International Journal of Mathematical Archive-2(12), 2011, Page: 2578-2584 (ccsMMA Available online through www.ijma.info ISSN 2229-5046

ON b-FRAMES IN BANACH SPACES

M. I. Ismailov*
Baku State University and scientific worker of Institute of Mathematics and Mechanics of NAS Azerbaijan
E-mail: miqdadismailov1@rambler.ru

(Received on: 05-12-11; Accepted on: 21-12-11)

Abstract

In the paper the generalization of the notion b-frame in Banach spaces is given by means of bilinear mappings and the notion of b-convergence and b-representation systems are introduced. The relations between these notions are established. The criterion when the system in Banach space forms b-frame, is given. The projection description of b frame is constructed. Using a linear algorithm of expansion in b-frame, the extremality estimation for the coefficients of expansion in b-frame are established.

Key words: b-frame, expansion in b-frame, b-basis, b-completeness, $C B$-space.
2000 Mathematics Subject Classification: 41A17, 41A58, 42 C15.

1. Introduction:

Note that, the notion of frame was determined by Duffin and Schaeffer [1] in Hilbert spaces in the following way. Let H be a separable Hilbert space the system of non-zero elements $\left\{\varphi_{n}\right\}_{n \in N} \subset H$ be called a frame in H if there exist the constants $0<A \leq B<\infty$ such that for each $h \in H \quad$ it is valid

$$
\begin{equation*}
A\|h\|_{H}^{2} \leq \sum_{n=1}^{\infty}\left|\left(h, \varphi_{n}\right)\right|^{2} \leq B\|h\|_{H}^{2}, \tag{1}
\end{equation*}
$$

where $\|\cdot\|_{H}$ and $(\cdot$,$) is a norm and scalar product in H$. The constants A and B in (1) are called lower and upper bounds the number $k=A / B$ is called a condition coefficient of the frame $\left\{\varphi_{n}\right\}_{n \in N}$. In the case, when $k=1\left\{\varphi_{n}\right\}_{n \in N}$ is an tight frame.

Development in theory of a frame in Hilbert spaces reduced to obtaining the analogues of the known results for Banach case. By theory of frame [2]-[5] and others have Banach extensions. The notion of X-frame generalizing the notion of p frame studied in [5] was introduced in the paper [6]. In [7] gives the dual notion of a frame in Banach space, for which in [8] projection description is studied, a criterion on the existence of a linear expansion algorithm in frame is proved, the analogue of the extremality properties for the coefficients of expansion in frame is obtained. A frame is a special case of Bessel sequence introduced and studied [9] in Hilbert spaces. Banach analogies these results were investigated in the paper [10]-[14].

Cite the known result [15] from the quant theory of information for projection description of frame.
Theorem: 1.1 Let $\left\{\varphi_{n}\right\}_{n \in N}$ be a tight frame in Hilbert space H. Then there exists a Hilbert space $H^{\prime} \supset H$ and orthonormed basis $\left\{\psi_{n}\right\}_{n \in N} \subset H^{\prime}$ such that

$$
\pi\left(\psi_{n}\right)=\varphi_{n}, n \in N,
$$

where π is an operator of orthogonal projection from H^{\prime} onto H.

[^0]The results [16], [17] and [18] in this direction are known. The frames in Hilbert spaces have close relations with Riesz bases. This matter was considered [19] and is in the following.

Theorem: 1.2 For the system $\left\{\varphi_{n}\right\}_{n \in N}$ of Hilbert space H to be a frame with boundaries A and $B, A \leq B$, it is necessary and sufficient to find a Hilbert space H^{\prime} containing H and the Riesz basis $\left\{\psi_{n}\right\}_{n \in N} \subset H^{\prime}$ such that

$$
\begin{equation*}
A^{1 / 2}\left(\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}\right)^{1 / 2} \leq\left\|\sum_{n=1}^{\infty} c_{n} \psi_{n}\right\|_{H^{\prime}} \leq B^{1 / 2}\left(\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}\right)^{1 / 2}, \tag{2}
\end{equation*}
$$

where $\pi\left(\psi_{n}\right)=\varphi_{n}, n \in N, \pi$ is an operator of orthogonal projection from H^{\prime} onto H.
The goal of our paper is extension of the results of [8] to $b_{\tilde{X}}$-frames for $C B$-space \tilde{X}. In the paper, necessary and sufficient condition $b_{\tilde{X}}$-frame of the system in Banach space is proved, projection description of $b_{\tilde{X}}$-frame and criterion of the existence of linear expansion algorithm in $b_{\tilde{X}}$-frame is given.

