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ABSTRACT 

        There are many literatures in the field of interior point methods for exploring the properties of linear 

programming and its dual linear programming. Most of them use advanced mathematical arguments to introduce the 

field of linear programming. The purpose of this paper is to show that the interior point methods by barrier function 

approach can be used to introduce the field of linear programming. By using only elementary analytically results, we 

have proved that for every value of the barrier parameters, the primal logarithmic barrier function for the primal 

problem has a unique minimizer, and then the sequence of the minimizers converges to a minimizer of the primal 

problem. From this, we present an algorithm for solving primal problem using barrier function methods.  

 

       Similarly, we have also proved that for every value of the barrier parameters, the dual logarithmic barrier 

function for the dual problem has a unique maximizer, and then the sequence of the maximizers converges to a 

maximizer of the dual problem. From this, we also present an algorithm for solving dual problem using barrier 

function methods. Finally, by introducing a system called centering conditions, we also present a characterization of 

existence of optimal solution for primal-dual problem using barrier function methods. 

 

Keywords: Barrier Function, Boundedness, Centering Conditions, Linear Programming, and Interior Points 

 

1. INTRODUCTION 

 

 Since it is an efficient and reliable solution technique the 

simplex method becomes a favorite method for solving the 

linear programming problem (LP). 

 

In 1984 Karmarkar proposed a new interior point method for 

LP. He showed that the algorithm has a polynomial-time 

complexity bound and claimed that it outperforms the simplex 

method on many problems. In very influential papers, Guler 

[4] and Mehotra [5] emphasized the role of the central path in 

the design and the analysis of interior point method. A 

variation of Karmarkar’s algorithm for solving LP problems 

has been introduced by Barnes [1]. Recently, Corradi [2] use 

higher-order derivatives in LP for solving LP problems. Wolfe 

[6] and Fletcher [3] had introduced a barrier function for 

analyzing a LP problem. 

 

In this paper, we use only elementary analytically results to 

analyze a LP problem and present an algorithm for solving the 

LP Problem. 
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2. LINEAR PROGRAMMING PROBLEMS 

 In this paper, we consider the (primal) linear programming 

problems in the symmetric form 

     

(P)   Min {cTx : Ax ≥ b, x ≥ 0}                                                (1)                                 

 

where A = (aij) mxn, c, x ∈ Rn and b ∈ Rm.       

 

The feasible region of (P) is defined by  

 

            FP = {x : Ax ≥ b, x ≥ 0}.                                              (2)                                        

 

and the set of the feasible interior points of (P) is given by 

 

        FP
0 = {x :  Ax > b, x > 0}.                                            (3)                                         

 

The optimal set of (P) is given by 

 

       FP* = {x* ∈ FP : c
T
x* ≤  cT

x, x ∈ Fp}.                          (4)                                  

 

If  Fp
0 ≠ φ, then Fp and Fp* is nonempty and bounded. 

 

3. THE PRIMAL LOGARITHMIC BARRIER    

FUNCTION 

 In this paper, the primal logarithmic barrier functions is 

defined by  

 

(PLB)   g(x, µ) = cTx - µ�
=

−
m

i

ii bxA
1

)ln( , x ∈ Fp
0                        (5)  

                                 

where Ai = (ai1, ai2, …,ain), b = (b1, b2, …,bm)T and µ > 0 is 

called barrier parameter. It is straightforward from the 
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definition of the function g(x, µ) we can see that cTx and –

)ln( ii bxA − are both convex; therefore we have the 

following theorem. 

 

Theorem 1 The primal logarithm barrier function g(x, µ) is 

convex in Fp
0.• 

 

The compactness property of the function g(x, µ) is written 

in the following theorem. 

 

Theorem 2 (Compactness) Suppose that Fp
0 ≠ φ. The level set 

of the primal logarithmic barrier function defined by 

 

        S(σ) = {x ∈ Fp
0 :  g(x, µ) ≤ σ}                                        (6)                                         

 

is bounded and closed, for any µ > 0.  

