International Journal of Mathematical Archive-3(1), 2012, Page: 105-112 (CC MMA Available online through www.ijma.info
 ISSN 2229-5046

PROPERTIES P AND Q IN NON-ARCHIMEDEAN G-FUZZY METRIC SPACES

Renu Chugh ${ }^{1}$, Zead Mustafa ${ }^{2}$, Madhu Aggarwal ${ }^{3 *}$ and Tamanna Kadian ${ }^{4}$
1, 3,4 Department of Mathematics, Maharshi Dayanand University, Rohtak-124001(INDIA)
${ }^{2}$ Department of Mathematics, The Hashemite University, P. O. 330127, Zarqa 13115 (Jordan)
E-mail: ${ }^{1}$ chughrenu@yahoo.com, ${ }^{2}$ zmagablh@hu.edu.jo, ${ }^{3}$ madhumdur@gmail.com,
${ }^{4}$ tamannakadian@yahoo.co.in.

(Received on: 27-12-11; Accepted on: 14-01-12)

Abstract

In this paper we introduce the concept of non-Archimedean G-fuzzy metric space and obtain some results for two semicompatible mappings in this newly defined space. Our results improve and generalize the results of Mustafa et. al. [13] and Abbas \& Rhoades [1] in non-Archimedean G-fuzzy metric space. Moreover, we prove that these mappings satisfy Properties P and Q.

1991 Mathematics Subject Classification: Primary 47H10, Secondary 46 B20.
Key Words: G-metric space, Non-Archimedean G-fuzzy metric space, Common fixed point, Property P and Property Q.

1. INTRODUCTION AND PRELIMINARIES:

In 1965, Zadeh [18] introduced the concept of Fuzzy set. Since that time a substantial literature has been developed on this subject. Several authors [2, 4, 7, 10] proved fixed point theorems for fuzzy metric space in different ways. In 1975, Kramosil and Michalek [11] introduced the fuzzy metric space by generalizing the concept of probabilistic metric space to fuzzy situtation. After that George and Veeramani[4-6] modified the concept of fuzzy metric space introduced by Kramosil and Michalek [11]. They also showed that every metric induces a fuzzy metric. Grabiec [7] proved fuzzy Banach contraction theorem on fuzzy metric space. Singh and Chauhan [17] proved some common fixed point theorems in fuzzy metric spaces in the sense of George and Veeramani. Recently, Dorel Mihet [12] introduced the concept of non-Archimedean fuzzy metric space and proved Banach Contraction theorem in this space. In 2006, Mustafa and Sims [15] introduced the concept of G-metric space by generalizing the concept of metric space. Then, based on the notion of generalized metric spaces, several authors have obtained some fixed point results for a selfmapping under various contractive conditions, (see[1,3,13]).

Motivated by the concepts of G-metric space, Non-Archimedean metric space and Fuzzy metric space, we introduce the concept of non-Archimedean G-fuzzy metric space and obtain two common fixed point theorems for two semicompatible mappings. Our results improve and generalize the results of Mustafa et. al.[13] and Abbas \& Rhoades [1] in non-Archimedean G-fuzzy metric space. We also establish properties P and Q for these mappings. An interesting fact about maps satisfying properties P and Q is that they have no nontrivial periodic points. Some papers dealing with properties P and Q are ($[8,9,16]$).

We first give some definitions and results that will be needed in the sequel.
Definition: 1.1([15]) Let X be a nonempty set and $G: X \times X \times X \rightarrow R^{+}$a function satisfying the following axioms:
(G1) $G(x, y, z)=0$ if $x=y=z$,
(G2) $0<G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,
(G3) $\mathrm{G}(\mathrm{x}, \mathrm{x}, \mathrm{y}) \leq \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$, with $\mathrm{z} \neq \mathrm{y}$,
(G4) $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{G}(\mathrm{x}, \mathrm{z}, \mathrm{y})=\mathrm{G}(\mathrm{y}, \mathrm{z}, \mathrm{x})=\cdots$ (symmetry in all three variables),
(G5) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$, for all $x, y, z, a \in X$, (rectangle inequality).
Then the function G is called a G-metric on X, and the pair (X, G) is called a G-metric space.

Renu Chugh ${ }^{1}$, Zead Mustafa ${ }^{2}$, Madhu Aggarwal ${ }^{\beta^{*}}$ and Tamanna Kadian ${ }^{4}$ / Properties P and Q in Non-Archimedean G-Fuzzy Metric Spaces/ IJMA- 3(1), Jan.-2012, Page: 105-112

Definition: 1.2 ([15]) Let (X,G) be a G-metric space, let $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a sequence of points of X . We say that $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is Gconvergent to x if $\lim _{n, m \rightarrow \infty} G\left(x, x_{n}, x_{m}\right)=0$; that is, for any $\mathcal{E}>0$, there exists a $\mathrm{k} \in \mathbf{N}$ such that $\mathrm{G}\left(\mathrm{x}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right)<\mathcal{E}$ for all $\mathrm{n}, \mathrm{m} \geq \mathrm{k}$ (throughout this paper we mean by \mathbf{N} the set of all natural numbers). We call x the limit of the sequence and write $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$ or $\lim \mathrm{x}_{\mathrm{n}}=\mathrm{x}$.

Proposition: 1.3 ([15]) Let (X, G) be a G-metric space. Then the following are equivalent:
(1) $\left\{x_{n}\right\}$ is G-convergent to x,
(2) $\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}\right) \rightarrow 0$, as $\mathrm{n} \rightarrow \infty$,
(3) $\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}, \mathrm{x}\right) \rightarrow 0$, as $\mathrm{n} \rightarrow \infty$,
(4) $\mathrm{G}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}\right) \rightarrow 0$, as $\mathrm{m}, \mathrm{n} \rightarrow \infty$.