2. b-FRAME IN BANACH SPACE:

Let X be a Banach space with the norm $\|\cdot\|_{X}$. Denote by $\tilde{X} \quad B$-space of sequences $\tilde{x}=\left\{x_{n}\right\}_{n \in N}, x_{n} \in X$, with coordinate-wise linear operations. If the convergence in \tilde{X} is coordinate-wise and the subspaces $\tilde{E}_{n}=\left\{\tilde{x} \in \tilde{X}: \tilde{x}=\left\{\delta_{i n} x\right\}_{i \in N}, x \in X\right\}$ form a basis, then \tilde{X} called $C B$-space with a canonical basis.

Find the general form of a linear continuous functional in \tilde{X}. Let \tilde{t} be an arbitrary linear continuous functional in \tilde{X}. Since for each $\tilde{x} \in \tilde{X} \quad\left(\tilde{x}=\left\{x_{n}\right\}_{n \in N}\right)$ the equality $\quad \tilde{x}=\sum_{n=1}^{\infty}\left\{\delta_{i n} x_{n}\right\}_{i \in N} \quad$ is valid, then $\tilde{t}(\tilde{x})=\sum_{n=1}^{\infty} \tilde{t}\left(\left\{\delta_{i n} x_{n}\right\}_{i \in N}\right)$. Consider the functional $t_{n}: X \rightarrow C$ such that $t_{n}(x)=\tilde{t}\left(\left\{\delta_{i n} x\right\}_{i \in N}\right)$ for $\forall x \in X$. Then we get that $\tilde{t}(\tilde{x})=\sum_{n=1}^{\infty} t_{n}\left(x_{n}\right)$. From the coordinate-wise convergence in \tilde{X} it follows that $t_{n} \in X^{*}$. Consequently, identifying \tilde{t} with $\left\{t_{n}\right\}_{n \in N} \subset X^{*}, \tilde{X}^{*} \quad$ is isometrically isomorphic to some $\quad B$-space of sequences of elements from X^{*} and

$$
\tilde{t}(\tilde{x})=\sum_{n=1}^{\infty} t_{n}\left(x_{n}\right)
$$

is a general form of a linear continuous functional in \tilde{X}, with the norm

$$
\|\tilde{t}\|_{\tilde{X}^{*}}=\sup _{\|\tilde{x}\|_{\tilde{X}} \leq 1}\left|\sum_{n=1}^{\infty} t_{n}\left(x_{n}\right)\right| .
$$

Let Y and Z be B-spaces with appropriate norms $\left\|\|_{Y} \text { and }\right\|_{Z}$. Consider a bilinear mapping $b(x, y): X \times Y \rightarrow Z$ satisfying the condition:

$$
\begin{equation*}
\exists M>0: \quad\|x y\|_{Z} \leq M\|x\|_{X}\|y\|_{Y} \quad \forall x \in X, y \in Y \tag{3}
\end{equation*}
$$

where $\quad x y=b(x, y), \quad x \in X, y \in Y$. Denote by $\hat{b}(f, y)$ the mapping $\hat{b}(f, y): Z^{*} \times Y \rightarrow X^{*}$, determined by the relation $\hat{b}(f, y)(x)=f(x y) \forall f \in Z^{*}, y \in Y, x \in X$. Further, for brevity we assume $<f, y>=\hat{b}(f, y)$. It is easy to get from (3) the validity of the inequality

$$
\begin{equation*}
\|<f, y>\|_{X^{*}} \leq M\|f\|_{Z^{*}}\|y\|_{Y} \quad \forall f \in Z^{*}, y \in Y \tag{4}
\end{equation*}
$$

