International Journal of Mathematical Archive-2(12), 2011, Page: 2578-2584 MA Available online through <u>www.ijma.info</u> ISSN 2229 – 5046

ON *b***-FRAMES IN BANACH SPACES**

M. I. Ismailov*

Baku State University and scientific worker of Institute of Mathematics and Mechanics of NAS Azerbaijan

E-mail: miqdadismailov1@rambler.ru

(Received on: 05-12-11; Accepted on: 21-12-11)

ABSTRACT

In the paper the generalization of the notion b-frame in Banach spaces is given by means of bilinear mappings and the notion of b-convergence and b-representation systems are introduced. The relations between these notions are established. The criterion when the system in Banach space forms b-frame, is given. The projection description of b-frame is constructed. Using a linear algorithm of expansion in b-frame, the extremality estimation for the coefficients of expansion in b-frame are established.

Key words: b -frame, expansion in b -frame, b -basis, b -completeness, CB -space.

2000 Mathematics Subject Classification: 41A17, 41A58, 42C15.

1. INTRODUCTION:

Note that, the notion of frame was determined by Duffin and Schaeffer [1] in Hilbert spaces in the following way. Let H be a separable Hilbert space the system of non-zero elements $\{\varphi_n\}_{n \in \mathbb{N}} \subset H$ be called a frame in H if there exist the constants $0 < A \le B < \infty$ such that for each $h \in H$ it is valid

$$A \|h\|_{H}^{2} \leq \sum_{n=1}^{\infty} |(h, \varphi_{n})|^{2} \leq B \|h\|_{H}^{2} , \qquad (1)$$

where $\|\cdot\|_{H}$ and (\cdot, \cdot) is a norm and scalar product in H. The constants A and B in (1) are called lower and upper bounds the number k = A/B is called a condition coefficient of the frame $\{\varphi_n\}_{n \in N}$. In the case, when k = 1 $\{\varphi_n\}_{n \in N}$ is an tight frame.

Development in theory of a frame in Hilbert spaces reduced to obtaining the analogues of the known results for Banach case. By theory of frame [2]-[5] and others have Banach extensions. The notion of X -frame generalizing the notion of p - frame studied in [5] was introduced in the paper [6]. In [7] gives the dual notion of a frame in Banach space, for which in [8] projection description is studied, a criterion on the existence of a linear expansion algorithm in frame is proved, the analogue of the extremality properties for the coefficients of expansion in frame is obtained. A frame is a special case of Bessel sequence introduced and studied [9] in Hilbert spaces. Banach analogies these results were investigated in the paper [10]-[14].

Cite the known result [15] from the quant theory of information for projection description of frame.

Theorem: 1.1 Let $\{\varphi_n\}_{n \in \mathbb{N}}$ be a tight frame in Hilbert space H. Then there exists a Hilbert space $H' \supset H$ and orthonormed basis $\{\psi_n\}_{n \in \mathbb{N}} \subset H'$ such that

$$\pi(\Psi_n) = \varphi_n, n \in N$$
,

where π is an operator of orthogonal projection from H' onto H.

Corresponding author: M. I. Ismailov, *E-mail: miqdadismailov1@rambler.ru

International Journal of Mathematical Archive- 2 (12), Dec. - 2011

The results [16], [17] and [18] in this direction are known. The frames in Hilbert spaces have close relations with Riesz bases. This matter was considered [19] and is in the following.

Theorem: 1.2 For the system $\{\varphi_n\}_{n \in \mathbb{N}}$ of Hilbert space H to be a frame with boundaries A and B, $A \leq B$, it is necessary and sufficient to find a Hilbert space H' containing H and the Riesz basis $\{\Psi_n\}_{n \in \mathbb{N}} \subset H'$ such that

$$A^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} |c_n|^2 \right)^{\frac{1}{2}} \le \left\| \sum_{n=1}^{\infty} c_n \psi_n \right\|_{H'} \le B^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} |c_n|^2 \right)^{\frac{1}{2}},$$
(2)

where $\pi(\psi_n) = \varphi_n$, $n \in N$, π is an operator of orthogonal projection from H' onto H.

The goal of our paper is extension of the results of [8] to $b_{\tilde{X}}$ -frames for *CB*-space \tilde{X} . In the paper, necessary and sufficient condition $b_{\tilde{X}}$ -frame of the system in Banach space is proved, projection description of $b_{\tilde{X}}$ -frame and criterion of the existence of linear expansion algorithm in $b_{\tilde{X}}$ -frame is given.