Example: 1.4 ([15]). Let (X, d) be a usual metric space, then $\left(\mathrm{X}, \mathrm{G}_{\mathrm{S}}\right)$ and $\left(\mathrm{X}, \mathrm{G}_{\mathrm{m}}\right)$ are G-metric spaces, where

$$
\begin{aligned}
& G_{S}(x, y, z)=d(x, y)+d(y, z)+d(x, z), \text { for all } x, y, z \in X, \\
& G_{m}(x, y, z)=\max \{d(x, y), d(y, z), d(x, z)\}, \text { for all } x, y, z \in X .
\end{aligned}
$$

Definition: 1.5 A binary operation* : $[0,1] \times[0,1] \rightarrow[0,1]$ is a continuous t-norm if it satisfies the following conditions:
(a) $*$ is associative and commutative;
(b) $*$ is continuous;
(c) $a * 1=$ a for all $\mathrm{a} \in[0,1]$;
(d) $a * \mathrm{~b} \leq \mathrm{c} * \mathrm{~d}$ whenever $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$, for each $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in[0,1]$.

Now, we introduce the concept of Non-Archimedean G-fuzzy metric space (briefly as N. A. G-fuzzy metric space) as follows:

Definition: 1.6 A 3-tuple ($\mathrm{X}, \mathrm{M}_{\mathrm{G}}, *$) is called a non-Archimedean G-fuzzy metric space if X is an arbitrary(non-empty) set, $*$ is a continuous t-norm and M_{G} is a G-fuzzy set on $X^{3} \times(0, \infty)$, satisfying the following conditions for each x, y, z, $a \in X$ and $t, s>0$
$\left(\mathrm{M}_{\mathrm{G}} 1\right) \mathrm{M}_{\mathrm{G}}(\mathrm{x}, \mathrm{x}, \mathrm{y}, \mathrm{t})>0$ with $\mathrm{x} \neq \mathrm{y}$;
$\left(M_{G} 2\right) M_{G}(x, x, y, t) \geq M_{G}(x, y, z, t)>0$ with $z \neq y ;$
$\left(M_{G} 3\right) M_{G}(x, y, z, t)=1$ iff $x=y=z$;
$\left(M_{G} 4\right) M_{G}(x, y, z, t)=M_{G}(p\{x, y, z\}, t)$ (symmetry) where p is a permutation function;
$\left(\mathrm{M}_{\mathrm{G}} 5\right) \mathrm{M}_{\mathrm{G}}(\mathrm{x}, \mathrm{a}, \mathrm{a}, \mathrm{t}) * \mathrm{M}_{\mathrm{G}}(\mathrm{a}, \mathrm{y}, \mathrm{z}, \mathrm{s}) \leq \mathrm{M}_{\mathrm{G}}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \max \{\mathrm{t}, \mathrm{s}\}) ;$
$\left(\mathrm{M}_{\mathrm{G}} 6\right) \mathrm{M}_{\mathrm{G}}(\mathrm{x}, \mathrm{y}, \mathrm{z},):.(0, \infty) \rightarrow[0,1]$ is continuous.
Example: 1.7 Let $\mathrm{X}=\mathbf{R}$ with G-metric on X defined by

$$
\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=|x-y|+|y-z|+|z-x|
$$

Denote $a * b=a b$ for all $a, b \in[0,1]$. For all $x, y, z \in X$ and $t>0$, define M_{G} on $\mathrm{X}^{3} \times(0, \infty)$ as follows:

$$
\mathrm{M}_{\mathrm{G}}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=\left(\frac{t}{t+1}\right)^{G(x, y, z)}
$$

Then, $\left(\mathrm{X}, \mathrm{M}_{\mathrm{G}}, *\right)$ is a non -Archimedean G-fuzzy metric space.
Definition: 1.8 Let $\left(\mathrm{X}, \mathrm{M}_{\mathrm{G}}, *\right)$ be a non-Archimedean G-fuzzy metric space. Then,
(1) A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to x iff $M_{G}\left(x_{m}, x_{n}, x, t\right) \rightarrow 1$ as $n \rightarrow \infty$, for each $t>0$.
(2) A sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in X is said to be a cauchy sequence if for each $0<\varepsilon<1$ and $\mathrm{t}>0$, there exists $\mathrm{n}_{0} \in \mathrm{~N}$ such that $\mathrm{M}_{\mathrm{G}}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{l}, \mathrm{t}\right)>1-\varepsilon$ for each $1, \mathrm{~m}, \mathrm{n} \geq \mathrm{n}_{0}$.
(3) The G-fuzzy metric space is called complete if every cauchy sequence is convergent.

Following similar argument in G-metric space, the sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in X also converges to x iff $\mathrm{M}_{\mathrm{G}}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}, \mathrm{t}\right) \rightarrow 1$ as $\mathrm{n} \rightarrow \infty$, for each $t>0$ and it is Cauchy sequence if for each $0<\varepsilon<1$ and $t>0$, there exists $\mathrm{n}_{0} \in \mathrm{~N}$ such that

Renu Chugh ${ }^{1}$, Zead Mustafa ${ }^{2}$, Madhu Aggarwal ${ }^{\beta^{*}}$ and Tamanna Kadian ${ }^{4}$ / Properties P and Q in Non-Archimedean G-Fuzzy Metric Spaces/ IJMA- 3(1), Jan.-2012, Page: 105-112

$$
\mathrm{M}_{\mathrm{G}}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right)>1-\varepsilon \text { for each } \mathrm{m}, \mathrm{n} \geq \mathrm{n}_{0} .
$$

Definition: 1.9 Denote by Φ the class of continuous functions $\emptyset:[0,1] \rightarrow[0,1]$ such that $\emptyset(t)>t$ for all $0 \leq t<1$ and $\emptyset(1)=1$.

