International Journal of Mathematical Archive-3(1), 2012, Page: 105-112 Available online through <u>www.ijma.info</u> ISSN 2229 – 5046

PROPERTIES P AND Q IN NON-ARCHIMEDEAN G-FUZZY METRIC SPACES

Renu Chugh¹, Zead Mustafa², Madhu Aggarwal^{3*} and Tamanna Kadian⁴

^{1, 3, 4} Department of Mathematics, Maharshi Dayanand University, Rohtak-124001(INDIA) ²Department of Mathematics, The Hashemite University, P. O. 330127, Zarqa 13115 (Jordan)

E-mail: ¹chughrenu@yahoo.com, ²zmagablh@hu.edu.jo, ³madhumdur@gmail.com, ⁴tamannakadian@yahoo.co.in.

(Received on: 27-12-11; Accepted on: 14-01-12)

ABSTRACT

In this paper we introduce the concept of non-Archimedean G-fuzzy metric space and obtain some results for two semicompatible mappings in this newly defined space. Our results improve and generalize the results of Mustafa et. al. [13] and Abbas & Rhoades [1] in non-Archimedean G-fuzzy metric space. Moreover, we prove that these mappings satisfy Properties P and Q.

1991 Mathematics Subject Classification: Primary 47H10, Secondary 46B20.

Key Words: G-metric space, Non-Archimedean G-fuzzy metric space, Common fixed point, Property P and Property Q.

1. INTRODUCTION AND PRELIMINARIES:

In 1965, Zadeh [18] introduced the concept of Fuzzy set. Since that time a substantial literature has been developed on this subject. Several authors [2, 4, 7, 10] proved fixed point theorems for fuzzy metric space in different ways. In 1975, Kramosil and Michalek [11] introduced the fuzzy metric space by generalizing the concept of probabilistic metric space to fuzzy situtation. After that George and Veeramani[4-6] modified the concept of fuzzy metric. Grabice [7] proved fuzzy Banach contraction theorem on fuzzy metric space. Singh and Chauhan [17] proved some common fixed point theorems in fuzzy metric spaces in the sense of George and Veeramani. Recently, Dorel Mihet [12] introduced the concept of non-Archimedean fuzzy metric space and proved Banach Contraction theorem in this space. In 2006, Mustafa and Sims [15] introduced the concept of G-metric space by generalizing the concept of metric space. Then, based on the notion of generalized metric spaces, several authors have obtained some fixed point results for a self-mapping under various contractive conditions, (see[1,3,13]).

Motivated by the concepts of G-metric space, Non-Archimedean metric space and Fuzzy metric space, we introduce the concept of non-Archimedean G-fuzzy metric space and obtain two common fixed point theorems for two semicompatible mappings. Our results improve and generalize the results of Mustafa et. al.[13] and Abbas & Rhoades [1] in non-Archimedean G-fuzzy metric space. We also establish properties P and Q for these mappings. An interesting fact about maps satisfying properties P and Q is that they have no nontrivial periodic points. Some papers dealing with properties P and Q are ([8, 9, 16]).

We first give some definitions and results that will be needed in the sequel.

Definition: 1.1([15]) Let X be a nonempty set and $G : X \times X \times X \to R^+$ a function satisfying the following axioms: (G1) G(x, y, z) = 0 if x = y = z, (G2) 0 < G(x, x, y) for all x, y $\in X$ with $x \neq y$, (G3) $G(x, x, y) \leq G(x, y, z)$, for all x, y, $z \in X$, with $z \neq y$, (G4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$ (symmetry in all three variables), (G5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$, for all x, y, $z, a \in X$, (rectangle inequality).

Then the function G is called a G-metric on X, and the pair (X, G) is called a G-metric space.

