International Journal of Mathematical Archive-3(1), 2012, Page: 1-7

SEMI GENERALIZED CLOSED SETS IN BIGENERALIZED TOPOLOGICAL SPACES

P. Priyadharsini*, G. K. Chandrika and A. Parvathi

Department of Mathematics, Avinashilingam University for women, Coimbatore, India

E-mail: dharsinimat@gmail.com, chandrikaprem@gmail.com, aparvathi.s@gmail.com

(Received on: 22-10-11; Accepted on: 07-11-11)

ABSTRACT

The aim of the paper is to introduce the concept of $\mu_{(m, n)}$ -semi generalized closed sets in bigeneralized topological spaces and study some of their properties. We introduce the notion of $sg_{(m, n)}$ -continuous functions on bigeneralized topological spaces and investigate some of their properties.

Mathematics subject classification: 54A05, 54A10.

Keywords: generalized topological spaces, bigeneralized topological spaces, $\mu_{(m, n)}$ -sg closed set, $sg_{(m, n)}$ -continuous function.

1. INTRODUCTION:

Generalized closed sets in a topological space were introduced by Levine [6] in order to extend many of the important properties of closed sets to a larger family. For instance, it was shown that compactness, normality and completeness in a uniform space are inherited by generalized closed subsets. The study of bitopological spaces was first initiated by Kelly [5] and thereafter a large number of papers have been done to generalize the topological concepts to bitopological spaces. Boonpok [1] introduced generalized closed sets and pairwise generalized closure operator in bitopological spaces. Boonpok [1] introduced the concept of bigeneralized topological spaces and studied (m, n)-closed sets and (m, n)-open sets in bigeneralized topological spaces.

In this paper, we introduce the notions of $\mu_{(m,n)}$ -sg closed sets and $sg_{(m,n)}$ -continuous functions in bigeneralized topological spaces and investigate some of their properties.

2. PRELIMINARIES:

We recall some basic definitions and notations. Let X be a set and denote P(X) the power set of X. A subset μ of P(X) is said to be a *generalized topology* (briefly GT) on X if $\phi \in \mu$ and an arbitrary union of elements of μ belongs to μ [2]. Let μ be a GT on X, the elements of μ are called μ -open sets and the complements of μ -open sets are called μ closed sets. If A \subseteq X, then interior of A, denoted by i_{μ} (A), is the union of all μ -open sets contained in A and closure of A, denoted by c_{μ} (A), is the intersection of all μ -closed sets containing A [3]. Let (X, μ_X) and (Y, μ_Y) be generalized topological spaces. A map f : (X, μ_X) \rightarrow (Y, μ_Y) is said to be *continuous* iff M $\in \mu_Y$ implies f⁻¹(M) $\in \mu_X$ [2].

Definition: 2.1 Let (X, μ) be a generalized topological space. A subset A of X is said to be μ -semi open if $A \subseteq c_{\mu}$

 $(i_{\mu}(A))$. The complement of a μ -semi open set is called μ -semi closed set. If $A \subseteq X$, then semi interior of A, denoted by $si_{\mu}(A)$, is the union of all μ -semi open sets contained in A and semi closure of A, denoted by $sc_{\mu}(A)$, is the intersection of all μ -semi closed sets containing A.

Proposition: 2.2 Let (X, μ) be a generalized topological space. For sub sets A and B of X, the following properties hold: (1) $sc_{\mu}(X - A) = X - si_{\mu}(A)$ and $si_{\mu}(X - A) = X - sc_{\mu}(A)$;

(2) If $(X - A) \in \mu$ then $sc_{\mu}(A) = A$ and if $A \in \mu$ then $si_{\mu}(A) = A$;

(3) $A \subseteq sc_{\mu}(A)$ and $si_{\mu}(A) \subseteq A$; (4) $sc_{\mu}(sc_{\mu}(A)) = sc_{\mu}(A)$ and $si_{\mu}(si_{\mu}(A)) = si_{\mu}(A)$.

Definition: 2.3 [1] Let X be a nonempty set and let μ_1 , μ_2 be generalized topologies on X. The triple (X, μ_1 , μ_2) is said to be a *bigeneralized topological space*.

Notation: 2.4 Let (X, μ_1, μ_2) be a bigeneralized topological space and A a subset of X. The closure of A and the interior of A with respect to μ_m are denoted by $c_{\mu_m}(A)$ and $i_{\mu_m}(A)$ respectively, for m = 1, 2. The semi closure of A and the semi interior of A with respect to μ_m are denoted by $sc_{\mu_m}(A)$ and $si_{\mu_m}(A)$ respectively, for m = 1, 2.