 

Proof: Let x0 ∈Fp
0 and given any ε > 0. It is easy to show that 

the level set  

 

        D0 = {x ∈ Fp : c
T
x ≤ cT

x0 + ε}                                          (7)                                            

 

is bounded and closed. 

 

We now can prove boundedness of S(σ) by contradiction. 

Assume that the contrary of the desired result, namely that for 

some µk > 0, there is an unbounded sequence {yj} of points Fp
0 

for which the barrier function values g(x, µk) remain bounded 

above. 

 

For such a sequence, let j be sufficiently large so that yj lies 

outside D0. Therefore by the definition of D0 we have 

 

      c
T
yj > cT

x0 + ε. 

 

Let zj be the point on the boundary of D0 where the line 

connecting x0 and yj intersects the boundary. Since D0 is 

convex, zj is unique. Let λj be the scalar satisfying 0 < λj < 1 

such that 

 

         zj =  (1 - λj)x0 + λjyj .                                                      (8) 

                                                     

We have assumed that {yj} is unbounded for sufficiently 

large j. Since {zj} is finite, (8) shows that 

 

λj → 0  as j → ∞.                                                           (9) 

 

Because x0 and yj are both in Fp
0, we know that x0 > 0 and yj 

> 0; and thus 

 

           zj =  (1 - λj)x0 + λjyj > 0,                                             (10)  

                                             

which shows that zj ∈Fp
0. Since zj is by definition in bnd(D0), 

we conclude from (7) that cTzj  = cTx0 + ε. 

 

By multiplying two sides which cT to (10) implies 

 

       cTzj =  (1 - λj)c
Tx0 + λj c

Tyj. 

Dividing by λj and substituting cTzj  = cTx0 + ε, we obtain 

      cTyj  = cTx0 + 

jλ

ε
                                                         (11)                                                    

so that the objective function values at {yj} become 

unbounded. 

Turning back to the constraint functions, positivity of λj 

means that the first equality in (10) can be written as 

      yj = x0 + 

j

j xz

λ

0−
.                                                     (12)                                 

Since the set bnd(D0) is compact, the function x – x0 

achieves its maximum for some x ∈ bnd(D0). Let d denote 

 

      d =  max{ x – x0: x ∈ bnd(D0)}. 

 

We now wish to demonstrate that d  ≥ 0. Because zj ∈ 

bnd(D0) and yj > 0, we apply the definition of d and relation 

(12) to show that 

x0 + 

j

d

λ
 ≥ yj > 0.                                                         (13) 

If d were negative, the first expression in (13) would 

eventually become negative as λj → 0, which impossible. It 

follows that d ≥ 0. 

 

Finally, the barrier function g(yj, µk) is formed. Using (11), 

(13), monotonicity of the logarithm function, and positivity of 

µk, we have 

 

 g(yj, µk) = cTyj - µk�
=

−
m

i

iji byA
1

)ln(  

       ≥ cT
x0 + 

jλ

ε
 - µk�

=

−+
m

i

i

j

i b
d

xA
1

0 ])(ln[
λ

 

 =  cT
x0 + 

j

n

i j

i

iijk

dA
bxA

λ

λ
λµε �

= �
�
�

�

�
�
�

�
+−−

1

0 )(ln

.                   

(14) 

 

The logarithm function has property that for a positive 

constant ν and λ > 0, 

 

      

�
	



�
�




λ
+νλ

+→λ

dAilnlim
0

= 0. 

 

Thus the limit of the numerator in (14) is ε, and the quotient 

in (14) is unbounded above as λj → 0. It follows that g(yj, µk) is 

unbounded above as j → ∞, thereby contradicting our 

assumption that the barrier function values {g(yj, µk)} are 

bounded above for an unbounded sequence {yj}. This proves 

that S(σ) is bounded. 