Corresponding author: Madhu Aggarwal³, *E-mail: madhumdur@gmail.com

Definition: 1.2 ([15]) Let (X, G) be a G-metric space, let $\{x_n\}$ be a sequence of points of X. We say that $\{x_n\}$ is G-convergent to x if $\lim_{n \to \infty} G(x, x_n, x_m) = 0$; that is, for any $\mathcal{E} > 0$, there exists a k ϵ N such that $G(x, x_n, x_m) < \mathcal{E}$ for

all n, m \geq k (throughout this paper we mean by N the set of all natural numbers). We call x the limit of the sequence and write $x_n \rightarrow x$ or lim $x_n = x$.

Proposition: 1.3 ([15]) Let (X, G) be a G-metric space. Then the following are equivalent:

(1) { x_n } is G-convergent to x, (2) G(x_n, x_n, x) $\rightarrow 0$, as $n \rightarrow \infty$, (3) G(x_n, x, x) $\rightarrow 0$, as $n \rightarrow \infty$, (4) G(x_m, x_n, x) $\rightarrow 0$, as m, $n \rightarrow \infty$.

Example: 1.4 ([15]). Let (X, d) be a usual metric space, then (X,G_S) and (X,G_m) are G-metric spaces, where

$$G_{S}(x, y, z) = d(x, y) + d(y, z) + d(x, z)$$
, for all $x, y, z \in X$,

 $G_m(x, y, z) = max\{d(x, y), d(y, z), d(x, z)\}, \text{ for all } x, y, z \in X.$

Definition: 1.5 A binary operation $* : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is a continuous t-norm if it satisfies the following conditions:

- (a) * is associative and commutative;
- (b) * is continuous;
- (c) a * 1 = a for all $a \in [0, 1]$;
- (d) $a * b \le c * d$ whenever $a \le c$ and $b \le d$, for each a, b, c, $d \in [0, 1]$.

Now, we introduce the concept of Non-Archimedean G-fuzzy metric space (briefly as N. A. G-fuzzy metric space) as follows:

Definition: 1.6 A 3-tuple (X, M_G, *) is called a non-Archimedean G-fuzzy metric space if X is an arbitrary(non-empty) set, * is a continuous t-norm and M_G is a G-fuzzy set on $X^3 \times (0, \infty)$, satisfying the following conditions for each x, y, z, $a \in X$ and t, s > 0

 $\begin{array}{l} (M_G1) \ M_G(x,\,x,\,y,\,t) > 0 \ \text{with} \ x \neq y; \\ (M_G2) \ M_G(x,\,x,\,y,\,t) \geq M_G(x,\,y,\,z,\,t) > 0 \ \text{with} \ z \neq y; \\ (M_G3) \ M_G(x,\,y,\,z,\,t) = 1 \ \text{iff} \ x = y = z; \\ (M_G4) \ M_G(x,\,y,\,z,\,t) = M_G(p\{x,\,y,\,z\},\,t) \ (\text{symmetry}) \ \text{where p is a permutation function;} \\ (M_G5) \ M_G(x,\,a,\,a,\,t) * \ M_G(a,\,y,\,z,\,s) \leq M_G(x,\,y,\,z,\,\max\{t,\,s\}); \\ (M_G6) \ M_G(x,\,y,\,z,\,.) : (0,\,\infty) \to [0,\,1] \ \text{is continuous.} \end{array}$

Example: 1.7 Let X = R with G-metric on X defined by

G(x, y, z) = |x - y| + |y - z| + |z - x|.

Denote a * b = ab for all a, b \in [0, 1]. For all x, y, z \in X and t > 0, define M_G on $X^3 \times (0, \infty)$ as follows:

$$\mathbf{M}_{\mathbf{G}}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{t}) = \left(\frac{t}{t+1}\right)^{G(x, y, z)}$$

Then, (X, M_G, *) is a non -Archimedean G-fuzzy metric space.

Definition: 1.8 Let (X, M_G, *) be a non-Archimedean G-fuzzy metric space. Then,

- (1) A sequence $\{x_n\}$ in X is said to be convergent to x iff $M_G(x_m, x_n, x, t) \rightarrow 1$ as $n \rightarrow \infty$, for each t > 0.
- (2) A sequence {x_n} in X is said to be a cauchy sequence if for each 0 < ε < 1 and t > 0, there exists n₀ ∈ N such that M_G(x_m, x_n, x_l, t) > 1- ε for each 1, m, n ≥ n₀.
- (3) The G-fuzzy metric space is called complete if every cauchy sequence is convergent.

