ON b-FRAMES IN BANACH SPACES

M. I. Ismailov*

Baku State University and scientific worker of Institute of Mathematics and Mechanics of NAS Azerbaijan

E-mail: miqdadismailov1@rambler.ru

(Received on: 05-12-11; Accepted on: 21-12-11)

ABSTRACT

In the paper the generalization of the notion b-frame in Banach spaces is given by means of bilinear mappings and the notion of b-convergence and b-representation systems are introduced. The relations between these notions are established. The criterion when the system in Banach space forms b-frame, is given. The projection description of b-frame is constructed. Using a linear algorithm of expansion in b-frame, the extremality estimation for the coefficients of expansion in b-frame are established.

Key words: b -frame, expansion in b -frame, b -basis, b -completeness, CB -space.

2000 Mathematics Subject Classification: 41A17, 41A58, 42C15.

1. Introduction:

Note that, the notion of frame was determined by Duffin and Schaeffer [1] in Hilbert spaces in the following way. Let H be a separable Hilbert space the system of non-zero elements $\{\varphi_n\}_{n\in\mathbb{N}}\subset H$ be called a frame in H if there exist the constants $0< A\leq B<\infty$ such that for each $h\in H$ it is valid

$$A \|h\|_{H}^{2} \le \sum_{n=1}^{\infty} |(h, \varphi_{n})|^{2} \le B \|h\|_{H}^{2}, \tag{1}$$

where $\|\cdot\|_H$ and (\cdot,\cdot) is a norm and scalar product in H. The constants A and B in (1) are called lower and upper bounds the number k=A/B is called a condition coefficient of the frame $\{\varphi_n\}_{n\in N}$. In the case, when k=1 $\{\varphi_n\}_{n\in N}$ is an tight frame.

Development in theory of a frame in Hilbert spaces reduced to obtaining the analogues of the known results for Banach case. By theory of frame [2]-[5] and others have Banach extensions. The notion of X -frame generalizing the notion of p -frame studied in [5] was introduced in the paper [6]. In [7] gives the dual notion of a frame in Banach space, for which in [8] projection description is studied, a criterion on the existence of a linear expansion algorithm in frame is proved, the analogue of the extremality properties for the coefficients of expansion in frame is obtained. A frame is a special case of Bessel sequence introduced and studied [9] in Hilbert spaces. Banach analogies these results were investigated in the paper [10]-[14].

Cite the known result [15] from the quant theory of information for projection description of frame.

Theorem: 1.1 Let $\{\varphi_n\}_{n\in\mathbb{N}}$ be a tight frame in Hilbert space H. Then there exists a Hilbert space $H'\supset H$ and orthonormed basis $\{\psi_n\}_{n\in\mathbb{N}}\subset H'$ such that

$$\pi(\psi_n) = \varphi_n, \ n \in N$$

where π is an operator of orthogonal projection from H' onto H.

The results [16], [17] and [18] in this direction are known. The frames in Hilbert spaces have close relations with Riesz bases. This matter was considered [19] and is in the following.

Theorem: 1.2 For the system $\{\varphi_n\}_{n\in\mathbb{N}}$ of Hilbert space H to be a frame with boundaries A and B, $A\leq B$, it is necessary and sufficient to find a Hilbert space H' containing H and the Riesz basis $\{\psi_n\}_{n\in\mathbb{N}}\subset H'$ such that

$$A^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} |c_n|^2 \right)^{\frac{1}{2}} \le \left\| \sum_{n=1}^{\infty} c_n \psi_n \right\|_{H'} \le B^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} |c_n|^2 \right)^{\frac{1}{2}}, \tag{2}$$

where $\pi(\psi_n) = \varphi_n$, $n \in N$, π is an operator of orthogonal projection from H' onto H.

The goal of our paper is extension of the results of [8] to $b_{\tilde{\chi}}$ -frames for CB-space \tilde{X} . In the paper, necessary and sufficient condition $b_{\tilde{\chi}}$ -frame of the system in Banach space is proved, projection description of $b_{\tilde{\chi}}$ -frame and criterion of the existence of linear expansion algorithm in $b_{\tilde{\chi}}$ -frame is given.