2. *b* -FRAME IN BANACH SPACE:

Let X be a Banach space with the norm $\left\|\cdot\right\|_X$. Denote by $\widetilde{X} = B$ -space of sequences $\widetilde{x} = \{x_n\}_{n \in \mathbb{N}}, x_n \in X$, with coordinate-wise linear operations. If the convergence in \widetilde{X} is coordinate-wise and the subspaces $\widetilde{E}_n = \{\widetilde{x} \in \widetilde{X} : \widetilde{x} = \{\delta_{in}x\}_{i \in \mathbb{N}}, x \in X\}$ form a basis, then \widetilde{X} called *CB*-space with a canonical basis.

Find the general form of a linear continuous functional in \widetilde{X} . Let \widetilde{t} be an arbitrary linear continuous functional in \widetilde{X} . Since for each $\widetilde{x} \in \widetilde{X}$ ($\widetilde{x} = \{x_n\}_{n \in N}$) the equality $\widetilde{x} = \sum_{n=1}^{\infty} \{\delta_{in} x_n\}_{i \in N}$ is valid, then $\widetilde{t}(\widetilde{x}) = \sum_{n=1}^{\infty} \widetilde{t}(\{\delta_{in} x_n\}_{i \in N})$. Consider the functional $t_n : X \to C$ such that $t_n(x) = \widetilde{t}(\{\delta_{in} x\}_{i \in N})$ for $\forall x \in X$. Then we get that $\widetilde{t}(\widetilde{x}) = \sum_{n=1}^{\infty} t_n(x_n)$. From the coordinate-wise convergence in \widetilde{X} it follows that $t_n \in X^*$. Consequently, identifying \widetilde{t} with $\{t_n\}_{n \in N} \subset X^*$, \widetilde{X}^* is isometrically isomorphic to some B-space of sequences of elements from X^* and

$$\widetilde{t}(\widetilde{x}) = \sum_{n=1}^{\infty} t_n(x_n)$$

is a general form of a linear continuous functional in \widetilde{X} , with the norm

$$\left\|\widetilde{t}\right\|_{\widetilde{X}^*} = \sup_{\|\widetilde{x}\|_{\widetilde{X}} \le 1} \left| \sum_{n=1}^{\infty} t_n(x_n) \right|.$$

Let *Y* and *Z* be *B*-spaces with appropriate norms $\|\|_{Y}$ and $\|\|_{Z}$. Consider a bilinear mapping $b(x, y) : X \times Y \to Z$ satisfying the condition:

$$\exists M \rangle 0: \quad \left\| xy \right\|_{Z} \le M \left\| x \right\|_{X} \left\| y \right\|_{Y} \quad \forall x \in X , \ y \in Y.$$

$$(3)$$

where xy = b(x, y), $x \in X$, $y \in Y$. Denote by $\hat{b}(f, y)$ the mapping $\hat{b}(f, y) : Z^* \times Y \to X^*$, determined by the relation $\hat{b}(f, y)(x) = f(xy) \quad \forall f \in Z^*$, $y \in Y$, $x \in X$. Further, for brevity we assume $\langle f, y \rangle = \hat{b}(f, y)$. It is easy to get from (3) the validity of the inequality

$$\|\langle f, y \rangle\|_{X^*} \le M \|f\|_{Z^*} \|y\|_Y \quad \forall f \in Z^*, \ y \in Y.$$
 (4)

© 2011, IJMA. All Rights Reserved

Let X be a CB-space with a canonical basis. Introduce the following denotation.

Definition: 2.1 The system $\{\varphi_n\}_{n\in\mathbb{N}} \subset Y$ is said to be $b_{\tilde{X}}$ -frame in Z if there exist the constants $A, B, 0 < A \le B < \infty$ such that for any $g \in Z^*$ the sequence $\{< g, \varphi_n >\}_{n\in\mathbb{N}}$ belongs to \tilde{X}^* and satisfies the inequality $A \|g\|_{Z^*} \le \|\{< g, \varphi_n >\}_{n\in\mathbb{N}}\|_{\tilde{X}^*} \le B \|g\|_{Z^*}.$ (5)

Definition: 2.2 The system $\{\varphi_n\}_{n\in\mathbb{N}} \subset Y$ is said to be a system of $b_{\tilde{X}}$ -representation if for any $z\in Z$ there exists $\{x_n\}_{n\in\mathbb{N}}\in Z$ such that $z=\sum_{n=1}^{\infty}x_n\varphi_n$ and a system of $b_{\tilde{X}}$ -convergence in Z if for any $\tilde{X}\in\tilde{X}$ ($\tilde{X}=\{x_n\}_{n\in\mathbb{N}}$) the \tilde{X} is \tilde{X} if \tilde{X} if \tilde{X} is $\tilde{$

series $\sum_{n=1}^{\infty} x_n \varphi_n$ converges in Z.