Following similar argument in G-metric space, the sequence $\{x_n\}$ in X also converges to x iff $M_G(x_n, x_n, x, t) \rightarrow 1$ as $n \rightarrow \infty$, for each t > 0 and it is Cauchy sequence if for each $0 < \varepsilon < 1$ and t > 0, there exists $n_0 \in N$ such that © 2012, JJMA. All Rights Reserved

 $M_G(x_m, x_n, x_n, t) > 1 - \varepsilon$ for each m, $n \ge n_0$.

Definition: 1.9 Denote by Φ the class of continuous functions \emptyset : $[0, 1] \rightarrow [0, 1]$ such that $\emptyset(t) > t$ for all $0 \le t < 1$ and $\emptyset(1) = 1$.

Lemma: 1.10 Let $(X, M_G, *)$ be a non-Archimedean G-fuzzy metric space. Then $M_G(x, y, z, t)$ is non-decreasing with respect to t for all x, y, z in X.

Throughout this paper, we assume that $\lim_{t\to\infty} M_G(x, y, z, t) = 1$ and that N is the set of all natural numbers.

Lemma: 1.11 Let $(X, M_G, *)$ be a non-Archimedean G-fuzzy metric space. Let $\{y_n\}$ be a sequence in X, where * is a continuous t-norm satisfying t * t \geq t for all t $\in [0, 1]$. If there exists t > 0 and $\emptyset \in \Phi$ such that

 $M_G(y_{n+1}, y_{n+2}, y_{n+2}, t) \ge \emptyset(M_G(y_n, y_{n+1}, y_{n+1}, t)), n \in N$, then $\{y_n\}$ is a Cauchy sequence in X.

Proof: If we define $r_n = M_G (y_{n+1}, y_{n+2}, y_{n+2}, t)$, then

 $(1.11.1) r_n \ge \emptyset(r_{n-1}) > r_{n-1} \ .$

So that the sequence $\{r_n\}$ is an increasing sequence of positive real numbers in [0, 1] and tends to a limit $r \le 1$. We claim that r = 1. If r < 1, on taking $n \to \infty$ in (1.11.1), we get $r \ge \emptyset(r) > r$, which is a contradiction. Hence r = 1.

Now, for any positive integer p, we have

 $M_G(y_n, y_{n+p}, y_{n+p}, t) \geq M_G(y_n, y_{n+1}, y_{n+1}, t) * \ldots * M_G(y_{n+p-1}, y_{n+p}, y_{n+p}, t).$

Taking the limit as $n \rightarrow \infty$, we get

 $\lim_{n\to\infty} M_G(y_n, y_{n+p}, y_{n+p}, t) = 1$. Hence, $\{y_n\}$ is a Cauchy sequence.

Now, we introduce the concept of weakly compatible maps and semi-compatible maps in non-Archimedean G-fuzzy metric space as follows:

Definition: 1.12 Let f and g be self maps on a non-Archimedean G-fuzzy metric space (X, M_G , *). Then the mappings are said to be weakly compatible if they commute at their coincidence point, that is, fx = gx implies that fgx = gfx.

Definition1.13. A pair (f, g) of self mappings of a non-Archimedean G-fuzzy metric space is said to be semicompatible if $\lim_{n\to\infty} fgx_n = gx$, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = x$, for some $x \in X$.

It follows that (f, g) is semi-compatible and fy = gy, then fgy = gfy.

Note that every pair of semi-compatible maps is weakly compatible but converse need not be true.