 

To show that S(σ) is closed, we will prove that it contains all 

its limit point. Let {xj} be a convergent sequence in S(σ), with 

limit point x. It follows from the continuity of g(xj, µk) that x 

must satisfy g(x, µk) ≤ σ. Furthermore, x must either be in Fp
0 

or else have the property that xi = 0 for at least one index i. 

 

If x is in Fp
0, by definition x is in S(σ). Suppose that x is not 

in Fp
0. Then, since xi = 0 for some index i, then the 

unboundedness of the logarithm for a zero argument and 

convergence of {xj} to x together imply that, for 

sufficientlylarge j, the barrier term -�
=

−
m

i

iji bxA
1

)ln( cannot 
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be bounded above. In particular, for any constant γ and 

sufficiently large j, 

 

-�
=

−
m

i

iji bxA
1

)ln( > γ.                                                    (15)  

                                                        

We now define γ = (σ - f*)/µk, where f* be the objective 

value of problem (P); the value of γ is finite because f* is 

finite. Since xj lies in Fp
0, we know that cT

xj  ≥ f*, which means 

that –f* ≥ –cTxj. Applying this inequality and definition of γ in 

(15), we obtain  

 

-�
=

−
m

i

iji bxA
1

)ln( > γ > 

k

j

T xc

µ

σ −
.                            (16)  

                                        

After rearrangement, this relation implies that g(xj, µk) > σ, 

i.e., xj ∉ S(σ), a contradiction. We conclude that any limit 

point of a sequence in S(σ) must lies in S(σ), which means that 

S(σ) is closed. We have shown that S(σ) is bounded and 

closed; its compactness is immediate.  

 

The following theorem explains the existence of the global 

unconstrained minimizer of the barrier methods for primal 

linear programming. 

 

Theorem 3 Suppose that f* denotes the optimal value of (P). If  
Fp

0 ≠ φ and let {µk} be a decreasing sequence of positive 

barrier parameters such that µk → 0 as k → ∞.  
Then 

 

(i) g(x, µk) has a finite unconstrained minimizer in Fp
0 for 

every µk > 0, and the set Mk of unconstrained minimizers of 

g(x, µk) in Fp
0 is compact for every k, 

(ii) any unconstrained local minimizers of g(x, µk) in Fp
0 is also 

a global unconstrained  minimizer of g(x, µk), 

 (iii) for all k ≥1,  

cTyk+1 ≤ cTyk  and  -� −
i

iki byA )ln( ≤ -     

                                 � −+

i

iki byA )ln( 1  

where yk denotes an unconstrained minimizer of g(x, µk) in 

Fp
0 and 

ii) there exists a compact set S such that for all k ≥1, every 

minimizer yk of g(x, µk) lies in S ∩ Fp
0. 

 

Proof:  Let x0 ∈ Fp
0. For the barrier parameter µk and ε > 0, we 

define the set S0 as 

 

S0 = {x ∈ Fp
0 : g(x, µk) ≤ g(x0, µk) + ε}. 

 

Theorem 2 implies that S0 is compact for all µk > 0. It follows 

that the smooth function g(x, µk) achieves its minimum in S0, 

necessarily in Fp
0. We then conclude that g(x, µk) has at least 

one finite unconstrained minimizer. 

 

Since g(x, µk) is convex, any local minimizer is also a global 

minimizer, so that every unconstrained minimizers of g(x, µk) 

must be in S0. Thus the set Mk of unconstrained minimizers of 

g(x, µk) is bounded. The set Mk is closed because the minimum 

value of g(x, µk) is unique, and it follows that Mk is compact. 

Therefore, the result (i) and (ii) have been verified. 

To show validity of (iii), let yk and yk+1 denote global 

minimizers of barrier function corresponding to the barrier 

parameters µk and µk+1, respectively. By definition of yk and 

yk+1, we have 

cTyk-µk� −
i

iki byA )ln( ≤cTyk+1 - µk� −+

i

iki byA )ln( 1  ;                                

(17) 

 cTyk+1 - µk+1� −+

i

iki byA )ln( 1
≤ cTyk  

                                                                         - µk+1� −
i

iki byA )ln( .          (18)                          

Through multiply the inequality (17) by the ratio µk+1/µk, 

adding the inequality (18) and cancel the terms involving 

logarithms, we obtain 

 

    c
T
yk+1 ��

	



��
�




µ

µ
− +

k

k 11 ≤ cT
yk ��

	



��
�




µ

µ
− +

k

k 11 . 