Let \tilde{X} be a $C B$-space with a canonical basis. Introduce the following denotation.
Definition: 2.1 The system $\left\{\varphi_{n}\right\}_{n \in N} \subset Y$ is said to be $b_{\tilde{X}}$-frame in $Z \quad$ if there exist the constants A, B, $0<A \leq B<\infty$ such that for any $g \in Z^{*}$ the sequence $\left\{<g, \varphi_{n}>\right\}_{n \in N}$ belongs to \tilde{X}^{*} and satisfies the inequality

$$
\begin{equation*}
A\|g\|_{Z^{*}} \leq\left\|\left\{<g, \varphi_{n}>\right\}_{n \in N}\right\|_{\tilde{X}^{*}} \leq B\|g\|_{Z^{*}} \tag{5}
\end{equation*}
$$

Definition: 2.2 The system $\left\{\varphi_{n}\right\}_{n \in N} \subset Y$ is said to be a system of $b_{\tilde{X}}$-representation if for any $z \in Z$ there exists $\left\{x_{n}\right\}_{n \in N} \in Z$ such that $z=\sum_{n=1}^{\infty} x_{n} \varphi_{n}$ and a system of $b_{\tilde{X}}$-convergence in Z iffor any $\tilde{x} \in \tilde{X}\left(\tilde{x}=\left\{x_{n}\right\}_{n \in N}\right)$ the series $\sum_{n=1}^{\infty} x_{n} \varphi_{n}$ converges in Z.
Cite the criteria when the system $\left\{\varphi_{n}\right\}_{n \in N} \subset Y$ forms a $b_{\tilde{X}}$-frame in Z.
Theorem: 2.3 The system $\left\{\varphi_{n}\right\}_{n \in N} \subset Y$ forms a $b_{\tilde{X}}$-frame in Z iff it is simultaneously both a system of $b_{\tilde{X}}$. representation and a system of $b_{\tilde{X}}$-convergence in Z.

Proof: Necessary: Let $\left\{\varphi_{n}\right\}_{n \in N}$ be a $b_{\tilde{X}}$-frame in Z. Determine the operator S (of synthesis) in linearity on finite sequences $\left\{x_{n}\right\}$ by the equality $S\left(\left\{x_{n}\right\}\right)=\sum_{n} x_{n} \varphi_{n}$. For an arbitrary $g \in Z^{*}$ we get

$$
g\left(S\left(\left\{x_{n}\right\}\right)\right)=g\left(\sum_{n} x_{n} \varphi_{n}\right)=\sum_{n} g\left(x_{n} \varphi_{n}\right)=\sum_{n}<g, \varphi_{n}>\left(x_{n}\right)=\left\{<g, \varphi_{n}>\right\}_{n \in N}\left(\left\{x_{n}\right\}\right) .
$$

Then

$$
\left|g\left(S\left(\left\{x_{n}\right\}\right)\right)\right|=\left|\left\{<g, \varphi_{n}>\right\}_{n \in N}\left(\left\{x_{n}\right\}\right)\right| \leq\left\|\left\{<g, \varphi_{n}>\right\}_{n \in N}\right\|_{\tilde{X}^{*}}\left\|\left\{x_{n}\right\}\right\|_{\tilde{X}} \leq B\|g\|_{Z^{*}}\left\|\left\{x_{n}\right\}\right\|_{\tilde{X}} .
$$