Lemma: 1.10 Let $\left(X, M_{G}, *\right)$ be a non-Archimedean G-fuzzy metric space. Then $\mathrm{M}_{\mathrm{G}}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$ is non-decreasing with respect to t for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in X .

Throughout this paper, we assume that $\lim _{t \rightarrow \infty} M_{G}(x, y, z, t)=1$ and that \mathbf{N} is the set of all natural numbers.
Lemma: 1.11 Let $\left(X, M_{G}, *\right)$ be a non-Archimedean G-fuzzy metric space. Let $\left\{y_{n}\right\}$ be a sequence in X, where $*$ is a continuous t -norm satisfying $\mathrm{t} * \mathrm{t} \geq \mathrm{t}$ for all $\mathrm{t} \in[0,1]$. If there exists $\mathrm{t}>0$ and $\varnothing \in \Phi$ such that
$\mathrm{M}_{\mathrm{G}}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+2}, \mathrm{y}_{\mathrm{n}+2}, \mathrm{t}\right) \geq \emptyset\left(\mathrm{M}_{G}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{t}\right)\right), \mathrm{n} \in \mathrm{N}$, then $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ is a Cauchy sequence in X .
Proof: If we define $r_{n}=M_{G}\left(y_{n+1}, y_{n+2}, y_{n+2}, t\right)$, then

$$
\begin{equation*}
r_{n} \geq \emptyset\left(r_{n-1}\right)>r_{n-1} . \tag{1.11.1}
\end{equation*}
$$

So that the sequence $\left\{r_{n}\right\}$ is an increasing sequence of positive real numbers in $[0,1]$ and tends to a limit $r \leq 1$. We claim that $\mathrm{r}=1$. If $\mathrm{r}<1$, on taking $n \rightarrow \infty$ in (1.11.1), we get $r \geq \emptyset(\mathrm{r})>\mathrm{r}$, which is a contradiction. Hence $\mathrm{r}=1$.

Now, for any positive integer p , we have
$M_{G}\left(y_{n}, y_{n+p}, y_{n+p}, t\right) \geq M_{G}\left(y_{n}, y_{n+1}, y_{n+1}, t\right) * \ldots * M_{G}\left(y_{n+p-1}, y_{n+p}, y_{n+p}, t\right)$.
Taking the limit as $n \rightarrow \infty$, we get
$\lim _{n \rightarrow \infty} M_{G}\left(y_{n}, y_{n+p}, y_{n+p}, t\right)=1$. Hence, $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ is a Cauchy sequence.
Now, we introduce the concept of weakly compatible maps and semi-compatible maps in non-Archimedean G-fuzzy metric space as follows:

Definition: 1.12 Let f and g be self maps on a non-Archimedean G-fuzzy metric space ($\mathrm{X}, \mathrm{M}_{\mathrm{G}}, *$). Then the mappings are said to be weakly compatible if they commute at their coincidence point, that is, $\mathrm{fx}=\mathrm{gx}$ implies that $\mathrm{fgx}=\mathrm{gfx}$.

Definition1.13. A pair (f, g) of self mappings of a non-Archimedean G-fuzzy metric space is said to be semicompatible if $\lim _{n \rightarrow \infty} f g x_{n}=\mathrm{gx}$, whenever $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=\mathrm{x}$, for some x $\in X$.

It follows that (f, g) is semi-compatible and $f y=g y$, then $f g y=g f y$.
Note that every pair of semi-compatible maps is weakly compatible but converse need not be true.

Example: 1.14 Let $\mathrm{X}=[0,1]$ with G-metric on X defined by

$$
\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=|x-y|+|y-z|+|z-x|
$$

Denote $\mathrm{a} * \mathrm{~b}=\mathrm{ab}$ for all $\mathrm{a}, \mathrm{b} \in[0,1]$. For all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ and $\mathrm{t}>0$, define M_{G} on $\mathrm{X}^{3} \times(0, \infty)$ as follows:

$$
\mathrm{M}_{\mathrm{G}}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=\left(\frac{t}{t+1}\right)^{G(x, y, z)}
$$

Then, $\left(\mathrm{X}, \mathrm{M}_{\mathrm{G}}, *\right)$ is a non -Archimedean G-fuzzy metric space. Define a self map on X as follows:
$\mathrm{Sx}=\left\{\begin{array}{cc}x & 0 \leq x<\frac{1}{2} \\ 1 & x \geq \frac{1}{2}\end{array}\right\}$ and let I be the identity map on X.

If $\mathrm{x}_{\mathrm{n}}=\frac{1}{2}-\frac{1}{n}$. Then $\left\{\mathrm{Ix}_{\mathrm{n}}\right\}=\mathrm{x}_{\mathrm{n}} \rightarrow \frac{1}{2}$ and $\left\{\mathrm{Sx}_{\mathrm{n}}\right\} \rightarrow \frac{1}{2}$. Again $\left\{\mathrm{ISx}_{\mathrm{n}}\right\} \rightarrow \frac{1}{2} \neq \mathrm{S}\left(\frac{1}{2}\right)$.
Thus (I, S) is not semi-compatible. But (I, S) is weakly compatible.
Definition: 1.15 ([1]) Let f and g be self maps on a set X and if $w=f x=g x$ for some x in X, then x is called a coincidence point of f and g and w is called a point of coincidence of f and g.