 

Since 0 < µk+1 < µk, it follows that cTyk+1≤ cTyk. Applying this 

result in (17) and dividing by the positive number µk to give 

- � −
i

iki byA )ln( ≤ -� −+

i

iki byA )ln( 1 ,                       (19)                                

as required for the second part of (iii). 

 

To verify existence of the set S in (iv), we use result (iii). 

Since cTyk+1≤ cTyk for each k, the compact convex level set  

 

 

   {x ∈ Fp: c
T
x ≤ cT

yk} 

 

not only contains all minimizers of g(x, µk), but also contains 

all minimizers of g(x, µk+1), because  

 

{x ∈ Fp: c
T
x ≤ cT

yk} ⊇ {x ∈ Fp
0: g(x, µk) ≤ cT

yk} 

The compact level set S defined by the strictly feasible point 

y0, 

 

   {x ∈ Fp
0: g(x, µk) ≤ cT

y0}= S.                                          (20)     

                                           

Accordingly contains Fp
* as well as minimizers of g(x, µk) 

for all k. 

 

The following theorem explains the convergence of the 

barrier methods for primal linear programming. 

 

Theorem 4  Suppose that f* denotes the optimal value of (P). 

If Fp
0 ≠ φ, Let {µk} be a decreasing sequence of positive barrier 

parameters such that µk → 0 as k → ∞ and {yk}denotes global 

minimizers sequence of barrier function corresponding to the 

barrier parameters µk . 
Then 

 

 (i) {yk} has at least a subsequence converge {xk} and its 

limit point is a local constrained minimizer of problem (P), 

  

 (ii) cTxk → f* as k → ∞ where {xk} denotes the subsequence 

of an unconstrained minimizers of g(x, µk) and 

  

 (iii) g(xk, µk) → f* as k → ∞. 

Proof:  We now show validity of (i). It follows from the 

Theorem 3 that every minimizer of yk must lie in the compact 

set S defined by (20). We conclude that the sequence {yk} is 
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uniformly bounded, and hence contains at least convergent 

subsequence, say with limit point x. Because yk lies in S for all 

k, x must be feasible. 

 

In order to prove that x is a local constrained minimizer of 

the primal problem (P), we assume that x ∉ Fp*. Since every 

local solution of a primal problem is a global solution, this 

would imply that cT
x > f*. A contradiction is now established 

from this inequality and the definition of x as a limit point of a 

convergent subsequence of minimizers of g(x, µk). 

 

Let {xk} denote a subsequence of {yk} converging to x. 

Continuity of cT
x and the relation cT

yk ≥ cT
yk+1 imply that, for 

all k, 

 

c
T
xk ≥ cT

x.                                                            (21) 

 

We next show that there must exist a strictly feasible point 

xint such that  

 

 cTx > cTxint. 

 

Let x* denote any point in the set of Fp* of constrained 

minimizers, so that cTx* = f* and x* is in the set of S defined 

by (20). If x* itself is strictly feasible, we simply take xint = x*, 

since our initial assumption was that cTx > cTx*. If x* is not 

strictly feasible, xint is found as follows. By assumption, Fp
0 is 

nonempty, and hence contains at least one point, sat z; the 

definition and uniqueness of f* imply that cT
z ≥ cT

x*. If cT
z < 

c
T
x, z may be taken as xint. If c

T
z ≥ cT

x, consider a generic point 

w on the line segment joining x* and z, defined by w = (1- λ)x* 

+ λz for λ satisfying 0 < λ < 1. So we have w > 0, i.e., w is 

strictly feasible. 