So, $\left\|S\left(\left\{x_{n}\right\}\right)\right\|_{Z} \leq B\left\|\left\{x_{n}\right\}\right\|_{\tilde{X}}$. Continuing S in continuity on all \tilde{X}, we get $S \in L(\tilde{X}, Z)$ and $S(\tilde{x})=\sum_{n=1}^{\infty} x_{n} \varphi_{n}$, $\tilde{x} \in \tilde{X}\left(\tilde{x}=\left\{x_{n}\right\}_{n \in N}\right)$. Consequently, $\left\{\varphi_{n}\right\}_{n \in N} \quad$ is a system of $b_{\tilde{X}}$-convergence in Z. Consider an operator (of analysis) $R: Z^{*} \rightarrow \tilde{X}^{*}$ in the equality $\left.R(g)=\left\{<g, \varphi_{n}\right\rangle\right\}_{n \in N}, g \in Z^{*}$. It is clear that it holds the equality $R=S^{*}$. Since for any $g \in Z^{*}$ it holds $A\|g\|_{Z^{*}} \leq\left\|S^{*}(g)\right\|_{\tilde{X}^{*}}$, then S maps \tilde{X} on all the space Z (see [20], theorem 4.15). Thus, $\left\{\varphi_{n}\right\}_{n \in N}$ is a system of $b_{\tilde{X}}$-representation in Z.

Sufficiency: Let $\left\{\varphi_{n}\right\}_{n \in N}$ be a system of $b_{\tilde{X}}$-representation and $b_{\tilde{X}}$-convergence in Z. Consider (linear) operators $S_{n}: \tilde{X} \rightarrow Z$ by the equalities $S_{n}(\tilde{x})=\sum_{k=1}^{n} x_{k} \varphi_{k}, n \in N$. From the coordinate-wise convergence in \tilde{X} it follows, that $S_{n} \in L(\tilde{X}, Z)$. Since $\left\{\varphi_{n}\right\}_{n \in N}$ is a system of $b_{\tilde{X}}$-convergence in Z, then $\exists \lim _{n \rightarrow \infty} S_{n}(\tilde{x})$ and by the theorem on uniform boundedness $\left\|S_{n}\right\|_{L(\tilde{X}, Z)} \leq B$ for any $n \in N$. Consequently, the operator S determined by the equality $S(\tilde{x})=\lim _{n \rightarrow \infty} S_{n}(\tilde{x})$ belongs to $L(\tilde{X}, Z)$. Further, consider an operator $R \in L\left(Z^{*}, \tilde{X}^{*}\right)$ such that $R=S^{*}$. Then for any $g \in Z^{*}$ and $\tilde{x} \in \tilde{X}$ we get

$$
R(g)(\tilde{x})=S^{*}(g)(\tilde{x})=g(S(\tilde{x}))=\sum_{n=1}^{\infty} g\left(x_{n} \varphi_{n}\right)=\left\{<g, \varphi_{n}>\right\}_{n \in N}(\tilde{x})
$$

Hence we get $R(g)=\left\{<g, \varphi_{n}>\right\}_{n \in N}$. Since $\left\{\varphi_{n}\right\}_{n \in N}$ is a system of $b_{\tilde{X}}$-reresentation then $S(\tilde{X})=Z$. Therefore there exists $A>0: A\|g\|_{Z^{*}} \leq\left\|S^{*}(g)\right\|_{\tilde{X}^{*}}$ (see. [20], theorem 4.15) and $\left\{\varphi_{n}\right\}_{n \in N}$ forms a $b_{\tilde{X}}$-frame in Z. The theorem is proved.

3. Projective b-frames:

Let X, Y and Z be B-spaces, a \tilde{X} be a $C B$-space with a canonical basis. Cite some notion from [14].
The system $\left\{\varphi_{n}\right\}_{n \in N} \subset Y$ is said to be b-complete in Z if the aggregate $L_{b}\left(\left\{\varphi_{n}\right\}_{n \in N}\right)$ of all possible finite sums $\sum x_{n} \varphi_{n}$ is dense in Z.

The system $\left\{\varphi_{n}\right\}_{n \in N} \subset Y$ is said to be $b_{\tilde{X}}$-basis in Z if for $\forall z \in Z$ there exists a unique sequence $\left\{x_{n}\right\}_{n \in N} \subset X$: $z=\sum_{n=1}^{\infty} x_{n} \varphi_{n}$, moreover $\tilde{X}=\left\{\tilde{x}=\left\{x_{n}\right\}_{n \in N} \subset X: \sum_{n=1}^{\infty} x_{n} y_{n} \in Z\right\}$.

