ALEKSANDROV-URYSON G₈ COMPACTNESS CRITERION IN MAXIMAL CENTERED SYSTEMS

G. Vasuki*, E. Roja and M. K. Uma

Department of Mathematics, Sri Sarada College for Women, Salem - 636 016, Tamil Nadu, India E-mail: vasukigj@yahoo.in

(Received on: 19-12-11; Accepted on: 09-01-12)

ABSTRACT

In this paper the concepts of G_{δ} -Hausdorff space, G_{δ} -extremally disconnected spaces, G_{δ} - θ continuous mappings are introduced. In this connection, G_{δ} -Hausdorff extension of spaces and the Aleksandrov-Uryson $_{\delta}$ -compactness criterion are established.

Keywords: G_{δ} *Hausdorff space,* G_{δ} *extremally disconnected spaces,* $G_{\delta}\theta$ *continuous mappings.*

Mathematics Subject classification (2000): 54A05, 54A10, 54A20.

1. INTRODUCTION:

The method of centered systems was introduced and established by S. Illiadis and S. Fomin [1]. In this paper making use of G_{δ} -sets, we introduce the concept of G_{δ} -Hausdorff space, G_{δ} -extremally disconnected spaces, G_{δ} - θ -continuous mappings, and Aleksandrov-Uryson G_{δ} -compactness in the centered systems.

2. PRELIMINARIES:

Definition: 2.1 [3] A set A \subset X in a topological space (X, T) is called a G_δ-set if A = $\bigcap_{n=1}^{\infty} A_n$ where each $A_n \in T$. The

complement of $G_{\delta}\mbox{-set}$ is called a F_{σ} set.

Definition: 2.2 For any set A in (X, T), define the σ -closure of A denoted by σ -cl A, to be the intersection of all F_{σ} -sets containing A.

That is σ -cl A = $\bigcap \{ U: U \text{ is a } F_{\sigma}\text{-set and } U \supseteq A \}$

Definition: 2.3 For any set A in (X, T), define the σ -interior of A denoted by σ -int A, to be the union of all G_{δ} - sets contained in A.

That is σ -int $A = \bigcup \{U : U \text{ is a } G_{\delta} \text{ - set and } U \subseteq A\}$

Definition: 2.4 [2] A topological space is a Hausdorff space iff whenever x and y are distinct points of the space there exists disjoint neighbourhoods of x and y.

Definition: 2.5 [1] Let R be a Hausdorff space. A system $p = \{U_{\alpha}\}$ of open sets of R is called centered if any finite collection of sets of the system has a non-empty intersection. The system p is called a maximal centered system or briefly an end if it cannot be included in any larger centered system of open sts.

Definition: 2.6 [1] Let f be a mapping of a space X into a space Y with f(x) = y. The f is called θ -continuous at x if for every neighbourhood O_y of y there exists neighbourhood O_x of x such that $f(\overline{O_x}) \subset \overline{O_y}$. The mapping is called

 θ - continuous if it is θ -continuous at every point of X. A mapping that is one-to-one and θ -continuous in both directions is called a θ -homeomorphism.

G. Vasuki*, E. Roja and M. K. Uma/ ALEKSANDROV-URYSON G_δ COMPACTNESS CRITERION IN MAXIMAL CENTERED SYSTEMS/ IJMA- 3(1), Jan.-2012, Page: 24-30

It is clear that a continuous mapping is θ -continuous. An example of a θ -continuous mapping that is not continuous. Let I be the interval [0, 1] with the usual topology, and I' the same interval with the following topology: the neighbourhoods of every point $x \neq 0$ are the same as those in the half-open interval (0, 1], but the neighbourhoods of x = 0 are the sets of the form $[0, \varepsilon)$ \D, where D is the set of all points 1/n (n=1, 2, ...; $0 < \varepsilon < 1$). It is easy to see that the space obtained is not regular at 0. Let f be the identity mapping of [0,1] onto itself. It is easy to verify that this mapping of I onto I' is θ -continuous, we have also obtained a θ -homeomorphism that is not a homeomorphism. It is easyntial here that the space I' is not regular, since it is easy to show that if the image is regular, then a θ -continuous mapping is automatically continuous.

Remark: 2.1 The canonical open sets (sets of the form $I(\overline{U})$ where U is open) form a base.