2. b -FRAME IN BANACH SPACE:

Let X be a Banach space with the norm $\left\|\cdot\right\|_X$. Denote by \widetilde{X} B-space of sequences $\widetilde{x}=\left\{x_n\right\}_{n\in N},\ x_n\in X$, with coordinate-wise linear operations. If the convergence in \widetilde{X} is coordinate-wise and the subspaces $\widetilde{E}_n=\left\{\widetilde{x}\in\widetilde{X}:\widetilde{x}=\left\{\mathcal{S}_{in}x\right\}_{i\in N},x\in X\right\}$ form a basis, then \widetilde{X} called CB-space with a canonical basis.

Find the general form of a linear continuous functional in \widetilde{X} . Let \widetilde{t} be an arbitrary linear continuous functional in \widetilde{X} . Since for each $\widetilde{x} \in \widetilde{X}$ ($\widetilde{x} = \left\{x_n\right\}_{n \in N}$) the equality $\widetilde{x} = \sum_{n=1}^{\infty} \left\{\delta_{in} x_n\right\}_{i \in N}$ is valid, then $\widetilde{t}(\widetilde{x}) = \sum_{n=1}^{\infty} \widetilde{t}\left(\left\{\delta_{in} x_n\right\}_{i \in N}\right)$. Consider the functional $t_n: X \to C$ such that $t_n(x) = \widetilde{t}\left(\left\{\delta_{in} x\right\}_{i \in N}\right)$ for $\forall x \in X$. Then we get that $\widetilde{t}(\widetilde{x}) = \sum_{n=1}^{\infty} t_n(x_n)$. From the coordinate-wise convergence in \widetilde{X} it follows that $t_n \in X^*$. Consequently, identifying \widetilde{t} with $\left\{t_n\right\}_{n \in N} \subset X^*$, \widetilde{X}^* is isometrically isomorphic to some B-space of sequences of elements from X^* and

$$\widetilde{t}\left(\widetilde{x}\right) = \sum_{n=1}^{\infty} t_n(x_n)$$

is a general form of a linear continuous functional in $\,\widetilde{\!X}\,$, with the norm

$$\|\widetilde{t}\|_{\widetilde{X}^*} = \sup_{\|\widetilde{x}\|_{\widetilde{X}} \le 1} \left| \sum_{n=1}^{\infty} t_n(x_n) \right|.$$

Let Y and Z be B-spaces with appropriate norms $\| \|_Y$ and $\| \|_Z$. Consider a bilinear mapping $b(x,y): X \times Y \to Z$ satisfying the condition:

$$\exists M \rangle 0: \quad \|xy\|_{Z} \le M \|x\|_{X} \|y\|_{Y} \quad \forall x \in X, \ y \in Y. \tag{3}$$

where xy = b(x,y), $x \in X$, $y \in Y$. Denote by $\hat{b}(f,y)$ the mapping $\hat{b}(f,y) : Z^* \times Y \to X^*$, determined by the relation $\hat{b}(f,y)(x) = f(xy)$ $\forall f \in Z^*$, $y \in Y$, $x \in X$. Further, for brevity we assume $< f, y > = \hat{b}(f,y)$. It is easy to get from (3) the validity of the inequality

$$\|\langle f, y \rangle\|_{X^*} \le M \|f\|_{Z^*} \|y\|_{Y} \quad \forall f \in Z^*, \ y \in Y.$$
 (4)

Let \widetilde{X} be a CB-space with a canonical basis. Introduce the following denotation.

Definition: 2.1 The system $\{\varphi_n\}_{n\in\mathbb{N}}\subset Y$ is said to be $b_{\widetilde{X}}$ -frame in Z if there exist the constants A, B, $0 < A \le B < \infty$ such that for any $g \in Z^*$ the sequence $\{\langle g, \varphi_n \rangle\}_{n\in\mathbb{N}}$ belongs to \widetilde{X}^* and satisfies the inequality $A \|g\|_{Z^*} \le \|\{\langle g, \varphi_n \rangle\}_{n\in\mathbb{N}}\|_{\widetilde{X}^*} \le B \|g\|_{Z^*}.$ (5)

Definition: 2.2 The system $\{\varphi_n\}_{n\in\mathbb{N}}\subset Y$ is said to be a system of $b_{\widetilde{X}}$ -representation if for any $z\in Z$ there exists $\{x_n\}_{n\in\mathbb{N}}\in Z$ such that $z=\sum_{n=1}^\infty x_n\varphi_n$ and a system of $b_{\widetilde{X}}$ -convergence in Z if for any $\widetilde{x}\in\widetilde{X}$ ($\widetilde{x}=\{x_n\}_{n\in\mathbb{N}}$) the series $\sum_{n=1}^\infty x_n\varphi_n$ converges in Z.