Example: 1.14 Let X =[0, 1] with G-metric on X defined by

$$G(x, y, z) = |x - y| + |y - z| + |z - x|.$$

Denote a * b = ab for all a, b \in [0, 1]. For all x, y, z \in X and t > 0, define M_G on X³ × (0, ∞) as follows:

$$M_{G}(x, y, z, t) = \left(\frac{t}{t+1}\right)^{G(x, y, z)}.$$

Then, (X, M_G, *) is a non -Archimedean G-fuzzy metric space. Define a self map on X as follows:

Sx =
$$\begin{cases} x & 0 \le x < \frac{1}{2} \\ 1 & x \ge \frac{1}{2} \end{cases}$$
 and let I be the identity map on X.

© 2012, IJMA. All Rights Reserved

If $x_n = \frac{1}{2} - \frac{1}{n}$. Then $\{Ix_n\} = x_n \rightarrow \frac{1}{2}$ and $\{Sx_n\} \rightarrow \frac{1}{2}$. Again $\{ISx_n\} \rightarrow \frac{1}{2} \neq S\left(\frac{1}{2}\right)$.

Thus (I, S) is not semi-compatible. But (I, S) is weakly compatible.

Definition: 1.15 ([1]) Let f and g be self maps on a set X and if w = fx = gx for some x in X, then x is called a coincidence point of f and g and w is called a point of coincidence of f and g.

Proposition: 1.16 Let f and g be semi-compatible self-maps of a set X. If f and g have a unique point of coincidence fx = gx = w, then w is the unique common fixed point of f and g.

Proof: Since fx = gx = w and f and g are semi-compatible, we have

fw = fgx = gfx = gw, implies that, fw = gw. Thus, w is a point of coincidence of f and g. But w is the only point of coincidence of f and g, so w = fw = gw. Moreover, if z = fz = gz, then z is a point of coincidence of f and g. Therefore, z = w, by uniqueness. Thus, w is the unique common fixed point of f and g.

Definition: 1.17 Let $(X, M_G, *)$ be a non-Archimedean G-fuzzy metric space and $T : X \to X$ be a mapping with fixed point set $F(T) \neq \emptyset$. Then T has property P if $F(T^n) = F(T)$, for each n N.

Definition: 1.18 Let $(X, M_G, *)$ be a non-Archimedean G-fuzzy metric space and T, $S : X \to X$ be two mappings with $F(S) \cap F(T) \neq \emptyset$. Then, S and T have property Q if $F(S^n) \cap F(T^n) = F(S) \cap F(T)$, for each n N.

2. FIXED POINT RESULTS:

Now, we generalize the results of Abbas & Rhoades [1] to non-Archimedean G-fuzzy metric space for semi-compatible maps as follows:

Theorem: 2.1 Let $(X, M_G, *)$ be a non-Archimedean G-fuzzy metric space with $t * t \ge t$. Suppose f and g be a selfmap of X satisfying for all x, y, $z \in X$

 $(2.1.1) \quad M_G(fx, fy, fz, t) \geq \emptyset(M_G(gx, gy, gz, t))$

where $\emptyset \in \Phi$, t > 0. If $f(X) \subset g(X)$ and g(X) is a complete subspace of X, then f and g have a unique point of coincidence in X. Moreover, if f and g are semi-compatible, then f and g have a unique common fixed point.

Proof: Let x_0 be an arbitrary point in X. Since $f(X) \subset g(X)$, so we choose a point x_1 in X such that $f(x_0) = g(x_1)$. Continuing this process, having chosen x_n in X, we can find x_{n+1} in X such that $f(x_n) = g(x_{n+1})$. Inductively, construct sequence $\{y_n\}$ in X such that

 $(2.1.2) \quad y_n = fx_n = gx_{n+1}, n = 0, 1, 2 \dots$

Now, we prove that $\{y_n\}$ is a Cauchy sequence. Then, by (2.1.1), we have

 $M_G(y_n, y_{n+1}, y_{n+1}, t) = M_G(fx_n, fx_{n+1}, fx_{n+1}, t)$

 $\geq \emptyset(M_{G}(gx_{n}, gx_{n+1}, gx_{n+1}, t)) = \emptyset(M_{G}(y_{n-1}, y_{n}, y_{n}, t)).$