3. THE SPACES OF MAXIMAL CENTERED SYSTEM:

Definition: 3.1 A topological space (X, T) is said to be G_{δ} -Hausdorff iff for any two distinct points $x_1, x_2 \in X$, there exist G_{δ} sets U and V with $x_1 \in U$ and $x_2 \in V$ such that $U \cap V = \phi$.

Notation: 3.1 G_{δ} -Hausdorff space is denoted by R.

Definition: 3.2 Let R be a G_{δ} -Hausdorff space. A system $p^* = \{S_{\alpha}\}$ of G_{δ} sets of R is called centered if any finite collection of sets of the system has a non-empty intersection. The system p^* is called a maximal centered system, or briefly, an end if it cannot be included in any larger centered system of G_{δ} sets.

The following are the properties of maximal centered systems:

1. If
$$S_i \in p^*$$
 (i = 1, 2 ... n) then $\bigcap_{i=1}^{n} S_i \in p^*$.

2. If $S \subset H$, $S \in p^*$ and H is G_{δ} - set then $H \in p^*$.

3. If H is G_{δ} - set, then $H \notin p^*$, iff there exists $S \in p^*$ such that $S \bigcap H$ is empty.

4. If $S_1 \cup S_2 = S_3 \in p^*$, S_1 and S_2 are G_{δ} - sets and $S_1 \cap S_2 = \phi$, then either $S_1 \in p^*$ or $S_2 \in p^*$.

5. If σ -cl (S) = R, then S $\in p^*$ for any end p^* .

Remark: 2.1 Every centered system of G_{δ} - sets can be extended in atleast one way to a maximal one.

4. MAXIMAL STRUCTURE IN θ (R):

Definition: 4.1 A set U in a topological space (X, T) is a G_{δ} - neighbourhood of a point x iff U contains a G_{δ} - set to which x belongs.

Definition: 4.2 A family α is a G_{δ} - cover of a G_{δ} - set B iff each member of B belongs to some member of α

Definition: 4.3 A topological space is G_{δ} -compact iff each G_{δ} - cover has a finite subcover.

Notation: 4.1 Let θ (R) denote the collection of all end belonging to a given space R. We introduce maximal structure θ (R) in the following way:

Let O_S be the set of all ends that contain S as an element, where S is a G_{δ} -set of R. Now O_S is to be a G_{δ} neighbourhood of each end contained in O_S . Thus to each G_{δ} - set $S \subset R$ there corresponds a G_{δ} - neighbourhood O_S in θ (R).

Proposition: 4.1 If S and T are two G_{δ} -sets, then (a) $O_{S \cup T} = O_S \bigcup O_T$ (b) $O_S = \theta$ (R) \ $O_{R \setminus \sigma - cl}$ (S)

Proof: (a) Let $p^* \in O_S$, i.e., $S \in p^*$. Then by property (2), $S \bigcup T \in p^*$,

ie., $p^* \in O_{S \cup T}$. Hence $O_S \bigcup O_T \subset O_{S \cup T}$. Now, let $p^* \in O_{S \cup T}$, ie., $S \bigcup T \in p^*$. If $p^* \notin O_S$, ie., $S \notin p^*$, then R\scalerclering cl (S) $\in p^*$ and hence, (R\scalerclering cl (S)) $\cap (S \bigcup T) \in p^*$. But (R \scalerclering cl (S)) $\cap (S \bigcup T) \subset T$. Hence $T \in p^*$, that is, $p^* \in O_T$. Thus $O_{S \cup T} \subset O_S \bigcup O_T$. Hence, $O_{S \cup T} = O_S \bigcup O_T$. © 2012, IJMA. All Rights Reserved 25

G. Vasuki*, E. Roja and M. K. Uma/ ALEKSANDROV-URYSON G&COMPACTNESS CRITERION IN MAXIMAL CENTERED SYSTEMS/ IJMA- 3(1), Jan.-2012, Page: 24-30

(b) put T = R\\sigma-cl (S) in (a) then we have $O_{S \cup R \setminus \sigma-cl(S)} = O_S \cup O_{R \setminus \sigma-cl(S)}$. By using, $O_{S \cup R \setminus \sigma-cl(S)} = \theta$ (R). We have $\theta(\mathbf{R}) = \mathbf{O}_{\mathbf{S}} \bigcup \mathbf{O}_{\mathbf{R} \setminus \sigma - \mathrm{cl}(\mathbf{S})}$ Hence $O_S = \theta(R) \setminus O_{R \setminus \sigma - cl(S)}$.