Cite the criteria when the system $\{\varphi_n\}_{n\in\mathbb{N}}\subset Y$ forms a $b_{\widetilde{\chi}}$ -frame in Z.

Theorem: 2.3 The system $\{\varphi_n\}_{n\in\mathbb{N}}\subset Y$ forms a $b_{\widetilde{X}}$ -frame in Z iff it is simultaneously both a system of $b_{\widetilde{X}}$ -representation and a system of $b_{\widetilde{X}}$ -convergence in Z.

Proof: Necessary: Let $\{\varphi_n\}_{n\in N}$ be a $b_{\tilde{X}}$ -frame in Z. Determine the operator S (of synthesis) in linearity on finite sequences $\{x_n\}$ by the equality $S(\{x_n\}) = \sum x_n \varphi_n$. For an arbitrary $g \in Z^*$ we get

$$g(S(\{x_n\})) = g(\sum_n x_n \varphi_n) = \sum_n g(x_n \varphi_n) = \sum_n \langle g, \varphi_n \rangle (x_n) = \{\langle g, \varphi_n \rangle\}_{n \in \mathbb{N}} (\{x_n\}).$$

Then

$$\left|g(S(\{x_n\}))\right| = \left|\{ < g, \varphi_n > \}_{n \in \mathbb{N}} (\{x_n\}) \right| \le \left\|\{ < g, \varphi_n > \}_{n \in \mathbb{N}} \right\|_{\tilde{Y}^*} \left\|\{x_n\}\right\|_{\tilde{Y}} \le B \left\|g\right\|_{Z^*} \left\|\{x_n\}\right\|_{\tilde{Y}}.$$

So, $\|S(\{x_n\})\|_Z \leq B \|\{x_n\}\|_{\tilde{X}}$. Continuing S in continuity on all \tilde{X} , we get $S \in L(\tilde{X},Z)$ and $S(\tilde{x}) = \sum_{n=1}^{\infty} x_n \varphi_n$, $\tilde{x} \in \tilde{X}$ ($\tilde{x} = \{x_n\}_{n \in N}$). Consequently, $\{\varphi_n\}_{n \in N}$ is a system of $b_{\tilde{X}}$ -convergence in Z. Consider an operator (of analysis) $R: Z^* \to \tilde{X}^*$ in the equality $R(g) = \{ < g, \varphi_n > \}_{n \in N}, g \in Z^*$. It is clear that it holds the equality $R = S^*$. Since for any $g \in Z^*$ it holds $A \|g\|_{Z^*} \leq \|S^*(g)\|_{\tilde{X}^*}$, then S maps \tilde{X} on all the space Z (see [20], theorem 4.15). Thus, $\{\varphi_n\}_{n \in N}$ is a system of $b_{\tilde{X}}$ -representation in Z.

Sufficiency: Let $\{\varphi_n\}_{n\in N}$ be a system of $b_{\widetilde{X}}$ -representation and $b_{\widetilde{X}}$ -convergence in Z. Consider (linear) operators $S_n\colon \widetilde{X}\to Z$ by the equalities $S_n(\widetilde{x})=\sum_{k=1}^n x_k \varphi_k$, $n\in N$. From the coordinate-wise convergence in \widetilde{X} it follows, that $S_n\in L(\widetilde{X},Z)$. Since $\{\varphi_n\}_{n\in N}$ is a system of $b_{\widetilde{X}}$ -convergence in Z, then $\exists\lim_{n\to\infty}S_n(\widetilde{x})$ and by the theorem on uniform boundedness $\|S_n\|_{L(\widetilde{X},Z)}\le B$ for any $n\in N$. Consequently, the operator S determined by the equality $S(\widetilde{x})=\lim_{n\to\infty}S_n(\widetilde{x})$ belongs to $L(\widetilde{X},Z)$. Further, consider an operator $R\in L(Z^*,\widetilde{X}^*)$ such that $R=S^*$. Then for any $g\in Z^*$ and $\widetilde{x}\in \widetilde{X}$ we get

$$R(g)(\widetilde{x}) = S^*(g)(\widetilde{x}) = g(S(\widetilde{x})) = \sum_{n=1}^{\infty} g(x_n \varphi_n) = \{ \langle g, \varphi_n \rangle \}_{n \in \mathbb{N}} (\widetilde{x}).$$

