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ABSTRACT 

In the present paper, the two dimensional unsteady boundary layer flow of a micropolar non-Newtonian power law 

fluid near the rear stagnation point of a plane surface in a porous medium are studied. The similarity solutions are 

obtained using group theoretic technique. The application of two-parameter group reduce the number of independent 

variables by two and a set of auxiliary conditions from three to only one independent variable, and consequently the 

system of governing partial differential equations with boundary conditions reduces to a system of ordinary differential 

equations with appropriate boundary conditions.  
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1. INTRODUCTION: 

 

The concept of theory of micro polar fluid including thermo-micro polar fluid was developed by Eringen [9, 10, 11]. 

This theory includes the effects of micro-inertia and couple stresses and can explain the non-Newtonian behavior of 

certain polymeric fluid, animal blood and liquid crystals. The concept of boundary-layer theory in micro polar fluid was 

first introduced by Willson [23].Since then, several authors have studied the steady self similar flow of micro polar 

fluids for two dimensional bodies with or without pressure gradient. It is well known that most problems encountered in 

applications are unsteady. In fact, there is no actual flow situation, natural and artificial, which does not involve some 

unsteadiness. Unsteady flows are frequently encountered in such technological and environmental situation as 

geophysical and biological flows, and the processing the materials, the spread of pollutants and fires (Telionis). 

Because of its great importance, the problem of unsteady forced convection flow has long been a major subject in fluid 

mechanics. 

 

Boundary layer theory has been applied successfully to various non-Newtonian fluids models. Boundary layers of non-

Newtonian fluids have received considerable attention in the last few decades. Almost a century ago Prandtl realized 

the key part that boundary layers play in determining accurately the flow of certain fluids. He showed for slightly 

viscous flows that although viscosity is negligible in the bulk of the flow, it assumes a vital role near boundaries. Lok et 

al. [14] studied the unsteady boundary layer flow of a micro polar fluid near the forward stagnation point of a plane 

surface by using the Newton’s linearization technique of Kellr-box method. Seshadri et al. [21] used the implicit finite 

difference scheme to study the unsteady mixed convection flow in the stagnation region of a heated vertical plat due to 

impulsive motion. Abd-elaziz M. M and Ahmed S.E. [2] studied Group solution for unsteady boundary layer flow of a 

micro polar fluid near the rear stagnation point of a plane surface in a porous medium.  

 

The difficulty of the study of such fluid problem is the paucity of boundary conditions and existence of deformable 

microelements as well as the time as the third independent variable. Many attempts were made to find analytical and 

numerical solution by applying certain special conditions and using different mathematical approaches. The class of 

solutions known as similarity solutions traditionally plays an important role in the analysis of boundary layer problems 

because it is the only class of exact solution for the boundary layer equations. The quest for exact solutions of the 

boundary-layer equations has a long history. Blasius [3] used a scaling to obtain the similarity solution of the steady 

boundary layer flow of a flat plate. Further work Burde’[4, 5, 6, 7] obtained similarity solution corresponding to 

stagnation point flows, flows past wedges, jets and flows near an oscillating plate. Jones and Watson [13] have given a 

comprehensive account of many of the classical exact solutions of the boundary-layer equations including Falkner-

Skan forms and the asymptotic suction profile. A New Systematic Formalism for Similarity Analysis, with 

Applications to Boundary Layers Flows was introduced by Moran, Gaggioli and Scholten [18]. Similarity solution for  
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laminar, incompressible, three dimensional boundary layer flows was studied by Hansen and Herzig [12], they have 

been attempted to determine the conditions under which similarity solutions exist. Ma and Hui [16] used the method of 