Proposition: 1.16 Let f and g be semi-compatible self-maps of a set X. If f and g have a unique point of coincidence $f x$ $=g x=w$, then w is the unique common fixed point of f and g.

Proof: Since $\mathrm{fx}=\mathrm{gx}=\mathrm{w}$ and f and g are semi-compatible, we have
$f w=f g x=g f x=g w$, implies that, $f w=g w$. Thus, w is a point of coincidence of f and g. But w is the only point of coincidence of f and g, so $w=f w=g w$. Moreover, if $z=f z=g z$, then z is a point of coincidence of f and g. Therefore, $\mathrm{z}=\mathrm{w}$, by uniqueness. Thus, w is the unique common fixed point of f and g .

Definition: 1.17 Let $\left(\mathrm{X}, \mathrm{M}_{\mathrm{G}}, *\right)$ be a non-Archimedean G-fuzzy metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a mapping with fixed point set $\mathrm{F}(\mathrm{T}) \neq \emptyset$. Then T has property P if $\mathrm{F}\left(\mathrm{T}^{\mathrm{n}}\right)=\mathrm{F}(\mathrm{T})$, for each $\mathrm{n} \square \mathrm{N}$.

Definition: 1.18 Let $\left(\mathrm{X}, \mathrm{M}_{\mathrm{G}}, *\right)$ be a non-Archimedean G-fuzzy metric space and T, $\mathrm{S}: \mathrm{X} \rightarrow \mathrm{X}$ be two mappings with $F(S) \cap F(T) \neq \emptyset$. Then, S and T have property Q if $F\left(S^{n}\right) \cap F\left(T^{n}\right)=F(S) \cap F(T)$, for each $n \square N$.

2. FIXED POINT RESULTS:

Now, we generalize the results of Abbas \& Rhoades [1] to non-Archimedean G-fuzzy metric space for semi-compatible maps as follows:

Theorem: 2.1 Let $\left(X, M_{G}, *\right)$ be a non-Archimedean G-fuzzy metric space with $t * t \geq t$. Suppose f and g be a selfmap of X satisfying for all $x, y, z \in X$
(2.1.1) $\quad \mathrm{M}_{\mathrm{G}}(\mathrm{fx}, \mathrm{fy}, \mathrm{fz}, \mathrm{t}) \geq \emptyset\left(\mathrm{M}_{\mathrm{G}}(\mathrm{gx}, \mathrm{gy}, \mathrm{gz}, \mathrm{t})\right)$
where $\varnothing \in \Phi, \mathrm{t}>0$. If $\mathrm{f}(\mathrm{X}) \subset \mathrm{g}(\mathrm{X})$ and $\mathrm{g}(\mathrm{X})$ is a complete subspace of X , then f and g have a unique point of coincidence in X. Moreover, if f and g are semi-compatible, then f and g have a unique common fixed point.

Proof: Let x_{0} be an arbitrary point in X. Since $f(X) \subset g(X)$, so we choose a point x_{1} in X such that $f\left(x_{0}\right)=$ $g\left(x_{1}\right)$.Continuing this process, having chosen x_{n} in X, we can find x_{n+1} in X such that $f\left(x_{n}\right)=g\left(x_{n+1}\right)$. Inductively, construct sequence $\left\{y_{n}\right\}$ in X such that
(2.1.2) $\mathrm{y}_{\mathrm{n}}=\mathrm{fx}_{\mathrm{n}}=\mathrm{gx}_{\mathrm{n}+1}, \mathrm{n}=0,1,2 \ldots$

Now, we prove that $\left\{y_{n}\right\}$ is a Cauchy sequence.Then, by (2.1.1), we have

$$
\begin{aligned}
\mathrm{M}_{\mathrm{G}}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{t}\right) & =\mathrm{M}_{\mathrm{G}}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{fx}_{\mathrm{n}+1}, \mathrm{fx}_{\mathrm{n}+1}, \mathrm{t}\right) \\
& \geq \emptyset\left(\mathrm{M}_{\mathrm{G}}\left(\mathrm{gx}_{\mathrm{n}}, \mathrm{gx}_{\mathrm{n}+1}, \mathrm{gx}_{\mathrm{n}+1}, \mathrm{t}\right)\right)=\emptyset\left(\mathrm{M}_{\mathrm{G}}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{t}\right)\right)
\end{aligned}
$$

Then, by lemma 1.11, $\left\{y_{n}\right\}$ is a cauchy sequence.This implies that $\left\{g x_{n}\right\}$ is a cauchy sequence. Since $g(X)$ is complete, so there exists $u \in g(X)$ such that
$\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=\mathrm{u}$.
Since $u \in g(X)$, so there exists $p \in X$ such that $g p=u$. Let $f p \neq u$. From (2.1.1)
$M_{G}\left(f x_{n}, f p, f p, t\right) \geq \emptyset\left(M_{G}\left(g x_{n}, g p, g p, t\right)\right)$. As $n \rightarrow \infty$, we get
$\mathrm{M}_{\mathrm{G}}(\mathrm{u}, \mathrm{fp}, \mathrm{fp}, \mathrm{t}) \geq \emptyset\left(\mathrm{M}_{\mathrm{G}}(\mathrm{gp}, \mathrm{gp}, \mathrm{gp}, \mathrm{t})\right)=\varnothing(1)=1$.
This implies that $\mathrm{M}_{\mathrm{G}}(\mathrm{u}, \mathrm{fp}, \mathrm{fp}, \mathrm{t})=1$, which is a contradiction, since $\mathrm{fp} \neq \mathrm{u}$.