Hence we get $R(g) = \{ < g, \varphi_n > \}_{n \in \mathbb{N}}$. Since $\{ \varphi_n \}_{n \in \mathbb{N}}$ is a system of $b_{\widetilde{X}}$ -reresentation then $S(\widetilde{X}) = Z$. Therefore there exists A > 0: $A \|g\|_{Z^*} \le \|S^*(g)\|_{\widetilde{X}^*}$ (see. [20], theorem 4.15) and $\{ \varphi_n \}_{n \in \mathbb{N}}$ forms a $b_{\widetilde{X}}$ -frame in Z. The theorem is proved.

3. PROJECTIVE b -FRAMES:

Let X, Y and Z be B-spaces, a \widetilde{X} be a CB-space with a canonical basis. Cite some notion from [14].

The system $\{\varphi_n\}_{n\in\mathbb{N}}\subset Y$ is said to be b-complete in Z if the aggregate $L_b(\{\varphi_n\}_{n\in\mathbb{N}})$ of all possible finite sums $\sum x_n \varphi_n$ is dense in Z.

The system $\{\varphi_n\}_{n\in \mathbb{N}}\subset Y$ is said to be $b_{\widetilde{X}}$ -basis in Z if for $\forall z\in Z$ there exists a unique sequence $\{x_n\}_{n\in \mathbb{N}}\subset X: z=\sum_{n=1}^\infty x_n\varphi_n$, moreover $\widetilde{X}=\{\widetilde{x}=\{x_n\}_{n\in \mathbb{N}}\subset X:\sum_{n=1}^\infty x_ny_n\in Z\}$.

As the analogue of the projective frame (see [8]) introduce the following definition.

Definition: 3.1 *b* -frame $\{\varphi_n\}_{n\in\mathbb{N}}\subset Y$ in Z is said to be projective if:

- (à) there exist B -space $\ \widetilde{Z}\supset Z$, including the space Z as a closed subspace;
- (b) there exist $\tilde{b}_{\tilde{X}}$ -basis $\left\{\psi_{n}\right\}_{n\in\mathbb{N}}\subset L(X,\tilde{Z})$ in \tilde{Z} , where $\tilde{b}\left(x,\psi\right)\equiv\left(x,\psi\right)=\psi(x)$, $x\in X$, $\psi\in L(X,\tilde{Z})$;
- (c) there exist a continuous projector $P \in L(\tilde{Z}, Z)$ from \tilde{Z} onto Z such that $P(x, \psi_n) = x \varphi_n$ for $\forall x \in X$, $n \in N$.

Definition: 3.2 The space of coefficients of zero-series of the system $\{\varphi_n\}_{n\in\mathbb{N}}\subset Y$ is called a closed in \widetilde{X} subspace $\widetilde{N}=\{\widetilde{x}=\{x_n\}_{n\in\mathbb{N}}\in\widetilde{X}:\sum_{n=1}^{\infty}x_n\varphi_n=0\}.$

Theorem: 3.3 Let $\{\varphi_n\}_{n\in\mathbb{N}}\subset Y$ be a $b_{\widetilde{X}}$ -frame in Z. Then $\{\varphi_n\}_{n\in\mathbb{N}}$ is a projective $b_{\widetilde{X}}$ -frame in Z iff \widetilde{N} is complemented in \widetilde{X} .

Proof: Necessity: Let $\{\varphi_n\}_{n\in N}$ be a projective $b_{\widetilde{X}}$ -frame in Z. By theorem 2.3 there exists a synthesis operator $S\in L(\widetilde{X},Z)\colon S(\widetilde{x})=\sum_{n=1}^\infty x_n\varphi_n$, $\widetilde{x}\in\widetilde{X}$ ($\widetilde{x}=\{x_n\}_{n\in N}$). Let J be a natural isomorphism between \widetilde{X} and