 

Multiply by cT to two sides, implies that cT
w = (1- λ)cT

x* + 

λc
T
z, where cT

z ≥ cT
x > cT

x* . Using continuing of cT
x, we see 

that that c
T
w < cT

x for some suitably small λ, namely λ such 

that 

 

   λ < 
*

*

xczc

xcxc
TT

TT

−

−
 ≤ 1.                                                  (22)     

                                              

For any λ satisfying (22), w may be taken as xint. 

Thus far we have shown that, if x is not in the minimizing set 

Fp
*, then a strictly feasible point xint exists such that 

 

   c
T
xk ≥ cT

x > cT
xint.                                                           (23)   

                                                 

Since xk is a global minimizer of g(x, µk), 

 

  c
T
xk - µk� −

i

iki bxA )ln( ≤ cT
xint  - µk� −

i

ii bxA )ln( int .                                            

                                                                                               (24) 

Taking k → ∞, we have  

 

),(lim kk
k

xg µ
∞→

= cT
x  and ),(lim int k

k
xg µ

∞→
= cT

xint; 

 

thus, we obtain inequality cT
x ≤ cT

xint, which contradicts with 

(23). 

Suppose that x is not in Fp
0, so that (x)i = 0 for at least one 

index i. Adding a barrier term involving xint to both sides of the 

inequality cTxk > cTxint, we have 

 

 cT xint - µk� −
i

ii bxA )ln( int < cTxk  - µk )ln( int� −
i

ii bxA . 

Combining this inequality with (24), we obtain 

 

 cTxk - µk� −
i

iki bxA )ln( < cTxk - µk� −
i

ii bxA )ln( int . 

Canceling cTxk from both sides and dividing by µk, then 

gives 

 

- � −
i

iki bxA )ln( < -� −
i

ii bxA )ln( int . 

 

The sum on the right hand side involving xint is finite. 

However, x is not stricly feasible,  

 

-ln(Aixk-bi) approaches infinity for at least one i. The left 

hand side is therefore unbounded above, and we again have a 

contradiction. 

 

The conclusion is that x lies in Fp*, the set of minimizers. 

Since x is the limit point of {xk}, we have obtained the crucial 

result (i). For the remainder of the proof x* will denote the 

limit point of {xk}. 

 

Part (ii) of the theorem follows immediately from the fact 

that k
k

x
∞→

lim = x*, and cT
x continue, then we have  

 

∞→k
lim  cT

xk  =  cT
x*  =  f*. 

 

To show validity of (iii), we note first that the optimal value 

of g(x, µk) is unique, and is equal to g(xk, µk). We distinguish 

two cases, depending on whether or not x* (the limit point of 

{xk}) is strictly feasible. 

 

If x* is strictly feasible, the sum of logarithm of (Aixk - bi) 

remains finite as k → ∞. It is easy to see that in this case  

 

           
),(lim kk

k
xg µ

∞→
= cTx* = f*. 

 

Consider the other possibility, that x* is not strictly feasible. 

Since at least one (xk)i converging to zero, the barrier term -

� −
i

iki bxA )ln( , must be positive for all sufficiently large 

k. Combining this property with (19),  

we have 

 

0 < -� −
i

iki bxA )ln( ≤ -� −+

i

iki bxA )ln( 1 . (25)                                        

 One implication of this result is that, for sufficiently 

large k, 

 

g(xk, µk) > cT
xk.                                                  (26)  

                                                      

In addition, the minimizing property of xk+1, the first 

inequality in (25), and the relation µk+1 < µk   together give 

 

c
T
xk+1 - µk+1� −+

i

iki bxA )ln( 1 ≤  cT
xk  

                                          - µk+1� −
i

iki bxA )ln(  
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cTxk - µk+1� −
i

iki bxA )ln( ≤  cTxk  

                                            - µk� −
i

iki bxA )ln( , 

which show that, for sufficiently large k, 

 

g(xk+1, µk+1) ≤ g(xk, µk).                                      (27)  

                                              

It follows from (26) and (27) that, for sufficiently large k, 

 

f* ≤ …≤ gk+1 ≤ gk,                                              (28) 

 

where gk denotes g(xk, µk). The sequence of {gk} of barrier 

function values is consequently non increasing and bounded 

from below, and must converge monotonically from above to a 

limit, say g*, where g* ≥ f*. 

