥ >  

)( 2Q When 0, 0, 0.zy zq q q≡ + = ≠  

 

Also, we assume 

)( 1S 1 2( , ) 0, ( , ) 0.
y z

s u y s u z≥ ≥  

)( 2S 1 ( , ) 0, ( ) 0, 1, 2,3.
u iu

s u y c u i≥ ≤ =  

 

The non-negative functions 3,2,1),( =iuci  are the rates of conversion of prey biomass to predator biomass, α  is 

a bifurcation parameter. The functions ),,(1 yus ),(2 zus  are the specific death rate of the predators y and z  in 

the absence of predation. We make the standard assumption that )( 1S , )( 2S , the death rates are increasing functions 

of population. Also, in order to have a viable system we must have that 

 

)( 3S There exists 11, yx  such that ),0(),0,,0()0()0,0( 111111 kxxpcs <= and   

).0(),,0,0()0()0,0( 211111 kyypcs <=  

)( 4S  There exists 12 , zx  such that ),0(0),0,,0()0()0,0( 122222 kxxpcs <<= and   

).0(0),,0,0()0()0,0( 222222 kzzpcs <<=  

 

We will make use of the following theorem. 

 

Theorem 2.1: Under the above assumptions, the set  

1 2 3{( , , , ) : 0 ,0 , 0 ( ) , 0 ( ) },A u x y z u L x k c o x y M c o x c y z N= ≤ ≤ ≤ ≤ ≤ + ≤ ≤ + + ≤ (2.1) 

 

Where 

 

          
0 0

lim ( ,0,0), max ( ), max ( ,0),
x u L u L

L L x k k u g g u
→∞ ≤ ≤ ≤ ≤

= = =  

         1 1 1( ) [( (0,0)) / (0,0)],M c o k g s sα= +  

         
2 2 3 3

0 0
min ( ,0), max ( ),

u L u L
s s u c c u

≤ ≤ ≤ ≤
= =  

and  

        2 2 3 2 1 1{ (0) ( ) [ (0) (0, )]},N c k s g c M s c p kα= + + +  

 

is positively invariant and attracts all solutions initiating with non-negative initial conditions. 

 

 

Proof: The proof can be carried out by following the same steps of proof of theorem 2.1 in [13] and so will be omitted. 
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3. EXISTENCE OF EQUILIBRIA: 

  

In this section we shall establish criteria for the existence and nonexistence of equilibria of the system (2.1). It is clear 

that the origin )0,0,0,0(oE  is an equilibrium point for the system (2.1). 

 

From )(),( 21 HH  and Freedman [6], we have the following theorem: 

 

Theorem 3.1: The system (2.1) has exactly two one-dimensional equilibria )0,0,0,(1 oLE  and )0,0,,0(2 okE . 

 

Remark 3.1: The subsystem in 
+
yR  and 

+
zR  have no equilibria since all of their solutions tend to zero exponentially. 

Also, it follows that oE  is locally stable in the y and z directions and locally unstable in the u  and x  directions. 

 

As shown in [10], the following result holds in 
+
uxR . 

 

Theorem 3.2: The subsystem in 
+
uxR  has an equilibrium )0,0,,(3 xuE  provided 1E  and 2E  are unstable in 

+
uxR . 

Remark 3.2: Under hypotheses 311 ),(),( EGH  exists. 

 

It is easy to prove the following theorems (see [6], [13]). 

 

Theorem 3.3: A necessary and sufficient conditions for an equilibrium of the form )0,,,0( 114 yxE  to exist in 
+
xyR  

is that hypotheses )( 3S  be satisfied. 

 

Theorem 3.4: A necessary and sufficient conditions for equilibrium ),0,,0( 225 zxE  to exist is that the hypotheses 

)( 4S  be satisfied. 

 

The following result for the existence of an interior equilibrium of the system (2.1) follows from [4], [13]. 

 

Theorem 3.5: Let the following hypotheses hold for the system (2.1): 

(a) All solutions with non-negative initial conditions are bounded in forward time. 