 \widetilde{Z} , i.e. $J(\left\{x_n\right\}_{n\in N})=\sum_{n=1}^\infty (x_n,\psi_n)$ and P be a projector from \widetilde{Z} onto Z. Then the following equality holds: S=PJ. Denote by $\widetilde{M}=J^{-1}(Z)$ a closed subset in \widetilde{X} . Show that $\widetilde{X}=\widetilde{M}\oplus\widetilde{N}$. Take an arbitrary \widetilde{x} from \widetilde{X} . Denote by $z=S(\widetilde{x})$ and $\widetilde{x}_{\widetilde{M}}=J^{-1}(z)$. Consider $\widetilde{x}_{\widetilde{N}}=\widetilde{x}-\widetilde{x}_{\widetilde{M}}$. Since $S(\widetilde{x}_{\widetilde{N}})=S(\widetilde{x})-S(\widetilde{x}_{\widetilde{M}})=0$, then $\widetilde{x}_{\widetilde{N}}\in\widetilde{N}$, consequently, $\widetilde{x}=\widetilde{x}_{\widetilde{M}}+\widetilde{x}_{\widetilde{N}}$. Now let $\widetilde{x}\in\widetilde{M}\cap\widetilde{N}$. From $\widetilde{x}\in\widetilde{N}$ it follows that $S(\widetilde{x})=0$. Since $\widetilde{x}\in\widetilde{M}$, there exists z from Z, such that $J^{-1}(z)=\widetilde{x}$. Consequently, $z=P(z)=PJ(\widetilde{x})=S(\widetilde{x})=0$ Therefore $\widetilde{x}=J^{-1}(z)=0$. Thus, $\widetilde{X}=\widetilde{M}\oplus\widetilde{N}$.

Sufficiency: Let \widetilde{N} be complemented in \widetilde{X} , i.e. $\widetilde{X} = \widetilde{M} \oplus \widetilde{N}$. Denote by \widetilde{Z} the direct sum of $Z \oplus \widetilde{N}$. Obviously, \widetilde{Z} is a B-space by the norm $\|\{z,\widetilde{x}\}\|_{\widetilde{Z}} = \max (\|z\|_{Z},\|\widetilde{x}\|_{\widetilde{X}}), \{z,\widetilde{x}\} \in \widetilde{Z}$. Let P be a projection operator from \widetilde{Z} © 2011, IJMA. All Rights Reserved

onto Z , i.e. $P(\{z,\widetilde{x}\})=z$, and Q a projection operator from \widetilde{X} onto \widetilde{M} along \widetilde{N} . Define the operator $J:\widetilde{X}\to\widetilde{Z}$ from the formula $J(\widetilde{x})=\{S(\widetilde{x}),\widetilde{x}-Q(\widetilde{x})\}$. Obviously, $J\in L(\widetilde{X},\widetilde{Z})$. Show that J is an isomorphism between \widetilde{X} and \widetilde{Z} . If $J(\widetilde{x})=0$, so $S(\widetilde{x})=0$ and $\widetilde{x}=Q(\widetilde{x})$. Then $\widetilde{x}\in\widetilde{M}\cap\widetilde{N}$, therefore $\widetilde{x}=0$. Further, we have $J(\widetilde{X})=\widetilde{Z}$. Indeed, if $\{z,\widetilde{x}_0\}\in\widetilde{Z}$, then there exists $\widetilde{\xi}\in\widetilde{X}$ such that $z=S(\widetilde{\xi})$. Denote $\widetilde{x}=\widetilde{x}_0+Q(\widetilde{\xi})$. It is clear that $Q(\widetilde{x})=Q(\widetilde{\xi})$. So, $\widetilde{x}_0=\widetilde{x}-Q(\widetilde{x})$ and $z=S(\widetilde{\xi})=S(Q(\widetilde{\xi}))=S(Q(\widetilde{x}))=S(\widetilde{x})$, i.e. $\{z,\widetilde{x}_0\}=\{S(\widetilde{x}),\widetilde{x}-Q(\widetilde{x})\}$. Using the Banach theorem on inverse operator, we get that J is an isomorphism. Since \widetilde{X} is a CB-space with a canonical basis, the system $\{\psi_n\}_{n\in N}: J(\{\delta_{in}x\}_{i\in N})=(x,\psi_n)$ forms $\widetilde{b}_{\widetilde{x}}$ -basis in \widetilde{Z} . On the other hand for $\forall x\in X$, $n\in N$ it is valid $P(x,\psi_n)=x\varphi_n$.

The theorem is proved.

4. Linear expansion algorithm in $b_{\tilde{x}}$ -frame:

Let X, Y and Z be B-spaces, \widetilde{X} be a CB-space with a canonical basis.