Lie group transformations to derive all possible group-invariant similarity solutions to the problem of unsteady two-

dimensional boundary-layer flow of an incompressible fluid. This method is based on non-linear superposition is then 

used to generate further similarity solution which are not group invariant. The symmetry analysis applied to boundary 

layer equations is, introduced by Cantwell [8]. M. Patel and M. G. Timol [20] derived similarity solution for three-

dimensional boundary layer flows of non-Newtonian fluids. Using Lie group analysis unsteady laminar boundary layer 

equations of non-Newtonian fluids are studied by Yurusow and Pakdemirli [24, 25]. They have assumed that steer-

stress is arbitrary function of velocity gradient. They have extended the previous work by Timol and Kalthia [22] who 

have assume the more general arbitrary functional relationship of stress and velocity gradient in their similarity analysis  

of three-dimensional boundary layer flow of general non-Newtonian fluids. The similarity analysis of governing 

equation is discussed using the group theoretic method which is already successfully applied to several non-linear 

problems. (Abd-el-Malek et al [1]; Parmar and Timol [19]). 

 

Moran and Gaggioli [17] presented a New Systematic Formalism for Similarity Analysis. They utilized elementary 

group theory for the purpose of reducing the given system of partial differential equation to a system of ordinary 

differential equations in a single variable. The objective of this paper is to derive similarity equations for unsteady 

boundary layer flow of a micro polar non-Newtonian power law fluid near the rear stagnation point of a plane surface 

in a porous media. The systematic formalism introduced here, is based on Moran and Gaggioli [17] formalism, which 

reduce the system of partial differential equations to a system of ordinary differential equations with the appropriate 

boundary conditions.  

 

2. MATHEMATICAL FORMULATION: 

 

Let us consider the development of the two-dimensional boundary layer flow of a micro polar non-Newtonian power 

law fluid near the rear stagnation point of a plane surface in a porous medium. The fluid which occupies a semi-infinite 

domain bounded by an infinite plane and remains at rest for time � � � and starts to move impulsively away from the 

wall at�� � �. In our analysis, rectangular Cartesian coordinates ��� 	
 are used in which �  and 	 are taken as the 

coordinates along the wall and normal to it, respectively. The flow configuration is shown schematically in Figure. 

 

Figure: 

 

 
 

Physical model of the problem 

 

The boundary layer equations governing the unsteady flow of a micro polar non-Newtonian power law fluid through a 

porous medium with constant physical properties are (Lok et al., [15]) 

 ��� � ���� � �                                                                                                                                   (1) 

 ���� � � ��� � � ���� � �� ���� � �� � ��� ��� ������� !" ����# � �� �$�� � %�& ��� ' �
                                (2)      

                       �$�� � � �$� � � �$�� � (�) �
*$��* ' ��) �+, � �����                                                                                   (3) 

 �-�� � � �-� � � �-�� � �        (4) 

 

In the above equation, 

 � and � are the component of fluid velocity in the � and 	 directions respectively, �� is the uniform stream velocity, 
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N is the component of micro rotation, . is the density, / is the vortex viscosity, 0 is the spin-gradient viscosity, 1 is the micro-inertia density, � is the kinematic viscosity, /" is the permeability of the porous medium. 

 

Boundary and initial conditions: 

 � � � 2 ���� 	� �
 � ��� ���� 	� �
 � ��� ,��� 	� �
 � �  

 

 � � � 2 ���� ���
 � ����� �
� ,��� ���
 � �                                                                            (5) 

 

� 3 � 2 4���� 	� �
 � ���� 	� �
 � , � 5 ���� � ����6��	 � �� 7 ����� �
�����, 7 ������������68���	 7 ������������������ 9  
 

Where, 5 is a constant and � : 5 : ; 

 

Case 1: < � = 

 

Which indicates N=�, represent concentrated particle flow in which the microelement close to the wall surface are 

unable to rotate.  

 

Case 2:�< � >? 
 

This indicates to the vanishing of anti-symmetric part of the stress tensor and denoted week concentration. 

 

Case 3:�< � > 

 

It is used for the modeling of turbulent boundary layer flows. 