Cite the criteria when the system $\{\varphi_n\}_{n\in\mathbb{N}} \subset Y$ forms a $b_{\tilde{X}}$ -frame in Z.

Theorem: 2.3 The system $\{\varphi_n\}_{n\in\mathbb{N}} \subset Y$ forms a $b_{\tilde{X}}$ -frame in Z iff it is simultaneously both a system of $b_{\tilde{X}}$ -representation and a system of $b_{\tilde{X}}$ -convergence in Z.

Proof: Necessary: Let $\{\varphi_n\}_{n \in N}$ be a $b_{\tilde{X}}$ -frame in Z. Determine the operator S (of synthesis) in linearity on finite sequences $\{x_n\}$ by the equality $S(\{x_n\}) = \sum_{n \in N} x_n \varphi_n$. For an arbitrary $g \in Z^*$ we get

$$g(S(\{x_n\})) = g(\sum_n x_n \varphi_n) = \sum_n g(x_n \varphi_n) = \sum_n \langle g, \varphi_n \rangle (x_n) = \{\langle g, \varphi_n \rangle\}_{n \in \mathbb{N}} (\{x_n\})$$

Then

$$|g(S(\{x_n\}))| = |\{\langle g, \varphi_n \rangle\}_{n \in \mathbb{N}} (\{x_n\})| \le ||\{\langle g, \varphi_n \rangle\}_{n \in \mathbb{N}}||_{\tilde{X}^*} ||\{x_n\}||_{\tilde{X}} \le B ||g||_{Z^*} ||\{x_n\}||_{\tilde{X}}$$

So, $\|S(\{x_n\})\|_Z \leq B \|\{x_n\}\|_{\tilde{X}}$. Continuing S in continuity on all \tilde{X} , we get $S \in L(\tilde{X}, Z)$ and $S(\tilde{x}) = \sum_{n=1}^{\infty} x_n \varphi_n$, $\tilde{x} \in \tilde{X}$ ($\tilde{x} = \{x_n\}_{n \in N}$). Consequently, $\{\varphi_n\}_{n \in N}$ is a system of $b_{\tilde{X}}$ -convergence in Z. Consider an operator (of analysis) $R : Z^* \to \tilde{X}^*$ in the equality $R(g) = \{< g, \varphi_n >\}_{n \in N}, g \in Z^*$. It is clear that it holds the equality $R = S^*$. Since for any $g \in Z^*$ it holds $A \|g\|_{Z^*} \leq \|S^*(g)\|_{\tilde{X}^*}$, then S maps \tilde{X} on all the space Z (see [20], theorem 4.15). Thus, $\{\varphi_n\}_{n \in N}$ is a system of $b_{\tilde{X}}$ -representation in Z.

Sufficiency: Let $\{\varphi_n\}_{n\in N}$ be a system of $b_{\tilde{X}}$ -representation and $b_{\tilde{X}}$ -convergence in Z. Consider (linear) operators $S_n: \tilde{X} \to Z$ by the equalities $S_n(\tilde{X}) = \sum_{k=1}^n x_k \varphi_k$, $n \in N$. From the coordinate-wise convergence in \tilde{X} it follows, that $S_n \in L(\tilde{X}, Z)$. Since $\{\varphi_n\}_{n\in N}$ is a system of $b_{\tilde{X}}$ -convergence in Z, then $\exists \lim_{n\to\infty} S_n(\tilde{X})$ and by the theorem on uniform boundedness $\|S_n\|_{L(\tilde{X},Z)} \leq B$ for any $n \in N$. Consequently, the operator S determined by the equality $S(\tilde{X}) = \lim_{n\to\infty} S_n(\tilde{X})$ belongs to $L(\tilde{X}, Z)$. Further, consider an operator $R \in L(Z^*, \tilde{X}^*)$ such that $R = S^*$. Then for any $g \in Z^*$ and $\tilde{X} \in \tilde{X}$ we get

$$R(g)(\widetilde{x}) = S^*(g)(\widetilde{x}) = g(S(\widetilde{x})) = \sum_{n=1}^{\infty} g(x_n \varphi_n) = \{\langle g, \varphi_n \rangle\}_{n \in \mathbb{N}} (\widetilde{x}).$$