Notation: 4.2 $G_{\delta} F_{\sigma}$ denote a set which is both G_{δ} and F_{σ}

Definition: 4.4 A topological space (X, T) is said to be zero dimensional if X has a base of G_{δ} - neighbourhoods that are both G_{δ} and F_{σ} .

Definition: 4.6 A topological space is a G_{δ} - T_1 space if for given any two distinct points a and b of X, each has a G_{δ} neighbourhood not containing the other.

Proposition: 4.2 The maximal structure θ (R) described above is a G_{δ} - compact, G_{δ} - Hausdorff space and has a base of G_{δ} - neighbourhoods that are $G_{\delta} F_{\sigma}$.

Proof: Each set O_S is G₈- by definition and by equation (b), of Proposition 4.1 it is also F_{σ} . Thus θ (R) has a base of G₈ - neighbourhoods that are $G_{\delta} F_{\sigma}$, that is, θ (R) is zero dimensional. Since θ (R) has a base of G_{δ} -neighbourhoods that are $G_{\delta} F_{\sigma}$ and $G_{\delta} - T_1$ space it follows that it is G_{δ} -Hausdorff. Finally to prove that θ (R) is G_{δ} -compact. Suppose that there is a G_{δ} - covering of θ (R). By replacing each element of the covering by the union of the appropriate sets O_{S} , we

may assume that the covering has the from $\left(O_{s_{\alpha}} \right)$. If it is impossible to take a finite subcovering from this G_{δ} -

covering, then no set of the form $R \setminus \bigcup_{i=1}^{n} \sigma$ -cl $\left(S_{\alpha_{i}}\right)$ is empty. Since otherwise the G_{δ} - sets $O_{s_{\alpha_{i}}}$ would form a

finite G_{δ} -covering of θ (R). Hence the G_{δ} -sets R \ $\bigcup_{i=1}^{n} \sigma$ -cl $\left(S_{\alpha_{i}}\right)$ form a centered system. It may be extended to a

maximal system p*. This maximal system is not contained in any $O_{s_{a}}$, since it contains, in particular all the R\ σ -cl

 (s_{α}) . This contradiction proves that θ (R) is G_{δ}-compact. Thus with each G_{δ}-Hausdorff space R we have associated a G_{δ} -Hausdorff space θ (R)-the space of maximal centered systems of G_{δ} -sets.

5. G_δ-EXTREMALLY DISCONNECTED SPACES:

Definition: 5.1 A G_{δ} -Hausdorff space R is called G_{δ} -extremally disconnected if the σ -closure of any G_{δ} -set is G_{δ} . It is clear that a space is G_{δ} -extremally disconnected iff two disjoint G_{δ} - sets have disjoint σ -closures.

Proposition: 5.1 An everywhere G_{δ} -dense subset R' of G_{δ} -extremally disconnected space R is itself G_{δ} -extremally disconnected.

Proof: We prove this by contradiction. Suppose that there exists two G_{δ} -sets S_1 and S_2 in R' such that $S_1 \bigcap S_2 = \phi$. But σ -cl (S₁) \cap σ -cl (S₂) $\neq \phi$. Let T₁ and T₂ be any two G₈-sets in R such that T₁ \cap R' = S₁ and T₂ \cap R' = S₂. Then T₁ $\bigcap T_2 = \phi$ for if $T \subset T_1 \bigcap T_2$, then $T \bigcap R' \neq \phi$ and T is contained in $S_1 \bigcap S_2$ which is impossible. On the other hand, σ -cl (T₁) $\bigcap \sigma$ -cl (T₂) $\supset \sigma$ -cl (S₁) $\bigcap \sigma$ -cl (S₂) $\neq \phi$, contradicting the fact that R is G_{δ}-extremally disconnected. Hence the Lemma.

Proposition: 5.2 The space θ (R) of maximal centered systems of an arbitrary G₈-Hausdorff space R is G₈-extremally disconnected.