 

We shall consider here only the value of 5 � � and 5 � "@ 
 

At this point, we introduce the dimensionless stream function A��� 	� �
 such that�� � �B�� , 

 � � ' �B�  . 

 

We can find that equation (1) and (4) is identically satisfied and equation (2) and (3) reduce to, 

 �*B���� � �B�� � �*B��� ' �B� ��*B��* � �� ���� � � C�; � �
 ��� ���*B��*� !" �*B��*# � � �$�� � "�& ��� ' �B���D      (6) 

 

Where � � ���   (coupling constant) 

 �$�� � �B�� �$� ' �B� �$�� � E �*$��* ' F �+, � �*B��*�                                                                                              (7) 

 

Where, E � (�)   (microrotation parameter) 

             F � ��)   (Dimensionless material parameter) 

 

With The boundary condition: 

 	 � �G �B�� � �B� � , � 5 �*B��* � �  

 	 7 �G �B�� � �� �� �B� � , � �                              (8) 
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3.  METHOD OF SOLUTION: 

 

In this section, two parameter transformation group is applied to the system of equations (6) and (7) with the boundary 

conditions (8). The system of equations reduces to a system of ordinary differential equation in a single independent 

variable with appropriate boundary conditions.  

 

A. Group Formulation of the Problem: 

 

The procedure is initiated with the group G, A class of two parameter group of the form 

 

H �
IJJ
K
JJL8G M

�N � O�6"� 6@
� � /�6"� 6@
	P � O��6"� 6@
	 � /��6"� 6@
�N � O��6"� 6@
� � /��6"� 6@
 9AP � OB�6"� 6@
A � /B�6"� 6@
,Q � O$�6"� 6@
, � /$�6"� 6@
��PPP � O���6"� 6@
�� � /���6"� 6@

9                                                                         (9) 

 

where RS and /S are real valued and at least differentiable in their real argument �6"� 6@
, which possesses complete 

sets of absolute invariant T��� 	� �
  and U-��� 	� �� ,� �� � A
 , i=1,2,3 where U- are the three absolute invariant 

corresponding to ,�A� ��. If �T��� 	� �
 is the absolute invariant of independent variables then  

 U-��� 	� �� ,� �� � A
 � V-�T��� 	� �

        i=1, 2, 3 

 

B. The Invariance Analysis: 

 

The transformation of the dependent variables and their partial derivatives are obtain from G via chain-rule operations 

 �WN�XN ���Y�ZY[ ��W�\�       

               

 
�*WN�XN* � ] Y�Z^Y[_* ��*W�\*`   

 �aWN�XNa � ] b�Z^Y[_a ��aW�\a`             i= x, y, t                     (10) 

 

Where, p stands for��,� �� � A;  

 

Equation (6) is said to be invariantly transformed under (9) and (10) whenever 

 

c O�BO�O�d e@Ae	e� � c O�@BOO@�deAe	 � e@Ae	e� ' c O�@BOO@�deAe� �e@Ae	@ ' cO�@��O d ��� �f��f�  

 '� Cg�; � h
 ^b�i_j�bk
*jl& g ��*B��*� !" �aB��a � h�b�mbk� �$�� � "�& �O���� ' �b�ibk � �B���D ' n              

           � o"�6"� 6@
 p�*B���� � �B�� � �*B��� ' �B� ��*B��* � �� ���� � � C�; � h
 ��� ���*B��*� !" �*B��*# � h �$�� � "�& ��� ' �B���Dq                (11) 

 

Where, n = 
%�& /�� � /�� �b�r�bs � ����                                                               

               (12)   

For invariant transformation R is equated to zero. This is satisfied by setting 

 n � �:�/�� � ��,                                                                                            

               (13) 

And comparing the coefficient in both sides of (11) and with�o"�6"� 6@
, we obtain 

 �b�ibs ��B�� � � b�*ibsb*k� � �b�ibak� � �b�ibk � � �O��
 � �b�*r�bs � � �b�mbk� � o"�6"� 6@
               