Renu Chugh ${ }^{1}$, Zead Mustafa ${ }^{2}$, Madhu Aggarwal ${ }^{*}$ and Tamanna Kadian ${ }^{4}$ / Properties P and Q in Non-Archimedean G-Fuzzy Metric Spaces/ IJMA- 3(1), Jan.-2012, Page: 105-112

Thus, $f \mathrm{f}=\mathrm{gp}=\mathrm{u}$. Hence, p is a coincidence point of f and g .
Now, we will show that p is unique. Assume that there exists another point q in X such that $\mathrm{fq}=\mathrm{gq}$.If $\mathrm{fp} \neq \mathrm{fq}$, then
$M_{G}(f q, f p, f p, t) \geq \emptyset\left(M_{G}(g q, g p, g p, t)\right)=\emptyset\left(M_{G}(f q, f p, f p, t)\right)>M_{G}(f q, f p, f p, t)$.
By lemma 1.10, we obtain a contradiction. Hence $f p=f q$.
Moreover, if f and g are semi-compatible, then from proposition $1.16, f$ and g have a unique common fixed point.
If we take $\mathrm{g}=\mathrm{I}$ in Theorem 2.1, we obtain the following result:
Corollary: 2.2 Let $\left(X, M_{G}, *\right)$ be a complete non-Archimedean G-fuzzy metric space with $t * t \geq t$. Suppose f be a selfmap of X satisfying for all $x, y, z \in X$

$$
\mathrm{M}_{\mathrm{G}}(\mathrm{fx}, \mathrm{fy}, \mathrm{fz}, \mathrm{t}) \geq \emptyset\left(\mathrm{M}_{\mathrm{G}}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})\right)
$$

where $\mathrm{t}>0$ and $\emptyset \in \Phi$. Then f has a unique fixed point.
Theorem: 2.3 Let $\left(X, M_{G}, *\right)$ be a non-Archimedean G-fuzzy metric space with $t * t \geq t$. If the mappings $f, g: X \rightarrow X$ satisfy either

$$
\begin{equation*}
M_{G}(f x, f y, f z, t) \geq \emptyset\left(\min \left\{M_{G}(g x, f x, f x, t), M_{G}(g y, f y, f y, t), M_{G}(g z, f z, f z, t)\right\}\right) \tag{2.3.1}
\end{equation*}
$$

or
(2.3.2) $\quad M_{G}(f x, f y, f z, t) \geq \emptyset\left(\min \left\{M_{G}(g x, g x, f x, t), M_{G}(g y, g y, f y, t), M_{G}(g z, g z, f z, t)\right\}\right)$,
for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ where $\emptyset \in \Phi, \mathrm{t}>0$. If $\mathrm{f}(\mathrm{X}) \subset \mathrm{g}(\mathrm{X})$ and $\mathrm{g}(\mathrm{X})$ is a complete subspace of X , then f and g have a unique point of coincidence in X. Moreover, if f and g are semi-compatible, then f and g have a unique common fixed point.

Proof: Suppose that f and g satisfy (2.3.1). Let x_{0} be an arbitrary point in X. Since $f(X) \subset g(X)$, so we choose a point x_{1} in X such that $f\left(x_{0}\right)=g\left(x_{1}\right)$. Continuing this process, having chosen x_{n} in X, we can find x_{n+1} in X such that $f\left(x_{n}\right)=$ $g\left(x_{n+1}\right)$.Inductively, construct sequence $\left\{y_{n}\right\}$ in X such that
(2.3.3) $\mathrm{y}_{\mathrm{n}}=\mathrm{fx}_{\mathrm{n}}=\mathrm{gx}_{\mathrm{n}+1}, \mathrm{n}=0,1,2, \ldots$

Now, we prove that $\left\{y_{n}\right\}$ is a Cauchy sequence. Then, by (2.3.1), we have

$$
\begin{aligned}
& M_{G}\left(y_{n}, y_{n+1}, y_{n+1}, t\right)=M_{G}\left(f_{x_{n}}, \mathrm{fx}_{n+1}, \mathrm{fx}_{\mathrm{n}+1}, \mathrm{t}\right) \\
& \geq \emptyset\left(\min \left\{M_{G}\left(\mathrm{gx}_{\mathrm{n}}, \mathrm{fx}_{\mathrm{n}}, f \mathrm{fx}_{\mathrm{n}}, \mathrm{t}\right), \mathrm{M}_{\mathrm{G}}\left(\mathrm{gx}_{\mathrm{n}+1}, \mathrm{fx}_{\mathrm{n}+1}, \mathrm{fx}_{\mathrm{n}+1}, \mathrm{t}\right), \mathrm{M}_{\mathrm{G}}\left(\mathrm{gx}_{\mathrm{n}+1}, \mathrm{fx}_{\mathrm{n}+1}, \mathrm{fx}_{\mathrm{n}+1}, \mathrm{t}\right)\right\}\right) \\
& =\emptyset\left(\min \left\{M_{G}\left(y_{n-1}, y_{n}, y_{n}, t\right), M_{G}\left(y_{n}, y_{n+1}, y_{n+1}, t\right), M_{G}\left(y_{n}, y_{n+1}, y_{n+1}, t\right)\right\}\right) \text {. }
\end{aligned}
$$

Thus, we obtain
$\mathrm{M}_{\mathrm{G}}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{t}\right) \geq \emptyset\left(\min \left\{\mathrm{M}_{\mathrm{G}}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{t}\right), \mathrm{M}_{\mathrm{G}}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{t}\right)\right\}\right)$.
Without loss of generality assume $y_{n} \neq y_{n+1}$ for each n. (Since, if there exists an n such that $y_{n}=y_{n+1}$, then $y_{n}=f x_{n}=$ $g x_{n+1}=f x_{n+1}=g x_{n+2}$, implies that, $g x_{n+1}=\mathrm{fx}_{\mathrm{n}+1}$.