Definition: 2.5 [1] A subset A of a bigeneralized topological space (X, μ_1, μ_2) is called (m, n)-closed if $c_{\mu_m}(c_{\mu_n}(A)) = A$, where m, n = 1, 2 and m \neq n. The complement of a (m, n)-closed set is called (m, n)-open.

Proposition: 2.6 [1] Let (X, μ_1, μ_2) be a bigeneralized topological space and A a subset of X. Then A is (m, n)-closed if and only if A is both μ -closed in (X, μ_n) and (X, μ_n) .

Definition:2.7 [7] A subset A of a bigeneralized topological space (X, μ_1, μ_2) is said to be (m, n) generalized closed (briefly $\mu_{(m, n)}$ -closed) if $c_{\mu_n}(A) \subseteq U$ whenever $A \subseteq U$ and U is a μ_m -open set in X, where m, n =1, 2 and m \neq n. The complement of a $\mu_{(m, n)}$ -closed set is said to be (m, n) generalized open (briefly $\mu_{(m, n)}$ -open).

Definition: 2.8 Let (X, μ_X^1, μ_X^2) and (Y, μ_Y^1, μ_Y^2) be bigeneralized topological spaces. A mapping $f: (X, \mu_X^1, \mu_X^2) \rightarrow (Y, \mu_Y^1, \mu_Y^2)$ is said to be *pairwise continuous* if $f: (X, \mu_X^1) \rightarrow (Y, \mu_Y^1)$ and $f: (X, \mu_X^2) \rightarrow (Y, \mu_Y^2)$ are continuous.

Definition: 2.9 [7] Let (X, μ_X^1, μ_X^2) and (Y, μ_Y^1, μ_Y^2) be bigeneralized topological spaces. A function f: (X, μ_X^1, μ_X^2) $\rightarrow (Y, \mu_Y^1, \mu_Y^2)$ is said to be (m, n)-generalized continuous (briefly, $g_{(m,n)}$ -continuous) if f⁻¹ (F) is $\mu_{(m, n)}$ -closed in X for every μ_n -closed set F of Y, where m, n = 1, 2 and m \neq n.

Definition: 2.10 [7] Let (X, μ_X^1, μ_X^2) and (Y, μ_Y^1, μ_Y^2) be bigeneralized topological spaces. A function f: $(X, \mu_X^1, \mu_X^2) \rightarrow (Y, \mu_Y^1, \mu_Y^2)$ is said to be $g_{(m, n)}$ -irresolute if f⁻¹ (F) is $\mu_{(m, n)}$ -closed in X for every $\mu_{(m, n)}$ -closed set F in Y, where m, n = 1, 2 and m \neq n.

3. SEMI GENERALIZED CLOSED SETS:

In this section, we introduce $\mu_{(m,n)}$ -sg closed sets in bigeneralized topological spaces and study some of their properties.

Definition: 3.1 A subset A of a bigeneralized topological space (X, μ_1, μ_2) is said to be (m, n) semi generalized closed (briefly $\mu_{(m, n)}$ -sg closed) if $sc_{\mu_n}(A) \subseteq U$ whenever $A \subseteq U$ and U is a μ_m -semi open set in X, where m, n = 1, 2 and $m \neq n$. The complement of a $\mu_{(m, n)}$ -sg closed set is said to be a (m, n) semi generalized open set(briefly $\mu_{(m, n)}$ -sg open).

Proposition: 3.2 Every μ_n -closed set is $\mu_{(m, n)}$ -sg closed.

Proof: Let A be a μ_n -closed set and U be a μ_m -semi open set containing A. Then $c_{\mu_n}(A) = A \subseteq U$. Since $sc_{\mu_n}(A) \subseteq c_{\mu_n}(A)$, we get $sc_{\mu_n}(A) \subseteq U$. Therefore we get A is $\mu_{(m,n)}$ -sg closed.

Remark: 3.3 The concepts $\mu_{(m, n)}$ -closed and $\mu_{(m, n)}$ -sg closed are independent notions. This can be seen from the following examples:

Example: 3.4 $\mu_{(1,2)}$ -closed \nexists $\mu_{(1,2)}$ -sg closed. Let X = {a, b, c}. Consider the two topologies $\mu_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\mu_2 = \{\phi, \{c\}, \{b, c\}\}$ on X. Then {c} and {a, c} are $\mu_{(1,2)}$ -closed but not $\mu_{(1,2)}$ -sg closed.