Then, by lemma 1.11, $\{y_n\}$ is a cauchy sequence. This implies that $\{gx_n\}$ is a cauchy sequence. Since g(X) is complete, so there exists $u \in g(X)$ such that

 $\lim_{n\to\infty} y_n = \lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = u.$

Since $u \in g(X)$, so there exists $p \in X$ such that gp = u. Let $fp \neq u$. From (2.1.1)

 $M_G(fx_n, fp, fp, t) \ge \emptyset(M_G(gx_n, gp, gp, t)).$ As $n \to \infty$, we get

 $M_G(u, fp, fp, t) \ge \emptyset(M_G(gp, gp, gp, t)) = \emptyset(1) = 1.$

This implies that $M_G(u, fp, fp, t) = 1$, which is a contradiction, since $fp \neq u$.

Thus, fp = gp = u. Hence, p is a coincidence point of f and g.

Now, we will show that p is unique. Assume that there exists another point q in X such that $fq = gq.If fp \neq fq$, then

 $M_G(fq, fp, fp, t) \ge \emptyset(M_G(gq, gp, gp, t)) = \ \emptyset(M_G(fq, fp, fp, t)) > M_G(fq, fp, fp, t).$

By lemma 1.10, we obtain a contradiction. Hence fp = fq.

Moreover, if f and g are semi-compatible, then from proposition 1.16, f and g have a unique common fixed point.

If we take g = I in Theorem 2.1, we obtain the following result:

Corollary: 2.2 Let $(X, M_G, *)$ be a complete non-Archimedean G-fuzzy metric space with $t * t \ge t$. Suppose f be a self-map of X satisfying for all x, y, $z \in X$

 M_G (fx, fy, fz, t) $\geq \emptyset(M_G(x, y, z, t))$

where t > 0 and $\emptyset \in \Phi$. Then f has a unique fixed point.

Theorem: 2.3 Let $(X, M_G, *)$ be a non-Archimedean G-fuzzy metric space with $t * t \ge t$. If the mappings f, g : X \rightarrow X satisfy either

 $(2.3.1) \quad M_G(fx, fy, fz, t) \ge \emptyset(\min\{M_G(gx, fx, fx, t), M_G(gy, fy, fy, t), M_G(gz, fz, fz, t)\})$

or

 $(2.3.2) \qquad M_G(fx, fy, fz, t) \ge \emptyset(\min\{M_G(gx, gx, fx, t), M_G(gy, gy, fy, t), M_G(gz, gz, fz, t)\}),$

for all x, y, $z \in X$ where $\emptyset \in \Phi$, t > 0. If $f(X) \subset g(X)$ and g(X) is a complete subspace of X, then f and g have a unique point of coincidence in X. Moreover, if f and g are semi-compatible, then f and g have a unique common fixed point.

Proof: Suppose that f and g satisfy (2.3.1). Let x_0 be an arbitrary point in X. Since $f(X) \subset g(X)$, so we choose a point x_1 in X such that $f(x_0) = g(x_1)$. Continuing this process, having chosen x_n in X, we can find x_{n+1} in X such that $f(x_n) = g(x_{n+1})$. Inductively, construct sequence $\{y_n\}$ in X such that

 $(2.3.3) \quad y_n = fx_n = gx_{n+1}, n = 0, 1, 2, \dots$

Now, we prove that $\{y_n\}$ is a Cauchy sequence. Then, by (2.3.1), we have

$$\begin{split} M_G(y_n, y_{n+1}, y_{n+1}, t) &= M_G(fx_n, fx_{n+1}, fx_{n+1}, t) \\ &\geq \emptyset(\min \left\{ M_G(gx_n, fx_n, fx_n, t), M_G(gx_{n+1}, fx_{n+1}, t), M_G(gx_{n+1}, fx_{n+1}, t) \right\} \\ &= \emptyset(\min \left\{ M_G(y_{n-1}, y_n, y_n, t), M_G(y_n, y_{n+1}, y_{n+1}, t), M_G(y_n, y_{n+1}, y_{n+1}, t) \right\}). \end{split}$$