Definition: 4.1 We say that it holds a linear expansion algorithm in $b_{\widetilde{X}}$ -frame $\{\varphi_n\}_{n\in\mathbb{N}}\subset Y$ in Z, if there exists a system $\{\varphi_n^*\}_{n\in\mathbb{N}}\subset L(Z,X)$ such that for any $z\in Z$ the sequence $\{\varphi_n^*(z)\}_{n\in\mathbb{N}}$ belongs to \widetilde{X} and $z=\sum_{n=1}^\infty \varphi_n^*(z)\varphi_n$.

Theorem: 4.2 Let $\{\varphi_n\}_{n\in\mathbb{N}}\subset Y$ be $b_{\widetilde{X}}$ -frame in Z. For the existence of a linear expansion algorithm in $b_{\widetilde{X}}$ -frame $\{\varphi_n\}_{n\in\mathbb{N}}$ it is necessary and sufficient that $\{\varphi_n\}_{n\in\mathbb{N}}$ be a projective $b_{\widetilde{X}}$ -frame.

Proof: Necessity: Let there exists a linear expansion algorithm in $b_{\tilde{\chi}}$ -frame $\{\varphi_n\}_{n\in N}$. As in the proof of theorem 2.1 we denote by $S\in L(\tilde{X},Z)\colon S(\tilde{x})=\sum_{n=1}^\infty x_n\varphi_n$, $\tilde{x}\in \tilde{X}$ ($\tilde{x}=\{x_n\}_{n\in N}$) the synthesis operator in \tilde{X} . Determine the operator $T:Z\to \tilde{X}$ from the formula $T(z)=\{\varphi_n^*(z)\}_{n\in N}$. Show that $T\in L(Z,\tilde{X})$. Consider the sequence of the operators $T_m\in L(Z,\tilde{X})\colon T_mz=\sum_{n=1}^m \{\delta_{in}\varphi_n^*(z)\}_{i\in N}$. Since the series $\sum_{n=1}^\infty \{\delta_{in}\varphi_n^*(z)\}_{i\in N}$ converges, there exists $\lim_{m\to\infty}T_mz$ and by the Banach Steinhous theorem the sequence $\{\|T_n\|\}_{n\in N}$ is bounded. So, $T\in L(Z,\tilde{X})$, since $Tz=\lim_{m\to\infty}T_mz$. Obviously $(ST)(z)=\sum_{n=1}^\infty \varphi_n^*(z)$ $\varphi_n=z$, i.e. ST=I, where I is an identity operator in Z. Further, let $\tilde{M}=T(Z)$. We have $\tilde{X}=\tilde{M}\oplus \tilde{N}$, where $\tilde{N}=KerS$. Indeed, let \tilde{x} be an arbitrary element in \tilde{X} . Denote $z=S(\tilde{x})$ and $\tilde{x}_{\tilde{M}}=T(z)$. Then $S(\tilde{x}-\tilde{x}_{\tilde{M}})=S(\tilde{x})-S(\tilde{x}_{\tilde{M}})=0$. Therefore $\tilde{x}_{\tilde{N}}=\tilde{x}-\tilde{x}_{\tilde{M}}\in \tilde{N}$. Show that $\tilde{M}\cap \tilde{N}=\{0\}$. If $\tilde{x}\in \tilde{M}\cap \tilde{N}$, then $S(\tilde{x})=0$. Suppose that z from Z is such that $T(z)=\tilde{x}$. We get $z=(ST)(z)=S(\tilde{x})=0$. Consequently, $\tilde{x}=0$ and $\tilde{X}=\tilde{M}\oplus \tilde{N}$. It remains to apply theorem 3.3.

Sufficiency: Let $\{\varphi_n\}_{n\in N}$ be a projective $b_{\widetilde{X}}$ -frame in Z. Then by theorem 3.3 \widetilde{N} is complemented in \widetilde{X} , i.e. $\widetilde{X}=\widetilde{M}\oplus\widetilde{N}$. Denote by S a synthesis operator, J is a natural isomorphism between \widetilde{X} and \widetilde{Z} , $T\in L(Z,\widetilde{X})$:

 $T(z) = J^{-1}(z), \ z \in Z \ , \ \text{and operator} \ \ e_n(\widetilde{X} \to X \) : \ e_n(\widetilde{x}) = x_n \ , \ \ \widetilde{x} = \left\{x_n\right\}_{n \in N}. \quad \text{Determine the operator} \quad \varphi_n^* \ : \\ Z \to X \quad \text{from the expression} \quad \varphi_n^*(z) = e_n(T(z)) \ . \ \text{So,} \ Tz = \left\{\varphi_n^*(z)\right\}_{n \in N}. \ \text{Take an arbitrary} \ z \in Z \ . \ \text{Let} \quad \widetilde{x} = T(z) \\ (\widetilde{x} = \left\{x_n\right\}_{n \in N}) \ . \ \text{Then we have}$

$$z = (ST)(z) = S(\widetilde{x}) = \sum_{n=1}^{\infty} x_n \varphi_n = \sum_{n=1}^{\infty} \varphi_n^*(z) \varphi_n.$$

The theorem is proved.

Theorem: 4.3 Let $\{\varphi_n\}_{n\in\mathbb{N}}\subset Y$ be a $b_{\widetilde{X}}$ -frame in Z and \widetilde{N} be a space of coefficients of zero-series of the system $\{\varphi_n\}_{n\in\mathbb{N}}$. Then the following properties are equivalent:

(i) there exists a continuous projector $P:\widetilde{X}\to\widetilde{N}$, such that $\|I-P\|=1$;

(ii) it holds a linear expansion algorithm in $\{\varphi_n\}_{n\in N}$, moreover if for $z\in Z$, there exists the sequence $\{x_n\}_{n\in N}$ from

$$\widetilde{X}: z = \sum_{n=1}^{\infty} x_n \varphi_n \text{ , then } \left\| \left\{ x_n \right\}_{n \in N} \right\|_{\widetilde{X}} \geq \left\| \left\{ \varphi_n^*(z) \right\}_{n \in N} \right\|_{\widetilde{X}}.$$

Proof: Let condition (i) be fulfilled. Then \widetilde{N} is complemented in \widetilde{X} , i.e. $\widetilde{X} = \widetilde{M} \oplus \widetilde{N}$, where $\widetilde{M} = KerP$ (see [20], theorem 5.1). Consequently, $\{\varphi_n\}_{n\in N}$ is a projective $b_{\widetilde{X}}$ -frame in Z and by theorem 4.2 it holds a linear

expansion algorithm. Take an arbitrary $z \in Z$. Suppose that there exists $\{x_n\}_{n \in N} \in \widetilde{X}$, such that $z = \sum_{n=1}^{\infty} x_n \varphi_n$. Let

S be a synthesis operator, J be a natural isomorphism between \widetilde{X} and \widetilde{Z} , Q=I-P, T be a contraction of J^{-1} on Z. Since $\widetilde{X}=\widetilde{M}\oplus\widetilde{N}$, then $\widetilde{x}=\widetilde{x}_{\widetilde{M}}+\widetilde{x}_{\widetilde{N}}$. Let $u\in Z$: $\widetilde{x}_{\widetilde{M}}=T(u)$. We have

$$u = (ST)(u) = S(\widetilde{x}_{\widetilde{M}}) = S(\widetilde{x}) = z$$
.

 $\text{Consequently, } \left\| \left\{ \! \boldsymbol{\varphi}_{n}^{*}(\boldsymbol{z}) \right\}_{\!n \in N} \right\|_{\widetilde{\boldsymbol{X}}} = \left\| T(\boldsymbol{z}) \right\|_{\widetilde{\boldsymbol{X}}} = \left\| \widetilde{\boldsymbol{X}}_{\widetilde{\boldsymbol{M}}} \right\|_{\widetilde{\boldsymbol{X}}} = \left\| Q(\widetilde{\boldsymbol{X}}) \right\|_{\widetilde{\boldsymbol{X}}} \leq \left\| \left\{ \boldsymbol{x}_{n} \right\}_{\!n \in N} \right\|_{\widetilde{\boldsymbol{X}}}.$

Let now condition (ii) be fulfilled. Then by theorem 4.2 the $b_{\tilde{X}}$ -frame $\{\varphi_n\}_{n\in N}$ is projective and so by theorem 3.3 the subspace \tilde{N} is complemented in \tilde{X} , i.e. $\tilde{X}=\tilde{M}\oplus\tilde{N}$. As above, let S be a synthesis operator, J be a natural isomorphism between \tilde{X} and $\tilde{Z}=Z\oplus\tilde{X}$ and $T\in L(Z,\tilde{X})$ be an operator determined by the expression $T(z)=\{\varphi_n^*(z)\}_{n\in N}$.