© 2011, IJMA. All Rights Reserved

Hence we get $R(g) = \{ \langle g, \varphi_n \rangle \}_{n \in \mathbb{N}}$. Since $\{ \varphi_n \}_{n \in \mathbb{N}}$ is a system of $b_{\tilde{X}}$ -reresentation then $S(\tilde{X}) = Z$. Therefore there exists A > 0: $A \|g\|_{Z^*} \leq \|S^*(g)\|_{\tilde{X}^*}$ (see. [20], theorem 4.15) and $\{\varphi_n\}_{n \in \mathbb{N}}$ forms a $b_{\tilde{X}}$ -frame in Z. The theorem is proved.

3. PROJECTIVE *b* **-FRAMES:**

Let X, Y and Z be B-spaces, a \tilde{X} be a CB-space with a canonical basis. Cite some notion from [14].

The system $\{\varphi_n\}_{n \in \mathbb{N}} \subset Y$ is said to be *b*-complete in *Z* if the aggregate $L_b(\{\varphi_n\}_{n \in \mathbb{N}})$ of all possible finite sums $\sum x_n \varphi_n$ is dense in *Z*.

The system $\{\varphi_n\}_{n\in\mathbb{N}} \subset Y$ is said to be $b_{\tilde{X}}$ -basis in Z if for $\forall z \in Z$ there exists a unique sequence $\{x_n\}_{n\in\mathbb{N}} \subset X$: $z = \sum_{n=1}^{\infty} x_n \varphi_n$, moreover $\tilde{X} = \{\tilde{x} = \{x_n\}_{n\in\mathbb{N}} \subset X : \sum_{n=1}^{\infty} x_n y_n \in Z\}.$

As the analogue of the projective frame (see [8]) introduce the following definition.

Definition: 3.1 *b*-frame $\{\varphi_n\}_{n \in \mathbb{N}} \subset Y$ in *Z* is said to be projective if:

(à) there exist B-space $\widetilde{Z} \supset Z$, including the space Z as a closed subspace; (b) there exist $\widetilde{b}_{\widetilde{X}}$ -basis $\{\psi_n\}_{n\in\mathbb{N}} \subset L(X,\widetilde{Z})$ in \widetilde{Z} , where $\widetilde{b}(x,\psi) \equiv (x,\psi) = \psi(x)$, $x \in X$, $\psi \in L(X,\widetilde{Z})$; (c) there exist a continuous projector $P \in L(\widetilde{Z},Z)$ from \widetilde{Z} onto Z such that $P(x,\psi_n) = x\varphi_n$ for $\forall x \in X$, $n \in \mathbb{N}$.

Definition: 3.2 The space of coefficients of zero-series of the system $\{\varphi_n\}_{n\in\mathbb{N}} \subset Y$ is called a closed in \widetilde{X} subspace $\widetilde{N} = \{\widetilde{x} = \{x_n\}_{n\in\mathbb{N}} \in \widetilde{X} : \sum_{n=1}^{\infty} x_n \varphi_n = 0\}.$ **Theorem:** 3.3 Let $\{\varphi_n\}_{n\in\mathbb{N}} \subset Y$ be a b frame in \widetilde{Z} . Then $\{\varphi_n\}_{n\in\mathbb{N}}$ is a projective b frame in \widetilde{Z} iff \widetilde{N} is

Theorem: 3.3 Let $\{\varphi_n\}_{n\in\mathbb{N}} \subset Y$ be a $b_{\tilde{X}}$ -frame in Z. Then $\{\varphi_n\}_{n\in\mathbb{N}}$ is a projective $b_{\tilde{X}}$ -frame in Z iff \tilde{N} is complemented in \tilde{X} .