Thus, we obtain

 $M_{G}(y_{n}, y_{n+1}, y_{n+1}, t) \geq \emptyset(\min\{M_{G}(y_{n-1}, y_{n}, y_{n}, t), M_{G}(y_{n}, y_{n+1}, y_{n+1}, t)\}).$

Without loss of generality assume $y_n \neq y_{n+1}$ for each n. (Since, if there exists an n such that $y_n = y_{n+1}$, then $y_n = fx_n = gx_{n+1} = fx_{n+1} = gx_{n+2}$, implies that, $gx_{n+1} = fx_{n+1}$.

Then, f and g have a coincidence point.) Therefore, if in the above inequality

 $M_G(y_n, y_{n+1}, y_{n+1}, t) \geq \emptyset(M_G(y_n, y_{n+1}, y_{n+1}, t)) > M_G(y_n, y_{n+1}, y_{n+1}, t).$

By lemma 1.10, which is a contradiction. Hence,

 $M_G(y_n, y_{n+1}, y_{n+1}, t) \ge \emptyset(M_G(y_{n-1}, y_n, y_n, t)).$

Thus, by lemma 1.11, $\{y_n\}$ is a cauchy sequence, which implies that $\{gx_n\}$ is a cauchy sequence. Since g(X) is complete, so there exists $u \in g(X)$ such that

 $\lim_{n\to\infty} y_n = \lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = u.$

Since $u \in g(X)$, so there exists $p \in X$ such that gp = u. Let $fp \neq u$. From (2.3.1)

 $M_G(fx_n, fp, fp, t) \ge \emptyset(\min\{M_G(gx_n, fx_n, fx_n, t), M_G(gp, fp, fp, t), M_G(gp, fp, fp, t)\}).$

As $n \to \infty$, we get $M_G(u, fp, fp, t) \ge \emptyset(\min\{M_G(u, u, u, t), M_G(u, fp, fp, t)\})$ $\ge \emptyset(\min\{1, M_G(u, fp, fp, t)\})$

Now, if $M_G(u, fp, fp, t) \ge \emptyset(1) = 1$, this implies that $M_G(u, fp, fp, t) = 1$

which is a contradiction, since $fp \neq u$.

Hence $M_G(u, fp, fp, t) \ge \emptyset(M_G(u, fp, fp, t)) > M_G(u, fp, fp, t)$

By lemma 1.10, which is absurd. Hence, fp = u. Thus, fp = gp = u.

Hence, p is a coincidence point of f and g.

Now, we show that p is unique. Assume that there exists another point q in X such that fq = gq. If $fp \neq fq$, then

$$\begin{split} M_G(fq, fp, fp, t) &\geq \emptyset \left(\min\{M_G(gq, fq, fq, t), M_G(gp, fp, fp, t), M_G(gp, fp, fp, t)\} \right) \\ &\geq \emptyset \left(\min\{M_G(fq, fq, fq, t), M_G(fp, fp, fp, t)\} \right) \geq \emptyset(1) = 1. \end{split}$$

This implies that $M_G(fq, fp, fp, t) = 1$. By lemma 1.10, which is a contradiction as $fp \neq fq$. Hence fp = fq.

Moreover, if f and g are semi-compatible, then from proposition 1.16, f and g have a unique common fixed point. The proof using (2.3.2) is similar.

If we take g = I in Theorem 2.3, we obtain the following result as a generalization of Theorem 2.3 of Mustafa et. al.[13] to non-Archimedean G-fuuzzy metric spaces:

Corollary: 2.4 Let $(X, M_G, *)$ be a complete non Archimedean G-fuzzy metric space with $t * t \ge t$. If the mappings $f : X \rightarrow X$ satisfy for all $x, y, z \in X$ either

$$\begin{split} M_G(fx,\,fy,\,fz,\,t) &\geq \emptyset(\min\{M_G(x,\,fx,\,fx,\,t),\,M_G(y,\,fy,\,fy,\,t),\,M_G(z,\,fz,\,fz,\,t)\}) \\ \text{or} \end{split}$$

 $M_G(fx, fy, fz, t) \ge \emptyset(\min\{M_G(x, x, fx, t), M_G(y, y, fy, t), M_G(z, z, fz, t)\})$

where t > 0 and $\emptyset \in \Phi$. Then f has a unique fixed point.