Denote by Q the operator projecting \widetilde{X} on \widetilde{M} along \widetilde{N} and P=I-Q. Take an arbitrary $\widetilde{x}\in\widetilde{X}$. Obviously, there exists $\widetilde{x}_{\widetilde{N}}=\widetilde{x}-Q(\widetilde{x})\in\widetilde{N}$. Since $Q(\widetilde{x})\in\widetilde{M}$, then there exists $z\in Z$ such that $T(z)=Q(\widetilde{x})$, since $T(Z)=\widetilde{M}$. We have

$$z = (ST)(z) = S(Q(\widetilde{x})) = S(\widetilde{x}) = \sum_{n=1}^{\infty} x_n \varphi_n.$$

According to the condition we get $\|\{x_n\}_{n\in N}\|_{\widetilde{X}} \ge \|\{\varphi_n^*(z)\}_{n\in N}\|_{\widetilde{X}}$. Consequently,

$$\left\|\left\{x_n\right\}_{n\in\mathbb{N}}\right\|_{\widetilde{Y}} \ge \left\|T(z)\right\|_{\widetilde{Y}} = \left\|Q(\widetilde{X})\right\|_{\widetilde{Y}},$$

therefore ||Q|| = 1. The theorem is proved.

REFERENCES:

- [1] Duffin R.J., Schaeffer A, C. A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341-366.
- [2] Gröchenig K. Describing functions: atomic decompositions versus frames, Monatsch. Math., 112:1 (1991), 1-41.
- [3] Casazza P.G., Han D., Larson D.R. Frames for Banach spaces, Contemp. Math., 247 (1999), 149-182.
- [4] Han D., Larson D.R. Frames, bases and group representations, Memoirs, Amer. Math. Soc., 147:697 (2000), 1-91.
- [5] Casazza P.G., Christensen O., Stoeva D.T. Frame expansions in separable Banach spaces J. Math. Anal. Appl., 307:2 (2005), 710-723.
- [6] Christensen O., Stoeva D.T. p -Frames in separable Banach spaces, Adv. Comput. Math., 18:2 (2003), 117-126.
- [7] Terekhin P.A. Banach frames in affine synthesis problems, Matem. Sb, 200:9 (2009), 127-146.
- [8] Terekhin P.A. Frames in Banach spaces, Functional analysis and its applications, 44: 3 (2010), 50-62.
- [9] Bari N.K. Biorthogonal systems and basis in Hilbert spaces, Ucheniye zapiski MQU, 4:148 (1951), 69-107.
- [10] Veic B.I. Bessel and Hilbert systems in Banach spaces and stability problems, Iz. Vuz., math., 2:45 (1965), 7-23.
- [11] Bilalov B.T., Guseynov Z.G. -Bessel and K-Hilbert systems. K-bases, Dokl. RAN, 429:3 (2009), 1-3.
- [12] Canturija Z.A. On some properties of biorthogonal systems in Banach space and their applications in spectral theory, Soobs Akad. Nauk Gruz. SSR, 2:34 (1964), 271-276.
- [13] Pelczunski A., Singer I. On non-equivalent bases and conditional bases in Banach spaces, Studia Math., 25 (1964), 5-25.
- [14] Ismailov M.I. b-Hilbert systems, Proceedings of IMM of NAS of Azerb. XXX: XL (2010), 119-122.
- [15] Naimark M.A. Spectral functions of symmetric operator, IZV. AN SSSR, ser. matem., 4:3 (1940), 277-318.
- [16] Christensen O. An Introduction to Frames and Riesz Bases, Appl. Numer. Harmon. Anal., Birkhuser, Boston, MA, 2002.
- [17] Kozlov V.Y. On local characteristics of complete orthogonal normalized system of functions, Mat. Sb., 23:3 (1948), 441-474.
- [18] Lukashenko T.P. On properties of orthorecurvive expansions in nonorthogonal systems. Vestn. Mosk. Un-ta, ser. matem, mech., 1 (2001), 6-10.
- [19] Kashin B.S, Kulikova T. Yu. Remark on description of general form frames. Matem. zametki, 72:6 (2002), 941-945.
- [20] Rudin U. Functional Analysis, Mir, 1975.