Example: 3.5 $\mu_{(1,2)}$ -sg closed $\textcircled{P}_{(1,2)}$ -closed.

Let X = {a, b, c}. Consider the two topologies $\mu_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\mu_2 = \{\phi, \{c\}, \{b, c\}\}$ on X. Then ϕ is $\mu_{(1, 2)}$ -sg closed but not $\mu_{(1, 2)}$ -closed.

The family of all $\mu_{(m, n)}$ -sg closed (resp. $\mu_{(m, n)}$ -sg open) sets of (X, μ_1, μ_2) is denoted by $\mu_{(m, n)}$ -SGC(X) (resp. $\mu_{(m, n)}$ -SGO(X)), where m, n = 1, 2 and m \neq n.

Lemma: 3.6 Every (m, n)-closed set is $\mu_{(m, n)}$ -sg closed.

Proof: Let A be a (m, n)-closed set and U be any μ_m -semi open set containing A. Since A is (m, n)-closed, $c_{\mu_m}(c_{\mu_n}(A)) = A$. Therefore, $sc_{\mu_m}(sc_{\mu_n}(A)) \subseteq c_{\mu_m}(c_{\mu_n}(A)) = A \subseteq U$.

ie., $sc_{\mu_m}(sc_{\mu_n}(A)) \subseteq U$. Since $sc_{\mu_n}(A) \subseteq sc_{\mu_m}(sc_{\mu_n}(A)) \subseteq U$, we get $sc_{\mu_n}(A) \subseteq U$. Therefore A is $\mu_{(m, n)}$ -sg closed.

The converse is not true as can be seen from the following example:

Example: 3.7 Let X = {a, b, c}. Consider the two generalized topologies $\mu_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\mu_2 = \{\phi, \{c\}, \{b, c\}\}$ on X. Then {a} is $\mu_{(1,2)}$ -sg closed but is not (1, 2)-closed.

Remark: 3.8 The union of two $\mu_{(m,n)}$ -sg closed sets is not a $\mu_{(m,n)}$ -sg closed set in general as can be seen from the following example:

Example: 3.9 Let X = {a, b, c, d}. Consider the two generalized topologies $\mu_1 = \{\phi, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\mu_2 = \{\phi, \{a, b, d\}, \{b, c, d\}, X\}$ on X. Then {a} and {c} are $\mu_{(1, 2)}$ -sg closed but {a} \cup {c} = {a, c} is not $\mu_{(1, 2)}$ -sg closed.

Proposition: 3.10 Let (X, μ_1, μ_2) be a bigeneralized topological space. If A is $\mu_{(m, n)}$ -sg closed and F is (m, n)-closed, then $A \cap F$ is $\mu_{(m, n)}$ -sg closed, where m, n = 1, 2 and $m \neq n$.

Proof: Let $A \cap F \subseteq U$, where U is μ_m -semi open. Then $A \subseteq U \cup (X - F)$. Since F is (m, n)-closed, F is μ_m -closed by Proposition 2.6. Hence (X - F) is μ_m - open. Therefore, X - F is μ_m -semi open. Since A is $\mu_{(m, n)}$ -sg closed, $sc_{\mu_n}(A) \subseteq U \cup (X - F)$. Therefore, $sc_{\mu_n}(A) \cap F \subseteq U$. Since F is (m, n)-closed, again by Proposition 2.6, F is μ_n -closed.

Hence F is μ_n -semi closed. Therefore $sc_{\mu_n}(F) = F$. Hence $sc_{\mu_n}(A \cap F) \subseteq sc_{\mu_n}(A) \cap sc_{\mu_n}(F) = sc_{\mu_n}(A) \cap F \subseteq U$.

Therefore, $A \cap F$ is $\mu_{(m, n)}$ -sg closed.

Remark: 3.11 $\mu_{(1,2)}$ -SGC(X) is generally not equal to $\mu_{(2,1)}$ -SGC(X) as can be seen from the following example:

Example: 3.12 Let X = {a, b, c}. Consider the two generalized topologies $\mu_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\mu_2 = \{\phi, \{c\}, \{b, c\}\}$ on X. Then $\mu_{(1, 2)}$ -SGC(X) = $\{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\mu_{(2, 1)}$ -SGC(X) = $\{\phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$ and $\mu_{(2, 1)}$ -SGC(X) = $\{\phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$. Thus $\mu_{(1, 2)}$ -SGC(X) $\neq \mu_{(2, 1)}$ -SGC(X).