               (14) 

Where, o"�6"� 6@
 � Otg8�6g� 
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In similar manner the invariant transform of (7) under (9) and (10). Whenever there is a function  o@�6"� 6@
 such that   

                                                                                                                                                                                                   �b�mbu � �$�� � �b�ibk �b�mbs � �B�� �$� ' �b�ibs �b�mbk �� �B� �$�� ' E� �b�mb*k� �*$���* � F �+O$, � �b�ib*k� �*B��*� � n"  

  � o@�6"� 6@
 v�$�� � �B�� �$� ' �B� �$�� ' E �*$��* � F �+, � �*B��*�w                                                           (15) 

 

Where, n" � +F/$    

               (16) 

The invariance condition implies that, 

 �b�mbu � � �O�$
 � �b�ibk �b�mbs � � �b�ib*k� � �b�mb*k� � o@�6"� 6@
                 (17) 

 

And   n" � �:  /$ � �                                             (18) 

  

Moreover, the boundary conditions (8) is also invariant in form whenever the condition /� � � is appended to (13), 

(14), (17), (18); that is 

 	P � �G �BQ��P � �BQ�N � ,Q � 5 �*BQ��P* � �  

 

          :��BQ��P � �BQ�N � ��,Q � '5 �*BQ��P*                        (19) 

 	P 7 �G �BQ��P 7 �Q� �� ,Q 7 �       

     

Combining equation (13), (14), (17) and (18); We get, 

 O� � O� � ;              And           O�$ � O�B � O�� � O                                                                         

               (20) 

Thus, Group G is of the form 

 

H �
IJJ
K
JJL8G M

�N � O�6"� 6@
� � /�6"� 6@
	P � 	�N � � � /��6"� 6@
 9
AP � OB�6"� 6@
A,Q � O$�6"� 6@
,��PPP � O���6"� 6@
��

9               (21) 

 

This group transforms invariantly the differential equation (6) and (7) and the boundary conditions (8). 

 

C. Complete sets of Absolute Invariants: 

 

The complete set of absolute invariants is 

 

(1) The absolute invariants of the independent variables (x, y, t) is�T � T��� 	� �
, 
 

(2) The absolute invariants of the dependent variables��A� ,x ��
, then 

 

                     U-��� 	� �y A� ,� ��
 � V-�T��� 	� �

               i=1, 2, 3                 (22) 

 

The application of a basic theorem in group theory, see Moran and Gaggioli [17] 

 

States that: A function U-��� 	� �y A� ,� ��
  is an absolute invariant of a two-parameter group if it satisfies the 

following two first-order linear differential equations: 

 

 z �{\|\ � {\}"
""\~" ����[ � ��                                                                                                                       (23) 

 z �5\|\ � 5\}"
""\~" ����[ � �                                                                                                                            (24) 
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Where, |\ � �� 	� �y A� ,� �� �And 

 {" � �Ys��& �6"�� 6@�
                                                    5" � �Ys��* �6"�� 6@�
     
 {@ � ��s��& �6"�� 6@�
                                                    5@ � ��s��* �6"�� 6@�
 
.                                                                                   . 

.       . 

.       . 

 {"� � �br���& �6"�� 6@�
   5"� � �Yr���* �6"�� 6@�
    
 {"" � ��r���& �6"�� 6@�
                                                5"" � ������* �6"�� 6@�
 
 

Where, �6"�� 6@�
 are the identity elements of the group. 