 

Suppose that g* > f*. In this case, we define a positive 

number δ := ( )**2
1 fg − . It follows from continuity of cT

x 

that there must be a neighborhood of x* in which 

 

cTx ≤ g* - δ,                                                       (29) 

 

for all x in the neighborhood. Consider a particular strictly 

feasible point x0 in this neighborhood. Strictly feasibility of x0 

implies that the quantity �
i

ix )ln( 0
is finite. Because µk > 0 

and µk  → 0, there must be an integer K such that, for k ≥ K, 

 

- µk� −
i

ibAx )ln( 0  < 2
1 δ.                               (30) 

                                                  

Since xk  is a global minimizer of g(xk, µk), we know that 

 

g(xk, µk) ≤ g(x0, µk) = cTx0  - µk� −
i

ibAx )ln( 0
. 

 

If we apply (29) and (30), the result is 

 

       g(xk, µk) ≤ g* - δ + 2
1 δ = g* - 2

1 δ, 

 

which contradicts the monotonically convergence of {gk} to g* 

from above. We conclude g* = f*, which gives result (viii).  

 

The implications of this theorem are remarkable strong. For 

any primal linear programming with nonempty set of interior 

region, the barrier function has a finite unconstrained 

minimizer for every value of the barrier parameter, and every 

limit point of a minimizing sequence for the barrier function is 

a constrained minimizer of a primal problem. 

 

Algorithm 1. Data Ax ≥ b, µ1 > 0 and ε > 0. 
1. Choose x1 ∈ Rn such that Ax1 = b and x1 > 0.  

2. If the optimality conditions are satisfied for problem (P) at    

   x1, then stop. 

3. Compute y1 the minimum of g(x, µ1). 

4. Compute yk := 
x

min g(x, µk) and  µk := 
k

k

10

1−µ
for k = 2. 

5. If | yk - yk-1 | < ε then stop, else k := k + 1 and go to step 4.  

Consider the barrier subproblem involves minimizing g(x, µ) 

subject to linear equality constraints:  

minimize cTx - µ�
=

n

i

ix
1

ln    subject to    Ax =   b(7).                             

The associated Lagrangian function for subproblem (7) is 

      L(x, y) = cT
x - µ�

=

n

i

ix
1

ln - yT(Ax - b), 

where y is an m-vector. The optimality conditions for linear 

equality constraints imply the existence of y such  

that the solution of (7) satisfies 

 

c - µX-1e – ATy = 0 and Ax = b, 

 

where X = diag(x1, …,xn) and eT = (1, …,1). 

Defining s = µX
-1

e, we may write 

 

A
T
y + s = c, Ax = b, and Xs = µe. 

 

So, if g(x,µ) has a minimizer in Fp
0, the following system of 

equations: 

 

Ax = b, x ≥ 0 

ATy + s = c, s ≥ 0 

      Xs = µe,                                  (8) 

 

have a (unique) solution. Conversely, assume that the system 

(8) have a solution. Since µ > 0, x and s must be positive at a 

solution (x, y, s) of the system. This means that F0 is nonempty 

especially Fp
0 is nonempty. For reasons that will become clear 

later, we shall designate the equations as the centering 

conditions. Thus, we have the following properties. 

 

Theorem 3. Let µ > 0. The following statements are 

equivalent: 

 

(1) Fp
0 is nonempty; 

(2) there exists a (unique) minimizer of g(x, µ) on Fp
0; 

(3) the centering conditions have a (unique) solution. 