Proposition: 3.13 For each element x of a bigeneralized topological space (X, μ_1, μ_2) , $\{x\}$ is μ_m -semi closed or X- $\{x\}$ is $\mu_{(m, n)}$ -sg closed, where m, n =1, 2 and m \neq n.

Proof: Let $x \in X$ and the singleton $\{x\}$ be not μ_m -semi closed. Then $X - \{x\}$ is not μ_m -semi open. If $X \in \mu_m$, then X is the only μ_m -semi open set which contains $X - \{x\}$. Hence $X - \{x\}$ is $\mu_{(m, n)}$ -sg closed and if $X \notin \mu_m$, then $X - \{x\}$ is $\mu_{(m, n)}$ -sg closed as there is no μ_m -open set which contains $X - \{x\}$ and hence the condition is satisfied vacuously.

Proposition: 3.14 Let A be a subset of a bigeneralized topological space (X, μ_1, μ_2) . If A is $\mu_{(m, n)}$ -sg closed, then $sc_{\mu_n}(A)$ -A contains no non-empty μ_m -semi closed set, where m, n = 1, 2 and m \neq n.

Proof: Let A be a $\mu_{(m,n)}$ -sg closed set and $F \neq \phi$ be a μ_m -semi closed set such that $F \subseteq sc_{\mu_n}(A) - A$. Then

 $A \subset X - F$, X - F is μ_m -semi open and since $A \in \mu_{(m,n)}$ - SGC(X), we have $sc_{\mu_m}(A) \subseteq X - F$.

Thus $F \subseteq sc_{\mu_n}(A) \cap (X - sc_{\mu_n}(A)) = \phi$. Therefore, $F = \phi$. This is a contradiction. Thus $sc_{\mu_n}(A) - A$ contains no non-empty μ_m -semi closed set.

The converse is not true as can be seen from the following example:

Example: 3.15 Let X = {a, b, c, d}. Consider the two generalized topologies $\mu_1 = \{\phi, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\mu_2 = \{\phi, \{a, b, d\}, \{b, c, d\}, X\}$ on X. If A = {c, d} then $sc_{\mu_2}(A) - A = \{a, b\}$ does not contain any non-empty μ_1 -semi closed set. But A is not $\mu_{(1,2)}$ -sg closed.

Proposition: 3.16 Let μ_1 and μ_2 be generalized topologies on X. If A is a $\mu_{(m, n)}$ -sg closed set, then $sc_{\mu_m}(\{x\}) \cap A \neq \phi$ holds for each $x \in sc_{\mu_n}(A)$, where m, n =1, 2 and m \neq n.

Proof: Let $x \in sc_{\mu_n}(A)$. Suppose that $sc_{\mu_m}(\{x\}) \cap A = \phi$. Then $A \subseteq X - sc_{\mu_m}(\{x\})$. Since A is $\mu_{(m, n)}$ -sg closed and $X - sc_{\mu_m}(\{x\})$ is μ_m -semi open, we get $sc_{\mu_n}(A) \subseteq X - sc_{\mu_m}(\{x\})$. Hence, $sc_{\mu_n}(A) \cap sc_{\mu_m}(\{x\}) = \phi$. This is a contradiction.

Proposition: 3.17 If A is a $\mu_{(m, n)}$ -sg closed set of (X, μ_1, μ_2) such that $A \subseteq B \subseteq sc_{\mu_n}(A)$, then B is a $\mu_{(m, n)}$ -sg closed set, where m, n =1,2 and m \neq n.

Proof: Let A be a $\mu_{(m, n)}$ -sg closed set and A \subseteq B \subseteq $sc_{\mu_n}(A)$. Let B \subseteq U and U be μ_m -semi open. Then A \subseteq U. Since A is $\mu_{(m, n)}$ -sg closed, we have $sc_{\mu_n}(A) \subseteq U$. Since B $\subseteq sc_{\mu_n}(A)$, we get $sc_{\mu_n}(B) \subseteq sc_{\mu_n}(A) \subseteq U$. Hence B is $\mu_{(m, n)}$ -sg closed.

Proposition: 3.18 A subset A of a bigeneralized topological space (X, μ_1, μ_2) is $\mu_{(m, n)}$ -sg open iff for every subset F of X, F $\subseteq si_{\mu_n}$ (A) whenever F is μ_m -semi closed and F \subseteq A, where m, n = 1, 2 and m \neq n.