(b) The system (2.1) is persistent. 

(c) The subsystems of (2.1) are isolated and a cyclic. 

Then, an interior equilibrium ),,,( *****
zyxuE  exists for system (2.1). 

 

4. STABILITY OF EQUILIBRIA: 

  

To determine the stability of the above equilibria, we need to compute variational matrix of system (2.1). The signs of 

the real part of the eigenvalues of this matrix evaluated at these equilibrium determine its stability. 

 

1 2 1 1 1 2 2

1 1

2 2 3

( , , , ) ,

u x y z

u u u y z

x z

x y

uh h uh uh uh

yp zp xg p y p p zp
V u x y z

yc p zq q

zc p zc q

α ϑ

φ ϕ

τ χ

+� �
� �− − + − − − −� �=
� �− −
� �
� �� �

                                            (4.1) 

 

where 

                      ,21 xxx zpypxgg −−+= ααϑ  

                      ,)( 11111 uuuu zqpcpcsy −++−=ϕ  
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                      ,)( 111111 yyy zqpcsypcs −+−++−=φ  

                      ),( 3322222 uuuuu qcqcpcpcsz ++++−=τ  

                     ),( 32223222 zzz qcpcszqcpcs ++−+++−=χ  

 

also, all functions are evaluated at ),,,( zyxu  and we have used the notation xF  to represent xF ∂∂ / , etc. 

 

The variational matrix oV  i.e. evaluating V  at )0,0,0,0(oE  is diagonal and for which the eigenvalues in u  and 

x  directions are positive and hence the equilibrium point oE  is locally unstable in u  and x  directions. The 

eigenvalues in the y  and z  directions are negative and hence oE  is stable in the y  and z  directions. Thus, oE  

has non-empty stable and unstable manifolds. 

 

Next, for the equilibrium )0,0,(1 oLE oLL =)0,0,0( , the variational matrix 1V  has a positive eigenvalue 

)0,( oLgα , in x -direction and a negative eigenvalues )0,0,0,( ouo LhL  in the other directions. Thus, 1E  is 

unstable in the x -direction and stable in the yu,  and z -directions. Hence, 1E  has non-empty stable and unstable 

manifolds. 

 

The variational matrix 2V  for )(),0,0,,0(2 okkkE oo = has the form: 

 

               

1 2

2

1 1 1

(0, ,0,0) 0 0 0

(0, ) (0, ) (0, ) (0, ,0) (0, ,0)
(0, ,0,0) ,

0 0 (0,0) ( ) (0, ,0) (0,0,0)

0 0 0

o

o u o o o x o o o

o

o

h k

k g k g k k g k p k p k
V k

s c o p k q

α α α

ζ

� �
� �+ − −� �=
� �− + −
� �
� �

 

 

where  

 

).0,0,0()()0,,0()()0,0( 3222 qockpocs o ++−=ζ  

 

The equilibrium 2E  yield that its eigenvalue )0,0,,0( okh  which is positive in u -direction and negative 

eigenvalue ),0( oxo kgkα  in x -direction. The eigenvalues in y  and z  directions are 

 

                                  .2,1),0,,0()0()0,0( =+−= ikpcs oiiiiα  

 

From theorem 3.3, the eigenvalues in y -direction are positive but the eigenvalues in z -direction may be positive or 

negative. 

 

Remark 4.1: From the above analysis, it follows that 1E  and 2E  are unstable .+
uxR  A similar analysis for 

equilibrium )0,0,,(3 xuE  yields its eigenvalue  

 

)0,,()()0,( 2221 xupucusB +−=∗
 in z -direction which is positive or negative, but the eigenvalue in y -

direction is ),0,,()()0,( 1112 xupucusB +−=∗
 which by Theorem 3.3 is positive and thus 3E  is unstable in 

y -direction. The other eigenvalues in u  an x  directions are:  

 

          )(4)(
2

1
)(

2

1 2
2,1 xuxuuxux hgghxuhugxhugxB −−+±+= αα  .  
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Thus, whenever ,0>− xuxu hggh  eigenvalues 2,1B  have negative real parts where .0<+ ux hugxα  Thus, 

3E  has nonempty stable and unstable manifolds. 