 

4. THE DUAL LOGARITHMIC BARRIER FUNCTION 

 

We consider the dual of the primal linear programming as 

follows 

 

1. max{bTy : ATy + s  = c, s ≥ 0} 

 

The dual logarithmic barrier functions is given by  

h(y, µ) =  -bTy - µ�
=

n

i

is
1

ln , s ∈ Fd
0, 

where µ > 0 and Fd 
0 = {s: ATy + s  = c, s > 0} be interior point 

set of the feasible region of (D). If Fp
0 ≠ φ, then we have that 

Fd* be optimal set of problem (D) is nonempty and bounded 

[4]. 

 

The following theorem is similar with Theorem 1 where its 

proof also can be omitted. 

 

Theorem 4    

S(σ) = {y ∈ Fd
0 : h(y, µk) ≤ σ} 

 

the level set of the dual logarithmic barrier function under the 

assumption that Fd 
0 ≠ φ is bounded and closed, for any µk > 0. 
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We are now ready to give the main theorem concerning 

barrier methods for dual linear programming and its proof is 

also similar with the proof of Theorem 2. 

 

Theorem 5  Consider the dual linear programming. Let Fd 

denote the feasible for this problem, and assume that Fd
0 is 

nonempty. Let {µk} be a decreasing sequence of positive 

barrier parameters such that 
k

k
µ

∞→
lim = 0. Assume that Fd* of 

constrained local minimizers of the dual linear programming is 

nonempty and bounded, and let -f* denote the optimal value of 

(D). Then 

(i) the dual logarithmic barrier function h(y, µk) is convex in 

Fd
0; 

(ii) h(y, µk) has a finite unconstrained minimizer in Fd
0 for 

every µk > 0, and the set Mk of  unconstrained minimizers of 

h(y, µk) in Fd
0 is convex and compact for every k; 

(iii) any unconstrained local minimizers of h(y, µk) in Fd
0 is 

also a global unconstrained the minimizer of h(y, µk); 

(iv) let yk denote an unconstrained minimizer of h(y, µk) in Fd
0; 

then, for all k, 

      -cTyk+1  ≤  -cTyk  and  -�
i

iks )ln( ≤ -� +

i

iks )ln( 1 ; 

(v) there exists a compact set S such that, for all k, every 

minimizing point yk of h(y, µk) lies in S∩Fd
0; 

(vi) any sequence {yk} of unconstrained minimizers of h(y, µk) 

has at least one convergence, and every limit point of  {yk} is a 

local constrained minimizer of the dual problem (D); 

(vii) let {xk} denote a subsequence of an unconstrained 

minimizers of h(y, µk) then 

       k

T
xb  → f* as k → ∞ ;and 

(viii) kh → -f* as k → ∞ where hk denotes h(yk, µk).  

 

    The implications of this theorem are remarkable strong. 

For any dual linear programming with nonempty set of interior 

region, the barrier function has a finite unconstrained 

minimizer for every value of the barrier parameter, and every 

limit point of a minimizing sequence for the barrier function is 

a constrained minimizer of a dual problem. 

 

Algorithm 2 

Data ATy + s = b, µ1 > 0 and ε > 0. 

1. Choose s1 ∈ Rn such that ATy + s1 = b and s1 > 0.  

 

2. If the optimality conditions are satisfied for problem (D) at    

 

      s1, then stop. 

 

3. Compute y1 the minimum of h(y, µ1) 

4. Compute yk :=  
x

min h(x, µk) and  µk := 
k

k

10

1−µ
for k = 2. 

5. If | yk - yk-1 | < ε then stop, else k := k + 1and go to step 4. 

 

Consider the barrier subproblem involves minimizing h(y, µ) 

subject to linear equality constraints:  

minimize -bT
y - µ�

=

n

i

is
1

ln    subject to    AT
y + s = c.                                   

                                                                                             (9) 

The associated Lagrangian function for subproblem (9) is 

L(y, s, x) = -bT
y - µ�

=

n

i

is
1

ln + xT(AT
y + s - c), 

where x is an n-vector. The optimality conditions for linear 

equality constraints imply the existence of x such that the 

solution of (9) satisfies 

 

-b + Ax = 0, -µS
-1

e + x = 0, and AT
y + s = c. 