Then, f and g have a coincidence point.) Therefore, if in the above inequality
$M_{G}\left(y_{n}, y_{n+1}, y_{n+1}, t\right) \geq \emptyset\left(M_{G}\left(y_{n}, y_{n+1}, y_{n+1}, t\right)\right)>M_{G}\left(y_{n}, y_{n+1}, y_{n+1}, t\right)$.
By lemma 1.10, which is a contradiction. Hence,

$$
M_{G}\left(y_{n}, y_{n+1}, y_{n+1}, t\right) \geq \emptyset\left(M_{G}\left(y_{n-1}, y_{n}, y_{n}, t\right)\right) .
$$

Thus, by lemma $1.11,\left\{y_{n}\right\}$ is a cauchy sequence, which implies that $\left\{g x_{n}\right\}$ is a cauchy sequence. Since $g(X)$ is complete, so there exists $u \in g(X)$ such that

Renu Chugh ${ }^{1}$, Zead Mustafa ${ }^{2}$, Madhu Aggarwal ${ }^{\beta^{*}}$ and Tamanna Kadian ${ }^{4}$ / Properties P and Q in Non-Archimedean G-Fuzzy Metric

 Spaces/ IJMA- 3(1), Jan.-2012, Page: 105-112$\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=\mathrm{u}$.
Since $u \in g(X)$, so there exists $p \in X$ such that $g p=u$. Let $f p \neq u$. From (2.3.1)
$M_{G}\left(f x_{n}, f p, f p, t\right) \geq \emptyset\left(\min \left\{M_{G}\left(g x_{n}, f x_{n}, f x_{n}, t\right), M_{G}(g p, f p, f p, t), M_{G}(g p, f p, f p, t)\right\}\right)$.
As $n \rightarrow \infty$, we get $M_{G}(u, f p, f p, t) \geq \emptyset\left(\min \left\{M_{G}(u, u, u, t), M_{G}(u, f p, f p, t)\right\}\right)$

$$
\geq \emptyset\left(\min \left\{1, \mathrm{M}_{\mathrm{G}}(\mathrm{u}, \mathrm{fp}, \mathrm{fp}, \mathrm{t})\right\}\right)
$$

Now, if $\mathrm{M}_{\mathrm{G}}(\mathrm{u}, \mathrm{fp}, \mathrm{fp}, \mathrm{t}) \geq \emptyset(1)=1$, this implies that $\mathrm{M}_{\mathrm{G}}(\mathrm{u}, \mathrm{fp}, \mathrm{fp}, \mathrm{t})=1$
which is a contradiction, since $\mathrm{fp} \neq \mathrm{u}$.
Hence $M_{G}(u, f p, f p, t) \geq \emptyset\left(M_{G}(u, f p, f p, t)\right)>M_{G}(u, f p, f p, t)$
By lemma 1.10, which is absurd. Hence, $f p=u$. Thus, $f p=g p=u$.
Hence, p is a coincidence point of f and g.
Now, we show that p is unique. Assume that there exists another point q in X such that $\mathrm{fq}=\mathrm{gq}$. If $\mathrm{fp} \neq \mathrm{fq}$, then
$\mathrm{M}_{\mathrm{G}}(\mathrm{fq}, \mathrm{fp}, \mathrm{fp}, \mathrm{t}) \geq \emptyset\left(\min \left\{\mathrm{M}_{\mathrm{G}}(\mathrm{gq}, \mathrm{fq}, \mathrm{fq}, \mathrm{t}), \mathrm{M}_{\mathrm{G}}(\mathrm{gp}, \mathrm{fp}, \mathrm{fp}, \mathrm{t}), \mathrm{M}_{\mathrm{G}}(\mathrm{gp}, \mathrm{fp}, \mathrm{fp}, \mathrm{t})\right\}\right)$
$\geq \emptyset\left(\min \left\{\mathrm{M}_{\mathrm{G}}(\mathrm{fq}, \mathrm{fq}, \mathrm{fq}, \mathrm{t}), \mathrm{M}_{\mathrm{G}}(\mathrm{fp}, \mathrm{fp}, \mathrm{fp}, \mathrm{t})\right\}\right) \geq \emptyset(1)=1$.
This implies that $\mathrm{M}_{\mathrm{G}}(\mathrm{fq}, \mathrm{fp}, \mathrm{fp}, \mathrm{t})=1$. By lemma 1.10 , which is a contradiction as $\mathrm{fp} \neq \mathrm{fq}$. Hence $\mathrm{fp}=\mathrm{fq}$.
Moreover, if f and g are semi-compatible, then from proposition 1.16, f and g have a unique common fixed point. The proof using (2.3.2) is similar.