Proof: The proof of this theorem follows from the following equation: $O_{\bigcup S_{\alpha}} = \sigma - cl \left(\bigcup_{\alpha} O_{S_{\alpha}}\right)$. To verify this, if

G. Vasuki^{*}, E. Roja and M. K. Uma/ ALEKSANDROV-URYSON G_δCOMPACTNESS CRITERION IN MAXIMAL CENTERED SYSTEMS/ IJMA- 3(1), Jan.-2012, Page: 24-30

 $S \subset T$, it follows that $O_S \subset O_T$ and therefore $\bigcup_{\alpha} O_{S_{\alpha}} \subset O_{\bigcup_{\alpha}} S_{\alpha}$, and since $O_{\bigcup_{\alpha}} S_{\alpha}$ is F_{σ}, σ -cl $\left(\bigcup_{\alpha} O_{S_{\alpha}}\right) \subset O_{\bigcup_{\alpha}} S_{\alpha}$.

To prove the opposite inclusion, let q be an arbitrary element of $O_{\bigcup_{\alpha} S_{\alpha}}$, ie., $\bigcup_{\alpha} S_{\alpha} \in q$ and let S be an arbitrary G_{δ} -

set of q. Then $S \cap \bigcup_{\alpha} S_{\alpha} \neq \phi$, and hence there exists α such that $S \cap S_{\alpha} \neq \phi$. But then $O_S \cap O_{S_{\alpha}} \neq \phi$, and since $S \in q$

is arbitrary, This means that $q \in \sigma$ -cl $\left(\bigcup_{\alpha} O_{S_{\alpha}}\right)$. That is, $O_{\bigcup_{\alpha} S_{\alpha}} \subset \sigma$ -cl $\left(\bigcup_{\alpha} O_{S_{\alpha}}\right)$. Hence $O_{\bigcup_{\alpha} S_{\alpha}} = \sigma$ -cl

 $\left(\bigcup_{\alpha}O_{S_{\alpha}}\right)$. Hence the theorem.

Proposition: 5.3 The equation $R = \theta$ (R) holds iff R is a G_{δ}-compact, G_{δ}-extremally disconnected and G_{δ}-Hausdorff space.

Proof: The necessary condition follows from Proposition 5.1 and Proposition 5.2. To prove sufficiency, let R satisfy the condition of the theorem. Now, we construct a homeomorphism π of θ (R) onto R. Let $p = \{S_{\alpha}\} \in \theta(R)$. Then the system of F_{σ} -sets σ -cl $\{S_{\alpha}\}$ is centered and has a non-empty intersection. This intersection consists of a single point. For suppose that there are two distinct points r_1 and r_2 in $\bigcap \sigma$ -cl $\{S_{\alpha}\}$. Let O_{r_1} and O_{r_2} be two disjoint G_{δ} -

neighbourhoods of these points. Since $O_{r_1} \cap S_{\alpha} \neq \phi$ and $O_{r_2} \cap S_{\alpha} \neq \phi$ for all $S_{\alpha} \in p$, which gives that

 $O_{r_1} \in p$ and $O_{r_2} \in p$ which is impossible. Thus $\bigcap \sigma$ -cl (S_a) consists of a single point r. Let $\pi(p) = r$. We shall prove

that the mapping π is one-one and continuous. Since $\theta(R)$ is G_{δ} -compact, this will prove the theorem. The mapping is onto. For let $r \in R$ and let $\{V_{\alpha}\}$ be the system of all G_{δ} -neighbourhoods of r in R. This system can be extended uniquely to a maximal one. For, if $\{V_{\alpha}\}$ is contained in two different maximal systems then there would be two G_{δ} -sets S_1 and S_2 in R such that $S_1 \bigcap S_2 = \phi$, each of them would intersect every V_{α} , that is, $r \in \langle (\sigma - cl(S_1)) \bigcap (\sigma - cl(S_2)) \rangle$

but which contradicts the fact that R is extreamally G_{δ} -disconnected. Extending the system $\{V_{\alpha}\}$ to a maximal one, there is a point $p = \{S_{\alpha}\}$ in θ (R). But π (p) = r. Already we have proved that π is one-one. Hence from the definition of π it follows that π (O_S) = σ -cl (S).

Let O_r' be any G_{δ} -neighbourhood of r. Let S be a G_{δ} -neighbourhood such that σ -cl(S) $\subset O_r'$. Then O_S is a $G_{\delta} F_{\sigma}$ neighbourhood of p such that $\pi(O_S) \subset \sigma$ -cl (S) $\subset O_r'$. Thus π is continuous and hence the proof.