 

D. Absolute Invariants of Independent Variables: 

 

The absolute invariant T � T��� 	� �
 of the independent variables ��� 	� �
 is determined using equations (23) and (24)  

 

                                 �{"� � {@
 ��� � �{�	 � {�
 ���� � �{�� � {�
 ���� � �  

 

                                ���5"� � 5@
 ��� � �5�	 � 5�
 ���� � �5�� � 5�
 ���� � ��                                         (25) 

        

Since /� � ��then�{� � 5� � �, then we have equation (25) becomes 

 

                                   �{"� � {@
 ��� � �{�	
 ���� � �{�� � {�
 ���� � � 

 

                  ����5"� � 5@
 ��� � �5�	
 ���� � �5�� � 5�
 ���� � �                                           (26) 

 

The similarity analysis of (6) to (8) now proceeds for the particular case of two parameter groups of the form (21) 

according to basic theorem from group theory; equation (26) has only one solution if at least one of the following 

conditions is satisfied 

 �E"�� � E@� � �      

                                                                                                                        �E��� � E�� � �          

                                                                                                                                                                       (27) �E"��� � E"�� ��E@�� � E@� � �   

 

For convenience, then, the system (26) will be rewritten in terms of the quantities given by (27), we get 

 

 ���"�� � �@�
 ��� �������� � ���
 ���� � � 

 ���"�� � �@�
 ���� ' ���"��� � �"�� ���@�� � �@�
 ���� � �                                                              (28) 

 

From the transformation (21) and the definition of  { �8� 5�8�6gf��E�8 , we have 

 ��"� � ��@� � ��� � ��� � ���"� � ���@� � �  

 

This implies 

 

                   ��"�� � �@� � � 

 

                   ����� � ��� � �                 (29) 
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Then condition (27) reduce to 

 

                     �"�� � �@� � �                       (30) 

 

Applying equation (29) and (30) to equation (28) gives 

 

(1) The first equation is identically satisfied. 

 

(2) The second equation of (28) reduce to 

                  ����� � �                              (31) 

 

For convenience, equations (28) can be rewritten in the form 

 ��"�� � �@�
 ��� � �                (32) 

 

Again, 

 ���� � �                                                                                                                                         (33) 

 

From equation (31) and (33) we have 

 T � ��	
                   (34) 

 

Without loss of generality the independent absolute invariant T�	
 in equation (34) may assume of the form 

 

� � ��                (35) 

 

E. Absolute Invariant of Dependent Variables: 

 

For the absolute invariant corresponding to the dependent variable�A� ,�6gf��� . A function U"��� �� A
 is absolute 

invariant of a two parameter group it satisfies the first order linear differential equations 

 �{"� � {@
 ��&� � �{�� � {�
 ��&�� � �{�A � {�
 ��&�B � �  

 �5"� � 5@
 ��&� � �5�� � 5�
 ��&�� � �5�A � 5�
 ��&�B � �                              (36) 

 

The solution of equation (5.36) gives 

 

 U"��� �� A
 � �"�A��"��� �

 � V�T
               (37) 

 

In similar manner, we get 

 U@��� �� ,
 � �@�,��@��� �

 � H�T
                (38) 

 U���� �� ��
 � ����������� �

 � ��T
                 (39) 

 

Where �"��� �
� �@��� �
�6gf������ �
 are functions to be determined. 

 

Without loss of generality, the ��8 in (37), (.38) and (39) are selected to be the identity functions. TThen we can 

express the function A��� 	� �
� ,��� 	� �
6gf������ 	� �
�in terms of the absolute invariants V�T
6gf�H�T
 in the form 

 A��� 	� �
 � �"��� �
V�T
                                                                                                                       (40) 

 ,��� 	� �
 � �@��� �
H�T
                      (41) 

 

 ����� �
 � ����� �
��T
                (42) 

 

 



����	
 �����!
��"
��
#�$���	%
&���'�(�$)
&*'+$�*,
-*(
+,&$.�/)
0*+,/�()
'�).(
-'*1
*-
%
�����
�����
����������


 �2�3
�����4�


5
�����
�����
�		
(�2��6
(�6����"






































































































































































�4��

Since ��is independent of y, whereas T depends on y, it follow that E in (42) must be equal to constant. Then (42) 

becomes 

 ����� �
 � ������� �
                    (43(a)) 

 

Here, we assuming that,������ �
 � ����
 � 6�                                                                          (43(b)) 

 

The forms of the functions �"�6gf��@are those for which the governing equations (6) and (8) reduce to ordinary 

differential equations. 