 

Similarly, we analyze ),0,,,0( 114 yxE  the eigenvalue of )0,,,0( 114 yxV  in the u -direction has the value 

)0,,,0( 11 yxh  which is positive and hence 4E  is unstable in u -direction. The eigenvalue in z -direction is given 

by  

                                       ),0,,0()0()0,,0()0()0,0( 1312221 yqcxpcs ++−=γ    

 

and the other two eigenvalues are the roots of  

                  ×+++−−+− )()( 1111111111111
2

yyyyxx pycsypycsypyggx γααγ   

                                                     .0)()( 111111111 =++−+ yxxx pypcpypygxg αα                                                                  

 

From the Routh-Hurwitz criteria, the roots have negative real parts iff   

 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1(0, ) (0, ) (0, , ) (0, ) (0) (0, , ) 0,
x x y y

x g x g x y p x y y s y c y p x yα α+ − − + <  

and  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1{ (0, ) (0, , )}{ (0, ) (0, ) (0, , )}
y y x x

y s y c y p x y g x x g x y p x yα α+ + − +  

1 1 1 1 1 1 1 1 1 1 1 1(0, , ) ( (0, , ) (0, , )) 0.
x y

y p x y c p x y y p x y+ >  

 

Under these conditions we notice that 4E  is stable in .+
xyR For ),,0,,0( 225 zxE  the variational matrix has the 

form 

5 2 2(0, ,0, )V x z =

2 2

1 2 2 2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2 3 2

(0, ,0, ) 0 0 0

(0, ,0) (0, , ) (0, , )

(0,0, ) 0 (0,0, ) (0,0, )

(0) (0, , ) (0) (0,0, )

z

u z

x y

h x z

G L p x p x z z p x z

z q z z q z q z

H z c p x z z c q z

η

ξ

� �
� �− − −� �
� �− − −
� �

�� ��

, 

 

where 

2 2 2 2 2(0, , ) (0, ),u uG zp x z x g xα= − +   

2 2 2 2 2 2 2 2 2 2 2 3 2[ (0, ) (0) (0, , ) (0) (0, , ) (0) (0,0, )
u u u u

H z s z c p x z c p x z c q z= − + + +                                          

                )],,0,0()0( 23 zqc u+   
2 2 2 2 2 2 2(0, ) (0, ) (0, , ),x xL g x x g x z p x zα α= + −    

1 1 1 2 2 2(0,0) (0) (0, ,0) (0,0, ),
y

s c p x z q zη = − + −  

2 2 2 2 2 2 3 2(0, ) (0) (0, , ) (0) (0,0, )s z c p x z c q zξ = − + +   

                                 
2 2 2 2 2 2 2 3 2[ (0, ) (0) (0, , ) (0) (0,0, )].z z zz s z c p x z c q z+ − + +  

 

The eigenvalue of 5V  in u -direction is ),0,,0( 22 zxh  which is positive and thus 5E  is unstable in u -direction. 

The eigenvalue in y -direction is given by:  

 

                          1 1 1 1 2 2 2(0,0) (0) (0, ,0) (0,0, ),
y

s c p x z q zδ = + −   

 

and the other eigenvalues in x  an z  directions are obtained from the equation  

                          .0)( 2222
2 =+++− xppczLL ξδξδ  

 

The eigenvalues 2,1δ  have negative real parts iff ,0<+ ξL  and  

                         
2 2 2 2 2 2 2 2(0) (0, , ) (0, , ) 0.

x
L z c p x z p x zξ − >  
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Similarly for ),0,,,( 3336 yxuE  the variational matrix has the form 

 