6. G_δ-θ CONTINUOUS MAPPINGS:

Definition: 6.1 Let f be a mapping of a space X into a space Y with f(x) = y. Then f is called G_{δ} - θ continuous at x iff for every G_{δ} -neighbourhood O_y of y there exists a G_{δ} -neighbourhood Ox of x such that f (σ -cl (O_x)) $\subset \sigma$ -cl (O_y). The mapping is called G_{δ} - θ continuous if it is G_{δ} - θ continuous at every point of X. A mapping that is one-one and G_{δ} - θ continuous in both directions is called a G_{δ} - θ homeomorphism. It is clear that a continuous mapping is G_{δ} - θ continuous.

The Realization of R in θ (R):

Consider a G_{δ} -Hausdorff space R and its space θ (R). Let $r \in R$ and x(r) denote the set of all ends p^* of R that contain all the G_{δ} -neighbourhoods of r. Now, the set x(r) is $G_{\delta} F_{\sigma}$ in θ (R). Since θ (R) is G_{δ} -compact, x(r) is G_{δ} -compact.

Now define a space \mathbb{R}^* constructed as follows: Its points are the F_{σ} -sets x (r) and its structure is defined as, let V be a G_{δ} -set of θ (R). Let V^{*} denote the set of all F_{σ} -sets x(r) that are completely contained in V. By definition, the set of all V^{*} is to form a base of \mathbb{R}^* .

Definition: 6.2 A topological space is G_{δ} -regular iff for each point x and each G_{δ} -neighbourhood U and x there is a F_{σ} -neighbourhood V of x such that $V \subset U$.

G. Vasuki*, E. Roja and M. K. Uma/ ALEKSANDROV-URYSON G_δCOMPACTNESS CRITERION IN MAXIMAL CENTERED SYSTEMS/ IJMA- 3(1), Jan.-2012, Page: 24-30

Definition: 6.3 If there exists a G_{δ} - θ homeomorphism of one space onto another, the two spaces are said to be G_{δ} - θ -homeomorphic.

Proposition: 6.1 R^* is G_{δ} - θ homeomorphic to R. If R is G_{δ} -regular, then R^* is homeomorphic to R.

Proof: Let π be the mapping of \mathbb{R}^* onto \mathbb{R} in which $\pi(x(r)) = r$. We shall show that π is the required G_{δ} - θ homeomorphism. To prove this the equivalence of the following inclusions are established.

Now, $x(r) \subset O_H = O_{\sigma\text{-int}(\sigma\text{-cl}(H))}$ and $r \in \sigma\text{-int}(\sigma\text{-cl}(H))$.

If If $r \in \sigma$ -int (σ -cl (H)), it is clear that $x(r) \subset O_H$. If $x(r) \subset O_{\sigma\text{-int}(\sigma\text{-cl}(H))}$, but $r \notin O_{\sigma\text{-int}(\sigma\text{-cl}(H))}$ then there would be end p^* in x(r) not containing $\sigma\text{-int}(\sigma\text{-cl}(H))$. But then $p^* \notin O_{\sigma\text{-int}(\sigma\text{-cl}(H))}$, which is impossible. From this equivalence it follows that π^{-1} is continuous. For let V^* be a G_{δ} -neighbourhood of the set x(r) in \mathbb{R}^* . Since x(r) is G_{δ} -compact, assume that V has the form O_H where H is G_{δ} -in R. Then $\pi^{-1}(\sigma\text{-cl}(H)) \subset O_H = V^*$. This proves the continuity of π^{-1} . To prove that π is G_{δ} - θ continuous, it is easy to see that if $x(r') \cap O_H \neq \phi$. Let H be an arbitrary G_{δ} -neighbourhood of r, and let $V = O_H$. Then $\pi(\sigma\text{-cl}(V^*)) \subset \sigma\text{-cl}(H)$, which proves that π is G_{δ} - θ continuous, since V^* is a G_{δ} -neighbourhood of x(r) in \mathbb{R}^* . Thus the spaces \mathbb{R}^* and \mathbb{R} are G_{δ} - θ homeomorphic. If \mathbb{R} is G_{δ} -regular, then π is G_{δ} - θ continuous and so π a homeomorphism. Hence the lemma.

The absolute $\omega^*(\mathbf{R})$ of a space **R**:

In $\omega^*(R)$ each point $r \in R$ is represented by ends containing all G_{δ} -neighbourhoods of R. It is obvious that $\omega^*(R) = \bigcup_{r \in P} x(r)$ where x(r) are the sets defined above. The subset $\omega^*(R)$ is mapped in a natural way onto R.