Proof: Suppose that A is $\mu_{(m, n)}$ -sg open. Let $F \subseteq A$ and F be μ_m -semi closed. Then $X - A \subseteq X - F$ and X - F is μ_m -semi open. Since X - A is $\mu_{(m, n)}$ -sg closed, $sc_{\mu_n}(X - A) \subseteq X - F$. Thus $X - si_{\mu_n}(A) \subseteq X - F$ and hence $F \subseteq si_{\mu_n}(A)$.

Conversely, suppose that $F \subseteq si_{\mu_n}(A)$ whenever F is μ_m -semi closed and $F \subseteq A$. Let $X - A \subseteq U$ and U be μ_m -semi open. Then $X - U \subseteq A$ and X - U is μ_m -semi closed. By assumption, we have $X - U \subseteq si_{\mu_n}(A)$. Then $X - si_{\mu_n}(A) \subseteq U$. Therefore, $sc_{\mu_n}(X - A) \subseteq U$. Thus, X - A is $\mu_{(m, n)}$ -sg closed. Hence A is $\mu_{(m, n)}$ -sg open.

Proposition: 3.19 Let A and B be subsets of a bigeneralized topological space (X, μ_1, μ_2) such that $si_{\mu_n}(A) \subseteq B \subseteq A$. If A is $\mu_{(m,n)}$ -sg open then B is $\mu_{(m,n)}$ -sg open, where m, n = 1, 2 and m \neq n.

Proof: Suppose that $si_{\mu_n}(A) \subseteq B \subseteq A$. Let F be μ_m -semi closed such that $F \subseteq B$. Then $F \subseteq A$ also. Since A is $\mu_{(m, n)}$ -sg open, $F \subseteq si_{\mu_n}(A)$ by Proposition 3.18. Since $si_{\mu_n}(A) \subseteq B$, we have $si_{\mu_n}(si_{\mu_n}(A)) \subseteq si_{\mu_n}(B)$. Consequently, $si_{\mu_n}(A) \subseteq si_{\mu_n}(B)$. Hence $F \subseteq si_{\mu_n}(B)$. Therefore B is $\mu_{(m, n)}$ -sg open by Proposition 3.18.

Proposition: 3.20 If a subset A of a bigeneralized topological space (X, μ_1, μ_2) is $\mu_{(m, n)}$ -sg closed, then $sc_{\mu_n}(A) - A$ is $\mu_{(m, n)}$ -sg open, where m, n =1, 2 and m \neq n.

Proof: Suppose that A is $\mu_{(m, n)}$ -sg closed. Let X – ($sc_{\mu_n}(A) - A$) \subseteq U and U be μ_m -semi open. Then X – U $\subseteq sc_{\mu_n}(A) - A$ and X–U is μ_m -semi closed. By Proposition 3.14, $sc_{\mu_n}(A) - A$ does not contain non-

empty μ_{m} -semi closed set. Consequently, X-U = ϕ , then U = X. Therefore, $sc_{\mu_{n}}(X - (sc_{\mu_{n}}(A) - A)) \subseteq U$. So we obtain X - $(sc_{\mu_{n}}(A) - A)$ is $\mu_{(m, n)}$ -sg closed. Hence, $sc_{\mu_{n}}(A) - A$ is $\mu_{(m, n)}$ -sg open.

Definition: 3.21 A subset A of a bigeneralized topological space (X, μ_1, μ_2) is said to be (m, n) generalized semi closed (briefly $\mu_{(m, n)}$ -gs closed) if $sc_{\mu_n}(A) \subseteq U$ whenever $A \subseteq U$ and U is a μ_m -open set in X, where m, n = 1, 2 and m \neq n. The complement of a $\mu_{(m, n)}$ -gs closed set is said to be a (m, n) generalized semi open set(briefly $\mu_{(m, n)}$ -gs open).

Proposition: 3.22 Every $\mu_{(m, n)}$ -sg closed set is $\mu_{(m, n)}$ -gs closed.

Proof: Let A be a $\mu_{(m, n)}$ -sg closed set and U be a μ_m -open set containing X, where m, n = 1, 2 and m \neq n. Since every open set is semi open, we get U is μ_m -semi open. Since A is $\mu_{(m, n)}$ -sg closed, $sc_{\mu_n}(A) \subseteq U$. Therefore A is

 $\mu_{(m, n)}$ -gs closed.