Example: 2.5 Let $(X, M_G, *)$ be a non-Archimedean G-fuzzy metric space defined in example (1.7). Define f, g: $X \rightarrow X$ as follows:

fx = $\frac{x}{6}$ and gx = $\frac{x}{3}$. and define $\emptyset : [0,1] \to [0,1]$ as $\emptyset(t) = \sqrt{t}$.

Then all of the hypothesis of Theorems (2.1) holds. Also f and g satisfy condition (2.1.1) for all x, y, $z \in \mathbf{R}$ and 0 is the unique common fixed point of f and g.

3. PROPERTIES P AND Q:

In this section, we shall show that maps satisfying the conditions of Theorem 2.1, 2.3 and corollary 2.2, 2.4 possess Properties Q and P respectively.

Theorem: 3.1 Under the conditions of Theorem 2.1, f and g have Property Q.

Proof: From Theorem 2.1, $F(f) \cap F(g) \neq \emptyset$. Therefore, $F(f^n) \cap F(g^n) \neq \emptyset$ for each positive integer n. Let n be a fixed positive integer greater than 1 and suppose that

 $u \in F(f^n) \cap F(g^n)$. We claim that $u \in F(f) \cap F(g)$.

Let $u \in F(f^n) \cap F(g^n)$. Then, for any positive integers i, j,k, r, l, s satisfying $0 \le i, r, j, k, l, s \le n$, we have

$$\begin{split} M_G(f^ig^ju,\,f^rg^lu,\,f^sg^ku,\,t) &\geq \emptyset(M_G(g(f^{i-1}g^ju),\,g(f^{r-1}g^lu),\,g(f^{s-1}g^ku),\,t)) \\ &\geq \emptyset(M_G(f^{i-1}g^{j+1}u,\,f^{r-1}g^{l+1}u,\,f^{s-1}g^{k+1}u,\,t)). \end{split}$$

Define $\delta = \min_{0 \le i, r, j, l, s, k \le n} M_G(f^i g^j u, f^r g^l u, f^s g^k u, t)$ where t > 0.

Assume that $0 \le \delta < 1$, then it follows from (2.1.1) $\delta \ge \phi(\delta) > \delta$,

which is a contradiction and hence $\delta = 1$.

In particular, $M_G(fu, u, u, t) = 1$ and $M_G(gu, u, u, t) = 1$ for each t > 0 and hence

fu = gu = u, implies that, $u \in F(f) \cap F(g)$. Hence f and g have Property Q.

Corollary: 3.2 Under the conditions of Corollary 2.2, f has Property P.

Theorem: 3.3 Under the conditions of Theorem 2.3, f and g have Property Q.

Proof: From Theorem 2.3, $F(f) \cap F(g) \neq \emptyset$. Therefore, $F(f^n) \cap F(g^n) \neq \emptyset$ for each positive integer n. Let n be a fixed positive integer greater than 1 and suppose that

 $u \in F(f^n) \cap F(g^n)$. We claim that $u \in F(f) \cap F(g)$.