,

000

)0,,,(
113

2

3333

3336

�
�
�
�
�

�

�

�
�
�
�

�

�

−

−

+

=

K

qFpcyD

pCBA

huhuhuhhu

yxuV
x

zyxu

 

where 

,313 uu gxpyA α+=          

,133 xx pygxgB −+= αα         

,131 ypypC −−=      

),( 111113 uuu pcpcsyD ++−=     

),( 1113111 yy pcsypcsF +−++−=        

,3222 qcpcsK ++−=    

and all the above functions are evaluated at ).0,,,( 333 yxu  The eigenvalue of 6E  in z -direction is .K  The other 

eigenvalues are the roots of the polynomial  

 

                                           ,032
2

1
3 =+++ aaa ξξξ   

 where 

,31 FBhua u ++=  

,3311333332 FyBhuCpcyDhuyAhuBFya uxyx +++−−=  

).()()( 113333311333 FBApchyuCDAFyhuCxpcBFhuya xyxu −+−−+=  

 

Thus, from the Routh-Hurwitz criteria, the necessary and sufficient conditions for 6E  to be asymptotically stable in 

+
uxyR  are that: 

,0K <    ,01 >a    ,0a 3 >    and     .0321 >− aaa  

 

Also, for ),,0,,( 4447 zxuE  the eigenvalue of 7V  in y -direction is given by: 

                            ).,0,()0,,()()0,( 4444414141 zuqzxupucus y−+−=η   

 

The other eigenvalues are the roots of the polynomial 

                                                    ,032
2

1
3 =+++ bbb ηηη   

where 

),( 41 NJhub u ++−=  

2 4 4 2 2 4 4( ) ,
u x x z

b u h J N NJ Iz c p u h M u Qh= + + − − −  

3 4 4 4 2 2 4 4 4 4 4 2 2 4 ,x x u x z x zb u h Iz c p u MJh u NJh u IQh u h Mz c p u QNh= + − − − +  

,24224 zz szpczJ −=  

,244 xx pzgxgN −+= αα  

),( 242 zpzpI +−=  

,244 uu pzgxM −= α  

).( 3222224 qcpcpcszQ uuuu +++−=  
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All the above functions are evaluated at ).,0,,( 444 zxu  

7E  will be asymptotically stable in 
+
uxzR  iff: 

                                 ,0<∗η    ,01 >b    ,03 >b    .0321 >− bbb  

 

Similarly, since for ),,,,0( 5558 zyxE  the eigenvalue of 8V  in the u -direction is ,0)z,y,x,0(h 555 >  and 

hence 8E  is unstable in u -direction. The other eigenvalues are the zeros of the polynomial  

                                                                   032
2

1
3 =+++ ddd λλλ  

i.e. ++++++++−−+ )}()()({)( 22221111
23

zxyx zpppzcypppycNLLNMLNM λλ  

2 2 1 1 3 2 2 1 1 1 1 3( )( ) ( ) ( ) 0,
z x y x x y z

p zp y c p zc q zc p N Lyc p p yp zc q zq z M MNL+ + − + + − + − =  where 

,211 xxx zpypxggdM −−+= α  

,)()( 111111 yyy zqpcsypcsN −+−++−=  

).()( 32223222 zzz qcpcszqcpcsL ++−+++−=   

 

The equilibrium 8E  will be asymptotically stable in 
+
xyzR  iff  

                                                    ,01 >d    03 >d   and .0321 >− ddd  

 

Now, we will consider the stability of the interior equilibrium ).,,,( ∗∗∗∗∗
zyxuE  In what follows all functions 

are assumed to be evaluated at ).,,,( ∗∗∗∗
zyxu  The variational matrix at 

∗
E  is given by (4.1) evaluated at .∗

E   

In general [13], it is not possible to determine the stability of 
∗

E  Thus, mutualist's interaction with food chain 

populations can result in either stabilization or destabilization of the system as has been noted in two- and three species 

models (see [2], [8] ). Finally, it shows that the populations feeding on more than one trophic level do not necessarily 

cause an unstable system, the possibility of which has been pointed out by Pimm and Lawton [15], and that mutualistic 

interactions can have a significant effect on stability, even in the case of complex system. 