If $p \in \omega^*(R)$, then by definition $\pi_R(p) = r$, where r is the point whose G_{δ} -neighbourhoods all belong to p. π_R is called the natural mapping of $\omega^*(R)$ onto R.

Proposition: 6.2 $\omega^*(R)$ is everywhere G_{δ} -dense in $\theta(R)$.

Proof: Let p be an arbitrary end of R and O_U be a G_{δ} -neighbourhood of it. Then O_U contains the sets x(r) corresponding to any point $r \in U$ and so has a non-empty intersection with $\omega^*(R)$,

Proposition: 6.3 $\omega^*(R)$ is G_{δ}-extremally disconnected.

Proof: From Proposition 6.2 $\omega^*(R)$ is everywhere G_{δ} -dense in $\theta(R)$. And also from Proposition 5.1 and Proposition 5.2, $\omega^*(R)$ is G_{δ} -extremally disconnected.

Proposition: 6.4 $\omega^*(R)$ is G_{δ} - θ homeomorphic to R iff R is G_{δ} -extremally disconnected.

Proof: Let $\omega^*(R)$ be G_{δ} - θ homeomorphic to R and from Proposition 6.3, $\omega^*(R)$ is G_{δ} -extremally disconnected. Now to prove the sufficiency, let $\{U_{\alpha}(r)\}$ be the collection of all G_{δ} -sets in R containing r. The system $\{U_{\alpha}(r)\}$ can be extended to a maximal one in a unique way, for otherwise there exist G_{δ} -disjoint sets G_1 and G_2 meeting $U_{\alpha}(r)$, that is, $r \in (\sigma$ -cl $(G_1)) \cap (\sigma$ -cl $(G_2)) \neq \phi$, which is impossible for G_{δ} -extremally disconnected space. Thus, for each point $r \in R$ the set x(r) consists of a single point. But then the space R constructed above coincides with $\omega^*(R)$. Hence R is G_{δ} - θ homeomorphic to $\omega^*(R)$.

Proposition: 6.5 If R is a G_{δ} -regular, G_{δ} -extremally disconnected space, then R is a G_{δ} -homeomorphic to $\omega^*(R)$.

Proof: From Proposition 6.1, if R is a G_{δ} -regular, G_{δ} -extremally disconnected space, then it is G_{δ} -homeomorphic to R and hence to $\omega^*(R)$.

7. G_δ-HAUSDORFF EXTENSION OF SPACES:

Definition: 7.1A G_{δ} -Hausdorff space δ (R) is called an extension of G_{δ} -Hausdorff space R if R is contained in δ (R) as an everywhere G_{δ} -dense subset. R is called G_{δ} -H closed if every extension δ (R) coincides with R itself. An extension δ (R) is called G_{δ} -H-closed if δ (R) is G_{δ} -H-closed if δ (R) is G_{δ} -ompact.

G. Vasuki*, E. Roja and M. K. Uma/ ALEKSANDROV-URYSON G_δCOMPACTNESS CRITERION IN MAXIMAL CENTERED SYSTEMS/ IJMA- 3(1), Jan.-2012, Page: 24-30

Proposition: 7.1 The space R is G_{δ} -H-closed if and only if any centered system $\{U_{\alpha}\}$ of G_{δ} -sets of R satisfies the condition $\bigcap_{\alpha} \sigma - cl (U_{\alpha}) \neq \phi$.

Proof: Necessary: If $p = \{U_{\alpha}\}$ were a centered system with $\bigcap \sigma$ -cl $(U_{\alpha}) = \phi$, then we would construct the extension δ (R) which does not coincide with R itself. The points of σ (R) are those of R and a new point p. The G_{δ} -neighbourhoods of each point $r \in R$ in δ (R) are the same as in R. Any set U_{α} together with the point is a G_{δ} -neighbourhood of p. Because of the condition $\bigcap \sigma$ -cl $(U_{\alpha}) = \phi$, the space δ (R) is G_{δ} -Hausdorff and because $\{U_{\alpha}\}$ is a centered system, it contains R as an everywhere G_{δ} -dense subset, that is, R is not G_{δ} -H closed.