Proof: Necessity: Let $\{\varphi_n\}_{n\in N}$ be a projective $b_{\tilde{X}}$ -frame in Z. By theorem 2.3 there exists a synthesis operator $S \in L(\tilde{X}, Z)$: $S(\tilde{x}) = \sum_{n=1}^{\infty} x_n \varphi_n$, $\tilde{x} \in \tilde{X}$ ($\tilde{x} = \{x_n\}_{n\in N}$). Let J be a natural isomorphism between \tilde{X} and \tilde{Z} , i.e. $J(\{x_n\}_{n\in N}) = \sum_{n=1}^{\infty} (x_n, \psi_n)$ and P be a projector from \tilde{Z} onto Z. Then the following equality holds: S = PJ. Denote by $\tilde{M} = J^{-1}(Z)$ a closed subset in \tilde{X} . Show that $\tilde{X} = \tilde{M} \oplus \tilde{N}$. Take an arbitrary \tilde{x} from \tilde{X} . Denote by $z = S(\tilde{x})$ and $\tilde{x}_{\tilde{M}} = J^{-1}(z)$. Consider $\tilde{x}_{\tilde{N}} = \tilde{x} - \tilde{x}_{\tilde{M}}$. Since $S(\tilde{x}_{\tilde{N}}) = S(\tilde{x}) - S(\tilde{x}_{\tilde{M}}) = 0$, then $\tilde{x}_{\tilde{N}} \in \tilde{N}$, consequently, $\tilde{x} = \tilde{x}_{\tilde{M}} + \tilde{x}_{\tilde{N}}$. Now let $\tilde{x} \in \tilde{M} \cap \tilde{N}$. From $\tilde{x} \in \tilde{N}$ it follows that $S(\tilde{x}) = 0$. Since $\tilde{x} \in \tilde{M}$, there exists z from Z, such that $J^{-1}(z) = \tilde{x}$. Consequently, $z = P(z) = PJ(\tilde{x}) = S(\tilde{x}) = 0$. Therefore $\tilde{x} = J^{-1}(z) = 0$. Thus, $\tilde{X} = \tilde{M} \oplus \tilde{N}$.

Sufficiency: Let \widetilde{N} be complemented in \widetilde{X} , i.e. $\widetilde{X} = \widetilde{M} \oplus \widetilde{N}$. Denote by \widetilde{Z} the direct sum of $Z \oplus \widetilde{N}$. Obviously, \widetilde{Z} is a *B*-space by the norm $\|\{z, \widetilde{x}\}\|_{\widetilde{Z}} = \max(\|z\|_{Z}, \|\widetilde{x}\|_{\widetilde{X}}), \{z, \widetilde{x}\} \in \widetilde{Z}$. Let *P* be a projection operator from \widetilde{Z} \otimes 2011, IJMA. All Rights Reserved 2581

onto Z, i.e. $P(\{z, \tilde{x}\}) = z$, and Q a projection operator from \tilde{X} onto \tilde{M} along \tilde{N} . Define the operator $J: \tilde{X} \to \tilde{Z}$ from the formula $J(\tilde{x}) = \{S(\tilde{x}), \tilde{x} - Q(\tilde{x})\}$. Obviously, $J \in L(\tilde{X}, \tilde{Z})$. Show that J is an isomorphism between \tilde{X} and \tilde{Z} . If $J(\tilde{x}) = 0$, so $S(\tilde{x}) = 0$ and $\tilde{x} = Q(\tilde{x})$. Then $\tilde{x} \in \tilde{M} \cap \tilde{N}$, therefore $\tilde{x} = 0$. Further, we have $J(\tilde{X}) = \tilde{Z}$. Indeed, if $\{z, \tilde{x}_0\} \in \tilde{Z}$, then there exists $\tilde{\xi} \in \tilde{X}$ such that $z = S(\tilde{\xi})$. Denote $\tilde{x} = \tilde{x}_0 + Q(\tilde{\xi})$. It is clear that $Q(\tilde{x}) = Q(\tilde{\xi})$. So, $\tilde{x}_0 = \tilde{x} - Q(\tilde{x})$ and $z = S(\tilde{\xi}) = S(Q(\tilde{\xi})) = S(Q(\tilde{x})) = S(\tilde{x})$,

i.e. $\{z, \tilde{x}_0\} = \{S(\tilde{x}), \tilde{x} - Q(\tilde{x})\}$. Using the Banach theorem on inverse operator, we get that J is an isomorphism. Since \tilde{X} is a CB-space with a canonical basis, the system $\{\psi_n\}_{n \in N} : J(\{\delta_{in}x\}_{i \in N}) = (x, \psi_n)$ forms $\tilde{b}_{\tilde{x}}$ -basis in \tilde{Z} . On the other hand for $\forall x \in X$, $n \in N$ it is valid $P(x, \psi_n) = x \phi_n$.