As the analogue of the projective frame (see [8]) introduce the following definition.
Definition: 3.1 b-frame $\left\{\varphi_{n}\right\}_{n \in N} \subset Y$ in Z is said to be projective if:
(a) there exist B-space $\tilde{Z} \supset Z$, including the space Z as a closed subspace;
(b) there exist $\tilde{b}_{\tilde{X}}$-basis $\left\{\psi_{n}\right\}_{n \in N} \subset L(X, \tilde{Z})$ in \tilde{Z}, where $\tilde{b}(x, \psi) \equiv(x, \psi)=\psi(x), x \in X, \psi \in L(X, \tilde{Z})$;
(c) there exist a continuous projector $P \in L(\tilde{Z}, Z)$ from \tilde{Z} onto Z such that $P\left(x, \psi_{n}\right)=x \varphi_{n}$ for $\forall x \in X$, $n \in N$.

Definition: 3.2 The space of coefficients of zero-series of the system $\left\{\varphi_{n}\right\}_{n \in N} \subset Y$ is called a closed in \tilde{X} subspace $\tilde{N}=\left\{\tilde{x}=\left\{x_{n}\right\}_{n \in N} \in \tilde{X}: \sum_{n=1}^{\infty} x_{n} \varphi_{n}=0\right\}$.
Theorem: 3.3 Let $\left\{\varphi_{n}\right\}_{n \in N} \subset Y$ be a $b_{\tilde{X}}$-frame in Z. Then $\left\{\varphi_{n}\right\}_{n \in N}$ is a projective $b_{\tilde{X}}$-frame in Z iff \tilde{N} is complemented in \tilde{X}.

Proof: Necessity: Let $\left\{\varphi_{n}\right\}_{n \in N}$ be a projective $b_{\tilde{X}}$-frame in Z. By theorem 2.3 there exists a synthesis operator $S \in L(\tilde{X}, Z): S(\tilde{x})=\sum_{n=1}^{\infty} x_{n} \varphi_{n}, \tilde{x} \in \tilde{X}\left(\tilde{x}=\left\{x_{n}\right\}_{n \in N}\right)$. Let J be a natural isomorphism between \tilde{X} and \tilde{Z}, i.e. $J\left(\left\{x_{n}\right\}_{n \in N}\right)=\sum_{n=1}^{\infty}\left(x_{n}, \psi_{n}\right)$ and P be a projector from \tilde{Z} onto Z. Then the following equality holds: $S=P J$. Denote by $\tilde{M}=J^{-1}(Z)$ a closed subset in \tilde{X}. Show that $\tilde{X}=\tilde{M} \oplus \tilde{N}$. Take an arbitrary \tilde{x} from \tilde{X}. Denote by $z=S(\tilde{x})$ and $\tilde{x}_{\tilde{M}}=J^{-1}(z)$. Consider $\tilde{x}_{\tilde{N}}=\tilde{x}-\tilde{x}_{\tilde{M}}$. Since $S\left(\tilde{x}_{\tilde{N}}\right)=S(\tilde{x})-S\left(\tilde{x}_{\tilde{M}}\right)=0$, then $\tilde{x}_{\tilde{N}} \in \tilde{N}$, consequently, $\tilde{x}=\tilde{x}_{\tilde{M}}+\tilde{x}_{\tilde{N}}$. Now let $\tilde{x} \in \tilde{M} \cap \tilde{N}$. From $\tilde{x} \in \tilde{N}$ it follows that $S(\tilde{x})=0$. Since $\tilde{x} \in \tilde{M}$, there exists z from Z, such that $J^{-1}(z)=\tilde{x}$. Consequently, $z=P(z)=P J(\tilde{x})=S(\tilde{x})=0$ Therefore $\tilde{x}=J^{-1}(z)=0$. Thus, $\tilde{X}=\tilde{M} \oplus \tilde{N}$.