Sufficiency: Let R be a proper everywhere G_{δ} -dense subset of δ (R). Consider in δ (R) all the G_{δ} -neighbourhoods of some point $p \in \delta$ (R)/R. Let this be the system $\{U_{\alpha}\}$. This is centered, for otherwise p would be an isolated point in δ (R) and R would not be everywhere G_{δ} -dense in δ (R). Since δ (R) is a G_{δ} -Hausdorff, we have $\bigcap \sigma$ -cl (U_{α}) = p. But then the system $\{V_{\alpha} = U_{\alpha} \cap R\}$ is centered and $\bigcap \sigma$ -cl (V_{α}) = ϕ , which contradicts the condition of the lemma.

8. THE ALEKSANDROV – URYSON G₈-COMPACTNESS CRITERION:

Let R be a G_{δ} -Hausdorff space, $\omega^*(R)$ its absolute and π_R the natural mapping of $\omega^*(R)$ onto R. Also Let F be any subset of R^{*}. We associate it with a certain subset \tilde{F} of $\omega^*(R)$, defined by saying that the point $p \in \pi_R^{-1}(x)$, $x \in R$, belongs to \tilde{F} if $p \in O_U$ for every U satisfying the condition $x \in \sigma$ -int (σ -cl($U \cap F$). By construction, \tilde{F} is contained in the complete inverse image $\pi_R^{-1}(F)$ of F in $\omega^*(R)$. Then we call \tilde{F} the G_{δ} -reduced inverse image of F in $\omega(R)$.

Proposition: 8.1 (Alexsandrov-Uryson G₈-compactness) A G₈-Hausdorff space R is G₈-compact iff each of its F_{σ} -subsets is G₈-H closed.

Proof: Since in a G_{δ} -compact space every F_{σ} -subset is G_{δ} -compact and hence G_{δ} -H closed. The proof of sufficiency, based on the following properties of G_{δ} -reduced inverse images.

Property: I If $F_1 \subset F_2 \subset \ldots \subset F_n = R$, with F_1 non-empty, then $\bigcap_{i=1}^n \widetilde{F_i} \neq \phi$.

Let $x \in F_1^*$ and let $q' = \{G^1\}$ be a end of F_1 containing a centered system of G_{δ} -sets G^1 in F such that $x \in \sigma$ -int (σ -cl(G^1)). Assume that we have constructed systems $q^i = \{G^i\}$ of F_i such that q^i contains all the G_{δ} -sets $G^i \subset F_i$ for which $x \in \sigma$ -int (σ -cl(G^i)) and all the sets whose intersection with F_{i-1} is some G^{i-1} . By definition q^{i+1} is to consist of all sets $G^{i+1} \subset F_{i+1}$ for which $x \in \sigma$ -int (σ -cl(G^{i+1}) and of all sets whose intersection with F_i is some G^i . Clearly q^{i+1} is a centered system. Thus, for each i, we construct a centred system q^i . Let $p = \{H\}$ denote the end of R containing q^n . We have to prove that $p \in \bigcap_{i=1}^n \widetilde{F_i}$. It follows from the construction of p, that if we have $H \cap F_i \in q^i$ for some i and some

 G_{δ} -set H in R, then $H \in p$. We prove that $p \in F_i$. Let H be a G_{δ} -set of R such that $x \in \sigma$ -int (σ -cl ($H \cap F_i$)). Then H \sim

 $\bigcap F_i \in q^i$ and hence $H \in p$, that is, $p \in \widetilde{F_i}$ which proves property I.

Remark: 8.1 If O_H is a G_{δ} -neighbourhood of $\pi_R^{-1}(x) \bigcap \sigma$ -cl F, where H is the largest of the G_{δ} -sets H' with the property $O_H' = O_H$ then $x \in \sigma$ -int (σ -cl ($H \bigcap F$). For, otherwise R\ σ -cl (H) = V $\neq \phi$, with $x \in \sigma$ -cl ($V \bigcap F$). If some set G, G_{δ} in R, has the property $x \in \sigma$ -int (σ -cl ($G \bigcap F$)), then V $\bigcap G$ is non-empty. Hence we may consider system q consisting of all G_{δ} -neighbourhoods. But, on the otherhand, since $p \in O_V$ and $O_V \bigcap O_H = \phi$ since V $\bigcap H = \phi$, then $p \in \tilde{F} \subset O_H$, which is a contradiction. Hence $x \in \sigma$ -int (σ -cl ($H \bigcap F$).