The theorem is proved.

4. LINEAR EXPANSION ALGORITHM IN $b_{\tilde{x}}$ -FRAME:

Let X, Y and Z be B-spaces, \widetilde{X} be a CB-space with a canonical basis.

Definition: 4.1 We say that it holds a linear expansion algorithm in $b_{\tilde{X}}$ -frame $\{\varphi_n\}_{n\in\mathbb{N}} \subset Y$ in Z, if there exists a system $\{\varphi_n^*\}_{n\in\mathbb{N}} \subset L(Z,X)$ such that for any $z\in Z$ the sequence $\{\varphi_n^*(z)\}_{n\in\mathbb{N}}$ belongs to \tilde{X} and $z = \sum_{n=1}^{\infty} \varphi_n^*(z)\varphi_n$.

Theorem: 4.2 Let $\{\varphi_n\}_{n\in\mathbb{N}} \subset Y$ be $b_{\tilde{\chi}}$ -frame in Z. For the existence of a linear expansion algorithm in $b_{\tilde{\chi}}$ -frame $\{\varphi_n\}_{n\in\mathbb{N}}$ it is necessary and sufficient that $\{\varphi_n\}_{n\in\mathbb{N}}$ be a projective $b_{\tilde{\chi}}$ -frame.

Proof: Necessity: Let there exists a linear expansion algorithm in $b_{\tilde{\chi}}$ -frame $\{\varphi_n\}_{n\in N}$. As in the proof of theorem 2.1 we denote by $S \in L(\tilde{X}, Z)$: $S(\tilde{x}) = \sum_{n=1}^{\infty} x_n \varphi_n$, $\tilde{x} \in \tilde{X}$ ($\tilde{x} = \{x_n\}_{n\in N}$) the synthesis operator in \tilde{X} . Determine the operator $T: Z \to \tilde{X}$ from the formula $T(z) = \{\varphi_n^*(z)\}_{n\in N}$. Show that $T \in L(Z, \tilde{X})$. Consider the sequence of the operators $T_m \in L(Z, \tilde{X})$: $T_m z = \sum_{n=1}^m \{\delta_{in} \varphi_n^*(z)\}_{i\in N}$. Since the series $\sum_{n=1}^{\infty} \{\delta_{in} \varphi_n^*(z)\}_{i\in N}$ converges, there exists $\lim_{m\to\infty} T_m z$ and by the Banach Steinhous theorem the sequence $\{\|T_n\|\}_{n\in N}$ is bounded. So, $T \in L(Z, \tilde{X})$, since $Tz = \lim_{m\to\infty} T_m z$. Obviously $(ST)(z) = \sum_{n=1}^{\infty} \varphi_n^*(z) \varphi_n = z$, i.e. ST = I, where I is an identity operator in Z. Further, let $\tilde{M} = T(Z)$. We have $\tilde{X} = \tilde{M} \oplus \tilde{N}$, where $\tilde{N} = KerS$. Indeed, let \tilde{x} be an arbitrary element in \tilde{X} . Denote $z = S(\tilde{x})$ and $\tilde{x}_{\tilde{M}} = T(z)$. Then $S(\tilde{x} - \tilde{x}_{\tilde{M}}) = S(\tilde{x}) - S(\tilde{x}_{\tilde{M}}) = 0$. Therefore $\tilde{x}_{\tilde{N}} = \tilde{x} - \tilde{x}_{\tilde{M}} \in \tilde{N}$. Show that $\tilde{M} \cap \tilde{N} = \{0\}$. If $\tilde{x} \in \tilde{M} \cap \tilde{N}$, then $S(\tilde{x}) = 0$. Suppose that z from Z is such that $T(z) = \tilde{x}$. We get $z = (ST)(z) = S(\tilde{x}) = 0$. Consequently, $\tilde{x} = 0$ and $\tilde{X} = \tilde{M} \oplus \tilde{N}$. It remains to apply theorem 3.3.