Sufficiency: Let \tilde{N} be complemented in \tilde{X}, i.e. $\tilde{X}=\tilde{M} \oplus \tilde{N}$. Denote by \tilde{Z} the direct sum of $Z \oplus \tilde{N}$. Obviously, \tilde{Z} is a B-space by the norm $\|\{z, \tilde{x}\}\|_{\tilde{Z}}=\max \left(\|z\|_{Z},\|\tilde{x}\|_{\tilde{X}}\right),\{z, \tilde{x}\} \in \tilde{Z}$. Let P be a projection operator from \tilde{Z}

M. I. Ismailov*/ ON b-FRAMES IN BANACH SPACES/ IJMA- 2(12), Dec.-2011, Page: 2578-2584

onto Z, i.e. $P(\{z, \tilde{x}\})=z$, and Q a projection operator from \tilde{X} onto \tilde{M} along \tilde{N}. Define the operator $J: \tilde{X} \rightarrow \tilde{Z}$ from the formula $J(\tilde{x})=\{S(\tilde{x}), \tilde{x}-Q(\tilde{x})\}$. Obviously, $J \in L(\tilde{X}, \tilde{Z})$. Show that J is an isomorphism between \tilde{X} and \tilde{Z}. If $J(\tilde{x})=0$, so $S(\tilde{x})=0$ and $\tilde{x}=Q(\tilde{x})$. Then $\tilde{x} \in \tilde{M} \cap \tilde{N}$, therefore $\tilde{x}=0$. Further, we have $J(\tilde{X})=\tilde{Z}$. Indeed, if $\left\{z, \tilde{x}_{0}\right\} \in \tilde{Z}$, then there exists $\tilde{\xi} \in \tilde{X}$ such that $z=S(\tilde{\xi})$. Denote $\tilde{x}=\tilde{x}_{0}+Q(\tilde{\xi})$. It is clear that $Q(\tilde{x})=Q(\widetilde{\xi})$. So, $\tilde{x}_{0}=\tilde{x}-Q(\tilde{x})$ and $z=S\left(\tilde{\xi}^{\prime}\right)=S(Q(\tilde{\xi}))=S(Q(\tilde{x}))=S(\tilde{x})$, i.e. $\left\{z, \tilde{x}_{0}\right\}=\{S(\tilde{x}), \tilde{x}-Q(\tilde{x})\}$. Using the Banach theorem on inverse operator, we get that J is an isomorphism. Since \tilde{X} is a $C B$ - space with a canonical basis, the system $\left\{\psi_{n}\right\}_{n \in N}: J\left(\left\{\delta_{i n} x\right\}_{i \in N}\right)=\left(x, \psi_{n}\right)$ forms $\tilde{b}_{\tilde{X}}$-basis in \tilde{Z}. On the other hand for $\forall x \in X, n \in N$ it is valid $P\left(x, \psi_{n}\right)=x \varphi_{n}$.

The theorem is proved.

4. LINEAR EXPANSION ALGORITHM IN $b_{\tilde{X}}$-FRAME:

Let X, Y and Z be B-spaces, \tilde{X} be a $C B$-space with a canonical basis.
Definition: 4.1 We say that it holds a linear expansion algorithm in $b_{\tilde{X}}$-frame $\left\{\varphi_{n}\right\}_{n \in N} \subset Y$ in Z, if there exists a system $\left\{\varphi_{n}^{*}\right\}_{n \in N} \subset L(Z, X)$ such that for any $z \in Z$ the sequence $\left\{\varphi_{n}^{*}(z)\right\}_{n \in N}$ belongs to \tilde{X} and $z=\sum_{n=1}^{\infty} \varphi_{n}^{*}(z) \varphi_{n}$.

Theorem: 4.2 Let $\left\{\varphi_{n}\right\}_{n \in N} \subset Y$ be $b_{\tilde{X}}$-frame in Z. For the existence of a linear expansion algorithm in $b_{\tilde{X}}$-frame $\left\{\varphi_{n}\right\}_{n \in N}$ it is necessary and sufficient that $\left\{\varphi_{n}\right\}_{n \in N}$ be a projective $b_{\tilde{X}}$-frame.