 

5. PERSISTENCE AND UNIFORM PERSISTENCE:  

 

In this section, we shall investigate the persistence of the populations given by the system (2.1). We shall derive criteria 

that ensure the uniform persistence of the system (2.1) in the cases of facultative mutualism between the mutualist and 

the prey x  as well as between u  and prey .y  

 

(i) Facultative mutualism between u  and .x  

 

The system (2.1) exhibits facultative mutualism between mutualist u  and the prey ,x  whenever the hypotheses 

),H()H( 41 − ),G( 1 ),G( 2 ),P( 1 )P( 2 and ),S( 1 )S( 2  are satisfied. Also, we shall assume the following 

hypotheses: 

)P(
'

1  Let the equilibrium 4E  be globally asymptotic stable with respect to solutions initiating in .+
xyR  

)P(
'

2  Let 5E  (if it exists) be globally asymptotic stable with respect to solutions initiating in .+
xzR  

)P( '

3  Let the equilibria ,6E  7E  and 8E  be globally stable in ,+
uxyR  

+
uxzR  and 

+
uyzR  respectively. 

 

The following results hold for the food chain in 
+
xyzR  (see [11], and [13]). 

 

Theorem 5.1: Let the hypotheses ),H()H( 41 − ),G( 1 ),G( 2 ),P( 1 )P( 2  and )S()S( 31 −  hold. Then, the system 

(2.1) persists for .01 >α  
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Theorem 5.2: Let the hypotheses ),G( 1 ),G( 2 ),P( 1 ),P( 2 ),S()S( 31 − ),P(
'

1 )P(
'

2  hold. Then, the subsystem in 

+
uyzR  is uniformly persistent whenever ,01 >γ .01 >δ 

 

Theorem 5.3: Let the hypotheses ),H()H( 41 − ),P()P( '

3

'

1 −  \ (P_1), ),P( 1  )P( 2 and )S()S( 31 −  hold. Then, the 

three-dimensional subsystem in 
+
uxyR  is uniformly persistent whenever ,0B2 >∗

 and 
+ℜuxy  is uniformly persistent 

whenever .0B1 >∗
 

 

It follows from [5] that whenever a subsystem of (2.1) is uniformly persistent, it has an interior equilibrium. 

 

Theorem 5.4: Let the hypotheses ),H()H( 41 − ),G( 1 ),G( 2 ),P( 1 ),P( 2 )S()S( 31 −  and )P()P( '

3

'

1 −  

hold. Then, the system (2.1) is uniformly persistent whenever 0>η∗  and .0K >   

 

Proof: The proof is similar to that of Theorem 4.4 in [13], and will be omitted. 

(ii) Facultative mutualism between u  and .y  

 

This case can be treated, as case (i) with some suitable conditions and so will be omitted. 

 

6. EXAMPLE: 

  

Consider the system 

                                             �
�
�

	



�

�

+
−= ,

1
1

y

u
uu�  

                                             ,)3( 2
uxzxyxxx −−−=�  

                                             ,
9

5
)1(

18

5 2
yuzxyyy −�

�

	


�

�
++−=�                                                                  (6.1) 

                                             
11 1 1 1

.
10 10 2 2

z z z zux uzy
	 �

= − − + + 
�
��

�  

 

The system (6.1) has the boundary equilibria 

),0,0,0,0(oE ),0,0,0,1(1E ),0,0,3,0(2E ),0,0,3,1(3E ,0,
3

5
,

3

4
,04 


�

�
�
�

	
E ),1,0,3,0(5E

,0,
3

5
,

3

4
,

3

8
6 


�

�
�
�

	
E ),1,0,2,1(7E .

3

33
,

3

5
,

3

4
,08 


�

�
�
�

	
E . After simple but long calculations, it is easy to see that 

,4E 5E  is globally asymptotic stable in 
+
xyR  and all the three-dimensional subsystems are uniformly persistent. 

Using theorem 5.4, we can easily prove that the system (6.1) is uniform persistence. 
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