Sufficiency: Let $\{\varphi_n\}_{n\in N}$ be a projective $b_{\tilde{X}}$ -frame in Z. Then by theorem 3.3 \tilde{N} is complemented in \tilde{X} , i.e. $\tilde{X} = \tilde{M} \oplus \tilde{N}$. Denote by S a synthesis operator, J is a natural isomorphism between \tilde{X} and \tilde{Z} , $T \in L(Z, \tilde{X})$:

 $T(z) = J^{-1}(z), \ z \in \mathbb{Z}, \text{ and operator } e_n(\widetilde{X} \to X): \ e_n(\widetilde{x}) = x_n, \ \widetilde{x} = \{x_n\}_{n \in \mathbb{N}}.$ Determine the operator $\varphi_n^*: \mathbb{Z} \to X$ from the expression $\varphi_n^*(z) = e_n(T(z)).$ So, $Tz = \{\varphi_n^*(z)\}_{n \in \mathbb{N}}.$ Take an arbitrary $z \in \mathbb{Z}.$ Let $\widetilde{x} = T(z)$ $(\widetilde{x} = \{x_n\}_{n \in \mathbb{N}}).$ Then we have

$$z = (ST)(z) = S(\widetilde{x}) = \sum_{n=1}^{\infty} x_n \varphi_n = \sum_{n=1}^{\infty} \varphi_n^*(z) \varphi_n.$$

The theorem is proved.

Theorem: 4.3 Let $\{\varphi_n\}_{n\in\mathbb{N}} \subset Y$ be a $b_{\tilde{X}}$ -frame in Z and \tilde{N} be a space of coefficients of zero-series of the system $\{\varphi_n\}_{n\in\mathbb{N}}$. Then the following properties are equivalent: (i) there exists a continuous projector $P: \tilde{X} \to \tilde{N}$, such that ||I - P|| = 1; (ii) it holds a linear expansion algorithm in $\{\varphi_n\}_{n\in\mathbb{N}}$, moreover if for $z \in Z$, there exists the sequence $\{x_n\}_{n\in\mathbb{N}}$ from $\tilde{X}: z = \sum_{n=1}^{\infty} x_n \varphi_n$, then $||\{x_n\}_{n\in\mathbb{N}}||_{\tilde{X}} \ge ||\{\varphi_n^*(z)\}_{n\in\mathbb{N}}||_{\tilde{X}}$.

Proof: Let condition (i) be fulfilled. Then \tilde{N} is complemented in \tilde{X} , i.e. $\tilde{X} = \tilde{M} \oplus \tilde{N}$, where $\tilde{M} = KerP$ (see [20], theorem 5.1). Consequently, $\{\varphi_n\}_{n \in N}$ is a projective $b_{\tilde{X}}$ -frame in Z and by theorem 4.2 it holds a linear expansion algorithm. Take an arbitrary $z \in Z$. Suppose that there exists $\{x_n\}_{n \in N} \in \tilde{X}$, such that $z = \sum_{n=1}^{\infty} x_n \varphi_n$. Let S be a synthesis operator, J be a natural isomorphism between \tilde{X} and \tilde{Z} , Q = I - P, T be a contraction of J^{-1} on Z. Since $\tilde{X} = \tilde{M} \oplus \tilde{N}$, then $\tilde{x} = \tilde{x}_{\tilde{M}} + \tilde{x}_{\tilde{N}}$. Let $u \in Z : \tilde{x}_{\tilde{M}} = T(u)$. We have $u = (ST)(u) = S(\tilde{x}_{\tilde{u}}) = S(\tilde{x}) = z$.

Consequently, $\left\|\left\{\varphi_{n}^{*}(z)\right\}_{n\in\mathbb{N}}\right\|_{\widetilde{X}} = \left\|T(z)\right\|_{\widetilde{X}} = \left\|\widetilde{x}_{\widetilde{M}}\right\|_{\widetilde{X}} = \left\|Q(\widetilde{x})\right\|_{\widetilde{X}} \le \left\|\left\{x_{n}\right\}_{n\in\mathbb{N}}\right\|_{\widetilde{X}}.$

Let now condition (ii) be fulfilled. Then by theorem 4.2 the $b_{\tilde{X}}$ -frame $\{\varphi_n\}_{n\in N}$ is projective and so by theorem 3.3 the subspace \tilde{N} is complemented in \tilde{X} , i.e. $\tilde{X} = \tilde{M} \oplus \tilde{N}$. As above, let S be a synthesis operator, J be a natural isomorphism between \tilde{X} and $\tilde{Z} = Z \oplus \tilde{X}$ and $T \in L(Z, \tilde{X})$ be an operator determined by the expression $T(z) = \{\varphi_n^*(z)\}_{n\in N}$.