4. SEMI GENERALIZED CONTINUOUS FUNCTIONS:

In this section, we introduce $sg_{(m,n)}$ -continuous functions on bigeneralized topological spaces and study their properties.

Definition: 4.1 Let (X, μ_X^1, μ_X^2) and (Y, μ_Y^1, μ_Y^2) be bigeneralized topological spaces. A function $f: (X, \mu_X^1, \mu_X^2) \rightarrow (Y, \mu_Y^1, \mu_Y^2)$ is said to be (m,n)-semi generalized continuous (briefly, $sg_{(m,n)}$ -continuous) if $f^{-1}(F)$ is $\mu_{(m,n)}$ -sg closed in X for every μ_n -closed set F of Y, where m, n = 1, 2 and m \neq n.

Example: 4.2 Let X = {a, b, c} and Y = {p, q}. Consider the generalized topologies $\mu_X^1 = \{\phi, \{a\}, \{a, b\}, X\}, \mu_X^2 = \{\phi, \{c\}, \{b, c\}\}, \mu_Y^1 = \{\phi, \{p\}\} and \mu_Y^2 = \{\phi, \{q\}, Y\}.$

Let f: $(X, \mu_X^1, \mu_X^2) \rightarrow (Y, \mu_Y^1, \mu_Y^2)$ be a function defined by f(a) = f(b) = p, f(c) = q. Then f is $sg_{(m,n)}$ -continuous.

Remark: 4.3 The concepts $g_{(m,n)}$ -continuity and $sg_{(m,n)}$ -continuity are independent which is illustrated below:

Example: 4.4 $g_{(m,n)}$ -continuity \mathcal{P} $sg_{(m,n)}$ -continuity. Let X = {a, b, c} and Y = {p, q, r}. Consider the generalized topologies $\mu_X^1 = \{\phi, \{a\}, \{a, b\}, X\}, \mu_X^2 = \{\phi, \{c\}, \{b, c\}\}, \mu_Y^1 = \{\phi, \{r\}, \{q, r\}, Y\}$ and $\mu_Y^2 = \{\phi, \{r\}, \{p, r\}\}.$

Let f: (X, μ_X^1, μ_X^2) \rightarrow (Y, μ_Y^1, μ_Y^2) be a function defined by f(a) = p, f(b) = r, f(c) = q. Then f is $g_{(m,n)}$ -continuous but not $sg_{(m,n)}$ -continuous.

Example: 4.5 sg_(m, n)-continuity \Rightarrow g_(m, n)-continuity.

Let X = {a, b, c} and Y = {p, q}. Consider the generalized topologies $\mu_X^1 = \{\phi, \{a\}, \{a, b\}, X\},$ $\mu_X^2 = \{\phi, \{c\}, \{b, c\}\}, \ \mu_Y^1 = \{\phi, \{p\}\} \text{ and } \mu_Y^2 = \{\phi, \{q\}, Y\}.$ Let f: $(X, \mu_X^1, \mu_X^2) \rightarrow (Y, \ \mu_Y^1, \mu_Y^2)$ be a function defined by f (a) = f (b) = p, f(c) = q. Then f is sg_(m, n)-continuous but not g_(m, n)-continuous.

Theorem: 4.6 Every pairwise continuous function is $sg_{(m, n)}$ -continuous.

Proof: Let $f: (X, \mu_X^1, \mu_X^2) \rightarrow (Y, \mu_Y^1, \mu_Y^2)$ be pairwise continuous. Let F be a μ_n -closed set in Y. Then $f^{-1}(F)$ is μ_n -closed in X. Since every μ_n -closed is $\mu_{(m, n)}$ -sg closed, where m, n = 1, 2 and m \neq n, we have f is $sg_{(m, n)}$ -continuous.

Theorem: 4.7 The following are equivalent for a function f: $(X, \mu_X^1, \mu_X^2) \rightarrow (Y, \mu_Y^1, \mu_Y^2)$

(a) f is $sg_{(m, n)}$ -continuous

(b) $f^{-1}(A)$ is $\mu_{(m, n)}$ -sg open for each μ_n -open set A in Y, where m, n = 1, 2 and m \neq n.

Proof: (a) \Rightarrow (b)

Suppose that f is $sg_{(m,n)}$ -continuous. Let A be μ_n -open in Y. Then A^c is μ_n -closed in Y. Since f is $sg_{(m,n)}$ -continuous, we have $f^{-1}(A^c)$ is $\mu_{(m,n)}$ -sg closed in X, m, n = 1, 2 and m \neq n. Consequently, $f^{-1}(A)$ is $\mu_{(m,n)}$ -sg open in X.