If we take $\mathrm{g}=\mathrm{I}$ in Theorem 2.3, we obtain the following result as a generalization of Theorem 2.3 of Mustafa et. al.[13] to non-Archimedean G-fuuzzy metric spaces:

Corollary: 2.4 Let $\left(\mathrm{X}, \mathrm{M}_{\mathrm{G}}, *\right)$ be a complete non Archimedean G-fuzzy metric space with $\mathrm{t} * \mathrm{t} \geq \mathrm{t}$. If the mappings f : $X \rightarrow X$ satisfy for all $x, y, z \in X$ either
$M_{G}(f x, f y, f z, t) \geq \emptyset\left(\min \left\{M_{G}(x, f x, f x, t), M_{G}(y, f y, f y, t), M_{G}(z, f z, f z, t)\right\}\right)$
or
$M_{G}(f x, f y, f z, t) \geq \emptyset\left(\min \left\{M_{G}(x, x, f x, t), M_{G}(y, y, f y, t), M_{G}(z, z, f z, t)\right\}\right)$
where $\mathrm{t}>0$ and $\varnothing \in \Phi$. Then f has a unique fixed point.
Example: 2.5 Let $\left(\mathrm{X}, \mathrm{M}_{\mathrm{G}}, *\right)$ be a non-Archimedean G -fuzzy metric space defined in example (1.7). Define $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ as follows:

$$
\mathrm{fx}=\frac{x}{6} \quad \text { and } \mathrm{gx}=\frac{x}{3} . \text { and define } \emptyset:[0,1] \rightarrow[0,1] \text { as } \emptyset(\mathrm{t})=\sqrt{t} .
$$

Then all of the hypothesis of Theorems (2.1) holds. Also f and g satisfy condition (2.1.1) for all $x, y, z \in \mathbf{R}$ and 0 is the unique common fixed point of f and g.

3. PROPERTIES P AND Q:

In this section, we shall show that maps satisfying the conditions of Theorem 2.1, 2.3 and corollary $2.2,2.4$ possess Properties Q and P respectively.

Theorem: 3.1 Under the conditions of Theorem 2.1, f and g have Property Q .
Proof: From Theorem 2.1, $\mathrm{F}(\mathrm{f}) \cap \mathrm{F}(\mathrm{g}) \neq \emptyset$.Therefore, $\mathrm{F}\left(\mathrm{f}^{\mathrm{n}}\right) \cap \mathrm{F}\left(\mathrm{g}^{\mathrm{n}}\right) \neq \emptyset$ for each positive integer n . Let n be a fixed positive integer greater than 1 and suppose that
$u \in F\left(f^{n}\right) \cap F\left(g^{n}\right)$. We claim that $u \in F(f) \cap F(g)$.

Renu Chugh ${ }^{1}$, Zead Mustafa ${ }^{2}$, Madhu Aggarwal ${ }^{3 *}$ and Tamanna Kadian ${ }^{4}$ / Properties P and Q in Non-Archimedean G-Fuzzy Metric Spaces/ IJMA- 3(1), Jan.-2012, Page: 105-112

Let $\mathrm{u} \in \mathrm{F}\left(\mathrm{f}^{\mathrm{n}}\right) \cap \mathrm{F}\left(\mathrm{g}^{\mathrm{n}}\right)$. Then, for any positive integers $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{r}, l$, s satisfying $0 \leq \mathrm{i}, \mathrm{r}, \mathrm{j}, \mathrm{k}, l, \mathrm{~s} \leq \mathrm{n}$, we have
$M_{G}\left(f^{i} g^{j} u, f^{r} g^{l} u, f^{s} g^{k} u, t\right) \geq \emptyset\left(M_{G}\left(g\left(f^{i-1} g^{j} u\right), g\left(f^{-1} g^{l} u\right), g\left(f^{s-1} g^{k} u\right), t\right)\right)$

$$
\geq \emptyset\left(\mathrm{M}_{\mathrm{G}}\left(\mathrm{f}^{\mathrm{i}-1} \mathrm{~g}^{\mathrm{j}+1} \mathrm{u}, \mathrm{f}^{\mathrm{r}-1} \mathrm{~g}^{\mathrm{l}+1} \mathrm{u}, \mathrm{f}^{\mathrm{s}-1} \mathrm{~g}^{\mathrm{k}+1} \mathrm{u}, \mathrm{t}\right)\right)
$$

Define $\delta=\min _{0 \leq i, r, j, l, s, k \leq n} M_{G}\left(f^{i} g^{j} u, f^{r} g^{l} u, f^{s} g^{k} u, t\right)$ where $\mathrm{t}>0$.
Assume that $0 \leq \delta<1$, then it follows from (2.1.1) $\delta \geq \emptyset(\delta)>\delta$,
which is a contradiction and hence $\delta=1$.
In particular, $\mathrm{M}_{\mathrm{G}}(\mathrm{fu}, \mathrm{u}, \mathrm{u}, \mathrm{t})=1$ and $\mathrm{M}_{\mathrm{G}}(\mathrm{gu}, \mathrm{u}, \mathrm{u}, \mathrm{t})=1$ for each $\mathrm{t}>0$ and hence
$f u=g u=u$, implies that, $u \in F(f) \cap F(g)$. Hence f and g have Property Q.
Corollary: 3.2 Under the conditions of Corollary 2.2, f has Property P.
Theorem: 3.3 Under the conditions of Theorem 2.3, f and g have Property Q .
Proof: From Theorem 2.3, $\mathrm{F}(\mathrm{f}) \cap \mathrm{F}(\mathrm{g}) \neq \emptyset$.Therefore, $\mathrm{F}\left(\mathrm{f}^{\mathrm{n}}\right) \cap \mathrm{F}\left(\mathrm{g}^{\mathrm{n}}\right) \neq \emptyset$ for each positive integer n . Let n be a fixed positive integer greater than 1 and suppose that
$\mathrm{u} \in \mathrm{F}\left(\mathrm{f}^{\mathrm{n}}\right) \cap \mathrm{F}\left(\mathrm{g}^{\mathrm{n}}\right)$. We claim that $\mathrm{u} \in \mathrm{F}(\mathrm{f}) \cap \mathrm{F}(\mathrm{g})$.
Let $\mathrm{u} \in \mathrm{F}\left(\mathrm{f}^{\mathrm{n}}\right) \cap \mathrm{F}\left(\mathrm{g}^{\mathrm{n}}\right)$. Then, for any positive integers $\mathrm{i}, \mathrm{j}, \mathrm{r}, l, \mathrm{~s}, \mathrm{k}$ satisfying $0 \leq \mathrm{i}, \mathrm{r}, \mathrm{j}, l, \mathrm{~s}, \mathrm{k} \leq \mathrm{n}$, we have