Denote by Q the operator projecting \widetilde{X} on \widetilde{M} along \widetilde{N} and P = I - Q. Take an arbitrary $\widetilde{x} \in \widetilde{X}$. Obviously, there exists $\widetilde{x}_{\widetilde{N}} = \widetilde{x} - Q(\widetilde{x}) \in \widetilde{N}$. Since $Q(\widetilde{x}) \in \widetilde{M}$, then there exists $z \in Z$ such that $T(z) = Q(\widetilde{x})$, since $T(Z) = \widetilde{M}$. We have

$$z = (ST)(z) = S(Q(\tilde{x})) = S(\tilde{x}) = \sum_{n=1}^{\infty} x_n \varphi_n .$$

According to the condition we get $\|\{x_n\}_{n\in N}\|_{\widetilde{X}} \ge \|\{\varphi_n^*(z)\}_{n\in N}\|_{\widetilde{X}}$. Consequently,

$$\left\|\left\{x_n\right\}_{n\in\mathbb{N}}\right\|_{\widetilde{X}} \geq \left\|T(z)\right\|_{\widetilde{X}} = \left\|Q(\widetilde{x})\right\|_{\widetilde{X}},$$

therefore ||Q|| = 1. The theorem is proved.

REFERENCES:

- [1] Duffin R.J., Schaeffer A, C. A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341-366.
- [2] Gröchenig K. Describing functions: atomic decompositions versus frames, Monatsch. Math., 112:1 (1991), 1-41.
- [3] Casazza P.G., Han D., Larson D.R. Frames for Banach spaces, Contemp. Math., 247 (1999), 149-182.
- [4] Han D., Larson D.R. Frames, bases and group representations, Memoirs, Amer. Math. Soc., 147:697 (2000), 1-91.

[5] Casazza P.G., Christensen O., Stoeva D.T. Frame expansions in separable Banach spaces J. Math. Anal. Appl., 307:2 (2005), 710-723.

- [6] Christensen O., Stoeva D.T. p -Frames in separable Banach spaces, Adv. Comput. Math., 18:2 (2003), 117-126.
- [7] Terekhin P.A. Banach frames in affine synthesis problems, Matem. Sb, 200:9 (2009), 127-146.
- [8] Terekhin P.A. Frames in Banach spaces, Functional analysis and its applications, 44: 3 (2010), 50-62.
- [9] Bari N.K. Biorthogonal systems and basis in Hilbert spaces, Ucheniye zapiski MQU, 4:148 (1951), 69-107.
- [10] Veic B.I. Bessel and Hilbert systems in Banach spaces and stability problems, Iz. Vuz., math., 2:45 (1965), 7-23.
- [11] Bilalov B.T., Guseynov Z.G. -Bessel and K -Hilbert systems. K -bases, Dokl. RAN, 429:3 (2009), 1-3.

[12] Canturija Z.A. On some properties of biorthogonal systems in Banach space and their applications in spectral theory, Soobs Akad. Nauk Gruz. SSR, 2:34 (1964), 271-276.

[13] Pelczunski A., Singer I. On non-equivalent bases and conditional bases in Banach spaces, Studia Math., 25 (1964), 5-25.

[14] Ismailov M.I. b -Hilbert systems, Proceedings of IMM of NAS of Azerb. XXX: XL (2010), 119-122.

[15] Naimark M.A. Spectral functions of symmetric operator, IZV. AN SSSR, ser. matem., 4:3 (1940), 277-318.

[16] Christensen O. An Introduction to Frames and Riesz Bases, Appl. Numer. Harmon. Anal., Birkhuser, Boston, MA, 2002.

[17] Kozlov V.Y. On local characteristics of complete orthogonal normalized system of functions, Mat. Sb., 23:3 (1948), 441-474.

[18] Lukashenko T.P. On properties of orthorecurvive expansions in nonorthogonal systems. Vestn. Mosk. Un-ta, ser. matem, mech., 1 (2001), 6-10.

[19] Kashin B.S, Kulikova T. Yu. Remark on description of general form frames. Matem. zametki, 72:6 (2002), 941-945.

[20] Rudin U. Functional Analysis, Mir, 1975.