 

4. THE REDUCTION TO ORDINARY DIFFERENTIAL EQUATION: 

 

Here, we will consider two different cases to reduced equation (6) and (7) into ordinary differential equations. 

 

(1) Steady case: 

 

In this case, the velocity does not depend on time. So, as a special case of present study, we can take �"��
� �@��
 and 

A in the form 

 �"��
 � 6��� 6�   

 �@��
 � 6��6 ��                 (44) 

 � � �6 ��   

 

Then T� A�6gf�, become 

 T � �6 �� �	  

 A � 6��� 6� �V�T
  
 , � 6��6 �� �H�T
                (45) 

 

The equation (6) and (7) gives, 

 g�; � �
��"
 !"�V��
 !"V��� � �H � � VV�� ' �V�
@ ���; ' V�
 � ; � �                  (46) 

 

Where, � � %��& is permeability parameter. 

 V�� ' �VH � ' �% �H �� � �� ��+H � V��
 � �                 (47) 

 

Where,  
�% � ��6gf� �� � �    (Dimensionless nos.) 

 �H �� � �VH � ' V��  ' ���+H � V��
 � �                 (48) 

 

With boundary conditions 

 V��
 � �����V���
 � �� H��
 � '5V����
  
 V 7 ;� H 7 ��68�g 7 �  

 

(2) Unsteady case: 

 

In this case, the velocity varies with respect to time.  

 

So, we can take �"��� �
� �@��� �
 and A in the form 

 �"��� �
 � +¡���6��  
 �@��� �
 � �@¡%��                (49) 
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 � � "@¡%�  
 

From equation (49), we will introduced the transformation for the dimension less stream function F, the dimensionless 

micro-rotation function G and a pseudo-similarity T which are given by 

 A � +¡���6��V�T� �
  
 , � �@¡%� �H�T� �
  
 T � �@¡%�                (50) 

 ¢ � +¡6�  
 

The outcome of this transformation is that the equations (6) and (7) become 

 �; � �
g�£@�
 !" ��*¤��*� !" ��a¤��a � �� �¥�� � +T �*¤��* ' +¢ �*¤���¦ ��¢@ �; � V� �*¤��* ' ��¤���@ ���; ' �¤���# � �               (51) 

 

 §� �*¥��* � +T� �¥�� ' +¢� �¥�¦ � ¢@ cV� �¥�� ' H� �¤�� ' ¨ �+H � �*¤��*�d � �                 (52) 

 

Where,  
�% � §�6gf� �� � ¨    (Dimensionless nos.) And the boundary conditions (8) transforms to 

 V � �¤�� � �� H � '5 �*¤��* �tg�T � �  

 �¤�� 7 ;� H 7 ��68��T 7 �                 (53) 

 

5. RESULTS AND CONCLUSION: 

 

In this work, we have presented similarity equations that can arise from the boundary layer flow of a micro polar non-

Newtonian power law fluid through a porous medium. The carried out analysis, shows the effectiveness of the method 

in obtaining invariant solutions for the system of partial differential equations. The main difficulty of the problem is 

due the nonlinear boundary conditions, and consequently the analysis of the problem faces many difficulties that were 

an essential obstacle in many other analytical methods.  

 

In this problem, we have used via-chain rule under two parameter group of transformations to reduce the number of 

independent variables of the problem by two and consequently the governing partial differential equations with the 

boundary conditions to ordinary differential equations with the appropriate corresponding boundary conditions. The 

ordinary differential equations so derived are the aim of this work. 

 

It is hoped that the present work finds it significant role in many engineering applications. The possible forms of 

ordinary differential equation cannot be solved analytically, but one can easily obtained numerical solution using a 

fourth-order Runge-Kutta scheme.  
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