G. Vasuki*, E. Roja and M. K. Uma/ ALEKSANDROV-URYSON G_δCOMPACTNESS CRITERION IN MAXIMAL CENTERED SYSTEMS/ IJMA- 3(1), Jan.-2012, Page: 24-30

We now prove that $\pi_R^{-1}(x) \cap \tilde{F}$ is G_{δ} -compact. Let q be the system of all the G_{δ} -sets G in R such that $x \in \sigma$ -int (σ -cl ($G \cap F$) and all the G_{δ} - neighbourhoods of x in r. It is clear that $\pi_R^{-1}(x) \cap \tilde{F}$, consists of all ends p^* containing q. If p' is an end belonging to $\pi_R^{-1}(x)$ and such that any of its G_{δ} -neighbourhoods O_H contains some point $p \in \pi_R^{-1}(x) \cap \tilde{F}$ then any $H \in p'$ meets an arbitrary element of q, and hence $p' \in \pi_R^{-1}(x) \cap \tilde{F}$, that is the latter set F_{σ} in $\pi_R^{-1}(x)$ and so is G_{δ} -compact.

Property: II If F is G_{δ} -H closed, then \widetilde{F} is G_{δ} -compact.

Proof: Let $\{H_{\alpha}\}$ be any G_{δ} -covering of \tilde{F} by G_{δ} -sets in \tilde{F} . They may be extended to G_{δ} -sets in $\omega^*(R)$. Assume that each of the extended sets has the form O_U , where U is a G_{δ} -set in R. Otherwise $\{H_{\alpha}\}$ may be replaced by a finer G_{δ} -covering for which this condition holds. So we may assume that $\{H_{\alpha}\}$ is a G_{δ} - covering of F by G_{δ} -sets in $\omega^*(R)$ of the form $O_{U_{\alpha}}$, where U_{α} is G_{δ} -in R. Let $x \in F$. Let H_{β}^x denote the union of a finite number of sets $H_{\alpha} G_{\delta}$ -covering the

 G_{δ} -compact set $\pi_{R}^{-1}(x)$. Clearly H_{β}^{x} has the form $O_{U_{\beta}}^{x}$, where U_{β}^{x} is G_{δ} -set in R and is maximal among the sets H

for which $O_H = O_{U_\beta}^x$. Hence it follows that the system σ -int { $U_\beta^x \cap F$ } is a G_δ -covering of F.

Since F is G_{δ} -H closed, choose a finite number of elements of this G_{δ} -covering such that $\bigcup_{i=1}^{n} \sigma$ -cl(σ -int(σ -cl($U_{\beta_{i}}^{x} \cap F$))) = F. We prove that $\bigcup_{i=1}^{n} O_{U_{\beta_{i}}}^{x} \supset \tilde{F}$. Since the union $\bigcup_{i=1}^{n} U_{\beta_{i}}^{x} = U$ has the property that $x \in \sigma$ -int(σ -cl($F \cap U$) for any x, then an arbitrary end $p^{*} \in \tilde{F}$ contains U, and hence belongs to some $O_{U_{\beta}}^{x}$. Thus, if

we choose only those H_{α} that make $O_{U_{\beta_i}}^x$ and take their intersections with \tilde{F} , we obtain the required finite covering. Hence property II.

Proposition: 8.2 The G_{δ} -Hausdorff space R is G_{δ} -compact iff every well-ordered decreasing sequence of non-empty F_{σ} -sets has a non-empty intersection.

Proof: Suppose that the conditions of the theorem are satisfied and that $\{F_{\alpha}\}$ is a well-ordered decreasing system of F_{σ} -sets of R. Then by property I, the G_{δ} -set \tilde{F} form a centered system in $\omega^*(R)$. Also since all the F_{α} are G_{δ} -H closed, by property II, \tilde{F} are G_{δ} -compact. Hence $\bigcap \tilde{F}_{\alpha} \neq \phi$. Let $y \in \tilde{F}_{\alpha}$. Then $\pi_R(y) \in F_{\alpha}$ for every α , that is $\bigcap_{\alpha} F_{\alpha} \neq \phi$.

REFERENCES:

- [1] S. Illiadis and S. Fomier, The method of centered systems in the theory of topological spaces.
- [2] James R. Munkres, Topology A first course.
- [3] Richard R. Goldberg, Methods of Real Analysis.