$$
\begin{aligned}
& M_{G}\left(f^{i} g^{j} u, f^{r} g^{l} u, f^{f} g^{k} u, t\right) \geq \emptyset\left(\operatorname { m i n } _ { \{ } \left\{M_{G}\left(g\left(f^{i-1} g^{j} u\right), f\left(f^{i-1} g^{j} u\right), f\left(f^{i-1} g^{j} u\right), t\right), M_{G}\left(g\left(f^{-1} g^{l} u\right), f\left(f^{-1} g^{l} u\right), f\left(f^{-1} g^{l} u\right), t\right), M_{G}\left(g\left(f^{\rho-1} g^{k} u\right),\right.\right.\right. \\
& \left.\left.f\left(f^{s-1} g^{k} u\right), f\left(f^{s-1} g^{k} u\right), t\right)\right\} \\
& \geq \emptyset\left(\min \left\{M_{G}\left(f^{i-1} g^{j+1} u, f^{i} g^{j} u, f^{i} g^{j} u, t\right), M_{G}\left(f^{r-1} g^{l+1} u, f^{f} g^{l} u, f^{\mathrm{r}} g^{l} u, t\right), M_{G}\left(f^{s-1} g^{k+1} u, f^{s} g^{k} u, f^{f} g^{k} u, t\right)\right\} .\right.
\end{aligned}
$$

Define $\delta=\min _{0 \leq i, r, j, l, s, k \leq n} M_{G}\left(f^{i} g^{j} u, f^{r} g^{l} u, f^{s} g^{k} u, t\right)$ where $\mathrm{t}>0$.
Assume that $0 \leq \delta<1$, then it follows from (2.3.1) $\delta \geq \emptyset(\min \{\delta, \delta, \delta\})=\emptyset(\delta)>\delta$, which is a contradiction and hence $\delta=1$.

In particular, $\mathrm{M}_{\mathrm{G}}(\mathrm{fu}, \mathrm{u}, \mathrm{u}, \mathrm{t})=1$ and $\mathrm{M}_{\mathrm{G}}(\mathrm{gu}, \mathrm{u}, \mathrm{u}, \mathrm{t})=1$ for each $\mathrm{t}>0$ and hence
$\mathrm{fu}=\mathrm{gu}=\mathrm{u}$, implies that, $\mathrm{u} \in \mathrm{F}(\mathrm{f}) \cap \mathrm{F}(\mathrm{g})$. Hence f and g have Property Q .
Corollary: 3.4 Under the conditions of Corollary 2.4, f has Property P.

REFERENCES:

[1] Abbas, M. and Rhoades, B. E., Common fixed point results for noncommuting mappings without continuity in generalized metric spaces, Applied Mathematics and Computation, 215 (2009) 262-269.
[2] Chugh, R., On common fixed point theorem in fuzzy metric spaces, Bull. Cal. Math. Soc., 94,1(2002) 17-22.
[3] Chugh, R.,Kadian, T., Rani, A., Rhoades, B. E., Property P in G-metric spaces, Fixed Point Theory and Applications, Volume 2010, Article ID 401684, 12 pages doi:10.1155/2010/401684.
[4] George, A. and Veeramani, P., On some results of analysis for fuzzy metric spaces, Fuzzy sets and Systems, 90 (1997), 365-368.
[5] George, A. and Veeramani, P., On some results in fuzzy metric spaces, Fuzzy sets and Systems, 46(1992) 107-113.
[6] George, A. and Veeramani, P., On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64(1994)395-399.
[7] Grabiec, M., Fixed point in fuzzy metric spaces, Fuzzy Sets and Systems, 27(1988),385-389.
[8] Jeong, G. S. and Rhoades, B. E., Maps for which F (T) = F (T ${ }^{\mathrm{n}}$), Fixed point theory and application, vol. 6 (2004) 71-105.
[9] Jeong, G. S. and Rhoades, B. E., More maps for which F (T) = F (T^{n}), Demonstratio Mathematica, vol. XL, no. 3 (2007) 671-680.
[10] Kaleva, O. and Seikkla, S., On fuzzy metric spaces, Fuzzy sets and systems, 12(1984) 215-229.
[11] Kramosil, J. and Michalek, J., Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975) 326-334.
[12] Mihet, D., Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems 159 (2008) $739-744$.
[13] Mustafa, Z., Obiedat, H., Awawdeh, F., Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory and Applications, Volume 2008, Article ID 189870 (2008) 12pages.
[14] Mustafa, Z. and Sims, B., Some remarks concerning D-metric spaces, In Proceedings of the International Conference on Fixed Point Theory and Applications, Valencia (Spain) (2003) 189-198.
[15] Mustafa, Z., Sims, B., A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis, vol. 7, no. 2 (2006) 289-297.
[16] Rhoades, B. E. and Abbas, M., Maps satisfying generalized contractive condition of integral type for which F(T) = $\mathrm{F}\left(\mathrm{T}^{\mathrm{n}}\right)$, International Journal of Pure and Applied Mathematics, vol. 45, No. 2 (2008) 225-231.
[17] Singh, B. and Chauhan, M. S., Common fixed points of compatible maps in fuzzy metric spaces, Fuzzy Sets and Systems, 115(2000), 471-475.
[18] Zadeh, L. A., Fuzzy sets, Inform. and Control, 8 (1965), 338-353.