Let $u \in F(f^n) \cap F(g^n)$. Then, for any positive integers i, j, r, l, s, k satisfying $0 \le i, r, j, l, s, k \le n$, we have

$$\begin{split} M_G(f^ig^ju, f^rg^lu, f^sg^ku, t) &\geq \emptyset(\min\{M_G(g(f^{i-1}g^ju), f(f^{i-1}g^ju), f(f^{i-1}g^ju), t), M_G(g(f^{r-1}g^lu), f(f^{r-1}g^lu), f(f^{r-1}g^lu), t), M_G(g(f^{s-1}g^ku), t), M_G(g(f^{s-1}g^ku$$

 $\geq \emptyset(\min\{M_G(f^{i-1}g^{j+1}u, f^ig^ju, f)g^{j}u, t), \ M_G(f^{r-1}g^{l+1}u, f^rg^lu, f)g^{l}u, t), \ M_G(f^{s-1}g^{k+1}u, f^sg^ku, f)g^{k}u, t)\}.$

Define $\delta = \min_{0 \le i, r, i, l, s, k \le n} M_G(f^i g^j u, f^r g^l u, f^s g^k u, t)$ where t > 0.

Assume that $0 \le \delta < 1$, then it follows from (2.3.1) $\delta \ge \emptyset(\min \{\delta, \delta, \delta\}) = \emptyset(\delta) > \delta$, which is a contradiction and hence $\delta = 1$.

In particular, $M_G(fu, u, u, t) = 1$ and $M_G(gu, u, u, t) = 1$ for each t > 0 and hence

fu = gu = u, implies that, $u \in F(f) \cap F(g)$. Hence f and g have Property Q.

Corollary: 3.4 Under the conditions of Corollary 2.4, f has Property P.

REFERENCES:

[1] Abbas, M. and Rhoades, B. E., Common fixed point results for noncommuting mappings without continuity in generalized metric spaces, Applied Mathematics and Computation, 215 (2009) 262-269.

[2] Chugh, R., On common fixed point theorem in fuzzy metric spaces, Bull. Cal. Math. Soc., 94,1(2002) 17-22.

[3] Chugh, R.,Kadian, T., Rani, A., Rhoades, B. E., Property P in G-metric spaces, Fixed Point Theory and Applications, Volume 2010, Article ID 401684, 12 pages doi:10.1155/2010/401684.

[4] George, A. and Veeramani, P., On some results of analysis for fuzzy metric spaces, Fuzzy sets and Systems, 90 (1997), 365-368.

[5] George, A. and Veeramani, P., On some results in fuzzy metric spaces, Fuzzy sets and Systems, 46(1992) 107-113.

[6] George, A. and Veeramani, P., On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64(1994)395 - 399.

[7] Grabiec, M., Fixed point in fuzzy metric spaces, Fuzzy Sets and Systems, 27(1988),385-389.

© 2012, IJMA. All Rights Reserved

[8] Jeong, G. S. and Rhoades, B. E., Maps for which $F(T) = F(T^n)$, Fixed point theory and application, vol. 6 (2004) 71-105.

[9] Jeong, G. S. and Rhoades, B. E., More maps for which $F(T) = F(T^n)$, Demonstratio Mathematica, vol. XL, no. 3 (2007) 671-680.

[10] Kaleva, O. and Seikkla, S., On fuzzy metric spaces, Fuzzy sets and systems, 12(1984) 215-229.

[11] Kramosil, J. and Michalek, J., Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975) 326-334.

[12] Mihet, D., Fuzzy ψ -contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems 159 (2008) 739 – 744.

[13] Mustafa, Z., Obiedat, H., Awawdeh, F., Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory and Applications, Volume 2008, Article ID 189870 (2008) 12pages.

[14] Mustafa, Z. and Sims, B., Some remarks concerning D-metric spaces, In Proceedings of the International Conference on Fixed Point Theory and Applications, Valencia (Spain) (2003) 189-198.

[15] Mustafa, Z., Sims, B., A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis, vol. 7, no. 2 (2006) 289-297.

[16] Rhoades, B. E. and Abbas, M., Maps satisfying generalized contractive condition of integral type for which $F(T) = F(T^n)$, International Journal of Pure and Applied Mathematics, vol. 45, No. 2 (2008) 225-231.

[17] Singh, B. and Chauhan, M. S., Common fixed points of compatible maps in fuzzy metric spaces, Fuzzy Sets and Systems, 115(2000), 471-475.

[18] Zadeh, L. A., Fuzzy sets, Inform. and Control, 8 (1965), 338-353.