 

We may write 

 

     Ax = b, A
T
y + s = c, and Xs = µe. 

So, if h(y, µ) has a minimizer in Fd
0, then the centering 

conditions have a solution. Conversely, the centering 

conditions have a solution.. Because µ > 0, x and s must be 

positive at a solution (x, y, s) of the system. This means that F0 

is nonempty, especially Fd
0 is nonempty. Thus, we have the 

following properties. 

 

Theorem 6 Let µ > 0. The following statements are equivalent: 

 

(1) Fd
0 is nonempty; 

(2) there exists a (unique) minimizer of h(y, µ) on   Fd
0; 

(3) the centering conditions have a (unique) solution. 

 

5. THE PRIMAL-DUAL BARRIER FUNCTION 

 

Let µ > 0 be the barrier parameter, then the primal-dual 

barrier function is defined by fµ : F
0 → R as 

        fµ (x, s) = xTs - µ�
=

n

i

ii sx
1

ln ,                                        (10)                                            

      where F0 = {(x, s): Ax = b, AT
y + s = c, x >0, s > 0}. 

 

   One may easily verify that the first term in (10) is linear on 

the domain of fµ  and that the Hessian of the second term is 

positive definite. It follows that fµ  is strictly convex. We 

consider the barrier problem 

 

      min { fµ (x,s) : (x,s) ∈ F0} 

 

and study the properties of its solution. It is convenient to give 

an alternative expression of the barrier function. Letting g : R+ 

→ R be the function in the variable t defined by 

 

      g(t) = t - µln t, 

 

we may write 

fµ (x, s) = �
=

n

i

ii sxg
1

)( .                                                     (11) 

 

  The function g has some properties that will be of great 

help in proving that fµ  achieves its minimum value on F0. 

These properties are collected in the following lemma, whose 

elementary proof is omitted. 

 

Lemma 1 g is strictly convex on its domain R+. Furthermore, if 

t ∈ R+ then g(t) ≥ µ(1 – ln µ) with equality if and only if t = µ. 

Finally, g(t) → ∞ as t → 0 or t → ∞.  

 

     Note that it is immediate from this lemma that the barrier 

function fµ (x, s) is bounded from below by nµ(1 - lnµ), and 

hence it has a finite infimum. The next lemma essentially 

shows that the infimum is located in a compact set, hence that 

it is achieved by some point. 
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Lemma 2 Suppose that F 0 is nonempty hold and let σ be any 

real number. Then the level set {(x,s) ∈ F0 : fµ (x,s) ≤ σ} is 

bounded, and uniformly bounded away from zero. 

 

Proof: See [4]. 

 

 The above lemma asserts that each level set of fµ  is 

included in a compact subset of its domain F0. Hence fµ  

achieves its minimum value on the domain of definition. Since 

fµ  is strictly convex on F0, the solution is unique. 

 Conversely, if fµ  achieves its minimum value on F0, we get 

        

     s - µX-1e = 0; that is Xs =µe; 

 

that is the centering conditions have a solution. Thus, we have 

the following properties. 

 

Theorem 7 Let µ > 0. The following statements are equivalent: 

 

(1) F0 is nonempty; 

(2) fµ (x,s) has a (unique) minimizer on F0; 

(3) the centering conditions have a (unique) solution.  

Combining Theorem 3, 6, and 7, we get the following 

theorem. 

Theorem 8 Let µ > 0. The following statements are equivalent: 

(1) F 0 is nonempty; 

(2) g(x,µ) has a (unique) minimizer on Fp
0; 

(3) h(y,µ) has a (unique) minimizer on Fd 
0; 

(4) fµ (x,s) has a (unique) minimizer on F0; 

(5) the centering conditions have a (unique) solution.  

 

6. CONCLUSIONS 

From the above discussion, we have shown that the linear 

programming and its dual can be solved by using barrier 

function methods given in Algorithm 1 and Algorithm 2 

respectively.  
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