 $(\mathbf{b}) \Longrightarrow (\mathbf{a})$

Suppose that $f^{-1}(A)$ is $\mu_{(m, n)}$ -sg open for each μ_n -open set A in Y, where m, n = 1, 2 and $m \neq n$. Let V be μ_n -closed in Y. Then V^c is μ_n -open in Y. Therefore, $f^{-1}(V^c)$ is $\mu_{(m, n)}$ -sg open in X, m, n = 1, 2 and $m \neq n$. Hence $f^{-1}(V)$ is $\mu_{(m, n)}$ -sg closed in X. Therefore f is sg_(m,n)-continuous.

Definition: 4.8 Let (X, μ_X^1, μ_X^2) and (Y, μ_Y^1, μ_Y^2) be bigeneralized topological spaces. A function $f: (X, \mu_X^1, \mu_X^2) \rightarrow (Y, \mu_Y^1, \mu_Y^2)$ is said to be $sg_{(m,n)}$ -irresolute if $f^{-1}(F)$ is $\mu_{(m, n)}$ -sg closed in X for every $\mu_{(m,n)}$ -sg closed set F in Y, where m, n = 1, 2 and m \neq n.

Example: 4.9 Let X = Y = {a, b, c}. Consider the generalized topologies $\mu_X^1 = \{\phi, \{a\}, \{a, b\}, X\}, \ \mu_X^2 = \{\phi, \{c\}, \{b, c\}\}, \ \mu_Y^1 = \{\phi, \{c\}, \{b, c\}\} \text{ and } \ \mu_Y^2 = \{\phi, \{a\}, \{a, b\}, Y\}.$ Let f: (X, $\mu_X^1, \mu_X^2 \rightarrow (Y, \ \mu_Y^1, \mu_Y^2)$ be a function defined by f(a) = c, f(b) = b, f(c) = a. Then f is sg_(m,n)-irresolute.

Definition: 4.10 Let (X, μ_X^1, μ_X^2) and (Y, μ_Y^1, μ_Y^2) be bigeneralized topological spaces. A function f: $(X, \mu_X^1, \mu_X^2) \rightarrow (Y, \mu_Y^1, \mu_Y^2)$ is said to be (m, n)-generalized semi continuous (briefly, gs $_{(m, n)}$ -continuous) if f⁻¹ (F) is $\mu_{(m, n)}$ -gs closed in X for every μ_n -closed set F of Y, where m, n = 1, 2 and m \neq n.

Concerning the composition of functions, we have the following result:

Proposition: 4.11 Let $f: (X, \mu_X^1, \mu_X^2) \to (Y, \mu_Y^1, \mu_Y^2)$ and $g: (Y, \mu_Y^1, \mu_Y^2) \to (Z, \mu_Z^1, \mu_Z^2)$ be two functions. Then (a) If f and g are $sg_{(m, n)}$ -irresolute then $g \circ f$ is $sg_{(m, n)}$ -irresolute

(b) If f is $sg_{(m, n)}$ -irresolute and g is $sg_{(m, n)}$ -continuous then g°f is $sg_{(m, n)}$ -continuous

(c) If f is $sg_{(m, n)}$ -irresolute and g is $sg_{(m, n)}$ -continuous then g f is $gs_{(m, n)}$ -continuous

(d) If f is $sg_{(m, n)}$ -continuous and g is pairwise continuous then g°f is $sg_{(m, n)}$ -continuous.

Proof: (a) Let $f: (X, \mu_X^1, \mu_X^2) \to (Y, \mu_Y^1, \mu_Y^2)$ and $g: (Y, \mu_Y^1, \mu_Y^2) \to (Z, \mu_Z^1, \mu_Z^2)$ be $sg_{(m, n)}$ irresolute. Let U be $\mu_{(m, n)}$ -sg closed in Z, m, n = 1, 2 and m \neq n. Since g is $sg_{(m, n)}$ -irresolute $g^{-1}(U)$ is $\mu_{(m, n)}$ -sg closed in Y. Since f is $sg_{(m,n)}$ -irresolute $f^{-1}(g^{-1}(U))$ is $\mu_{(m, n)}$ -sg closed in X. i.e., $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ is $\mu_{(m, n)}$ -sg closed in X. Therefore $g \circ f$ is $sg_{(m,n)}$ -irresolute.

(b) Let $f: (X, \mu_X^1, \mu_X^2) \to (Y, \mu_Y^1, \mu_Y^2)$ be $sg_{(m,n)}$ -irresolute and $g: (Y, \mu_Y^1, \mu_Y^2) \to (Z, \mu_Z^1, \mu_Z^2)$ be

 $sg_{(m,n)}$ -continuous. Let U be μ_n -closed in Z. Since g is $sg_{(m,n)}$ - continuous, $g^{-1}(U)$ is $\mu_{(m,n)}$ -sg closed in Y, m, n = 1, 2 and m \neq n. Since f is $sg_{(m,n)}$ -irresolute, f⁻¹(g⁻¹(U)) is $\mu_{(m,n)}$ -sg closed in X, m, n = 1, 2 and m \neq n. Therefore gof is $sg_{(m,n)}$ -continuous.

(c). Let $f: (X, \mu_X^1, \mu_X^2) \to (Y, \mu_Y^1, \mu_Y^2)$ be $sg_{(m, n)}$ -irresolute and $g: (Y, \mu_Y^1, \mu_Y^2) \to (Z, \mu_Z^1, \mu_Z^2)$ be $sg_{(m,n)}$ -continuous. Let U be μ n-closed in Z. Since g is $sg_{(m,n)}$ - continuous, $g^{-1}(U)$ is $\mu_{(m, n)}$ -sg closed in Y, m, n = 1, 2 and m \neq n. Since f is $sg_{(m,n)}$ -irresolute, $f^{-1}(g^{-1}(U))$ is $\mu_{(m, n)}$ -sg closed in X, m, n = 1, 2 and m \neq n. Since every $\mu_{(m, n)}$ -sg closed. Therefore g f is $g_{(m,n)}$ -continuous.

(d) Let $f: (X, \mu_X^1, \mu_X^2) \to (Y, \mu_Y^1, \mu_Y^2)$ be $sg_{(m,n)}$ - continuous and $g: (Y, \mu_Y^1, \mu_Y^2) \to (Z, \mu_Z^1, \mu_Z^2)$ be pairwise continuous. Let U be μ_n -closed in Z. Since g is pairwise continuous, $g^{-1}(U)$ is μ_n -closed in Y. Since f is $sg_{(m,n)}$ - continuous, $f^{-1}(g^{-1}(U))$ is $\mu_{(m,n)}$ -sg closed in X, m, n = 1, 2 and m \neq n. Therefore gof is $sg_{(m,n)}$ -continuous.

Remark: 4.12 The composition of two $sg_{(m, n)}$ -continuous functions need not be a $sg_{(m,n)}$ -continuous function as can be seen from the following example:

Example: 4.13 Let X = {a, b, c}, Y = {p, q} and Z = {u, v}. Consider the generalized topologies
$$\mu_X^1 = \{\phi, \{a\}, \{a, b\}, X\}, \mu_X^2 = \{\phi, \{c\}, \{b, c\}\}, \mu_Y^1 = \{\phi, \{p\}, Y\}, \mu_Y^2 = \{\phi, \{q\}\}, \mu_Z^1 = \{\phi, \{u\}, Z\} and \mu_Z^2 = \{\phi, \{v\}\}.$$

Let $f: (X, \mu_X^1, \mu_X^2) \to (Y, \mu_Y^1, \mu_Y^2)$ be a function defined by f(a) = f(b) = p and f(c) = q and $g: (Y, \mu_Y^1, \mu_Y^2) \to (Z, \mu_Z^1, \mu_Z^2)$ be a function defined by g(p) = v and g(q) = u. Then f and g are $sg_{(m,n)}$ -continuous. But $(g \circ f)^{-1}(u) = \{c\}$ is not $\mu_{(1,2)}$ -sg closed in X. Hence $g \circ f$ is not $sg_{(m,n)}$ -continuous.

REFERENCES:

[1] C. Boonpok, Weakly open functions on bigeneralized topological spaces, Int. J. of Math. Analysis, 15 (5) (2010) 891-897.

[2] A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351-357.

[3] A. Csaszar, Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (2005), 53-66.

[4] T. Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35(1985), 19–28.

[5] J. C. Kelly, Bitopological spaces, Pro. London Math. Soc., 3 (13) (1969), 71–79.

[6] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89-96.

[7] W. Dungthaisong, C. Boonpok and C. Viriyapong, Generalizeds closed sets in bigeneralized topological spaces, Int. J. of Math. Anal., 5 (24) (2011) 1175–1184.