Proof: Necessity: Let there exists a linear expansion algorithm in $b_{\tilde{X}}$-frame $\left\{\varphi_{n}\right\}_{n \in N}$. As in the proof of theorem 2.1 we denote by $S \in L(\tilde{X}, Z): S(\tilde{x})=\sum_{n=1}^{\infty} x_{n} \varphi_{n}, \tilde{x} \in \tilde{X}\left(\tilde{x}=\left\{x_{n}\right\}_{n \in N}\right)$ the synthesis operator in \tilde{X}. Determine the operator $T: Z \rightarrow \tilde{X}$ from the formula $T(z)=\left\{\varphi_{n}^{*}(z)\right\}_{n \in N}$. Show that $T \in L(Z, \tilde{X})$. Consider the sequence of the operators $T_{m} \in L(Z, \tilde{X}): T_{m} z=\sum_{n=1}^{m}\left\{\delta_{i n} \varphi_{n}^{*}(z)\right\}_{i \in N}$. Since the series $\quad \sum_{n=1}^{\infty}\left\{\delta_{i n} \varphi_{n}^{*}(z)\right\}_{i \in N} \quad$ converges, there exists $\lim _{m \rightarrow \infty} T_{m} z \quad$ and by the Banach Steinhous theorem the sequence $\left\{\left\|T_{n}\right\|\right\}_{n \in N}$ is bounded. So, $T \in L(Z, \tilde{X})$, since $T z=\lim _{m \rightarrow \infty} T_{m} z$. Obviously $(S T)(z)=\sum_{n=1}^{\infty} \varphi_{n}^{*}(z) \varphi_{n}=z$, i.e. $S T=I$, where I is an identity operator in Z. Further, let $\tilde{M}=T(Z)$. We have $\tilde{X}=\tilde{M} \oplus \tilde{N}$, where $\tilde{N}=\operatorname{Ker} S$. Indeed, let \tilde{x} be an arbitrary element in \tilde{X}. Denote $z=S(\tilde{x})$ and $\tilde{x}_{\tilde{M}}=T(z)$. Then $S\left(\tilde{x}-\tilde{x}_{\tilde{M}}\right)=S(\tilde{x})-S\left(\tilde{x}_{\tilde{M}}\right)=0$. Therefore $\tilde{x}_{\tilde{N}}=\tilde{x}-\tilde{x}_{\tilde{M}} \in \tilde{N}$. Show that $\tilde{M} \cap \tilde{N}=\{0\}$. If $\tilde{x} \in \tilde{M} \cap \tilde{N}$, then $S(\tilde{x})=0$. Suppose that z from Z is such that $T(z)=\tilde{x}$. We get $z=(S T)(z)=S(\tilde{x})=0$. Consequently, $\tilde{x}=0$ and $\tilde{X}=\tilde{M} \oplus \tilde{N}$. It remains to apply theorem 3.3.

Sufficiency: Let $\left\{\varphi_{n}\right\}_{n \in N}$ be a projective $b_{\tilde{X}}$-frame in Z. Then by theorem $3.3 \tilde{N}$ is complemented in \tilde{X}, i.e. $\tilde{X}=\tilde{M} \oplus \tilde{N}$. Denote by S a synthesis operator, J is a natural isomorphism between \tilde{X} and $\tilde{Z}, T \in L(Z, \tilde{X})$:

M. I. Ismailov*/ ON b-fRAMES IN BANACH SPACES/ IJMA- 2(12), Dec.-2011, Page: 2578-2584

$T(z)=J^{-1}(z), z \in Z$, and operator $e_{n}(\tilde{X} \rightarrow X): e_{n}(\tilde{x})=x_{n}, \tilde{x}=\left\{x_{n}\right\}_{n \in N}$. Determine the operator $\varphi_{n}^{*}:$ $Z \rightarrow X$ from the expression $\varphi_{n}^{*}(z)=e_{n}(T(z))$. So, $T z=\left\{\varphi_{n}^{*}(z)\right\}_{n \in N}$. Take an arbitrary $z \in Z$. Let $\tilde{x}=T(z)$ ($\tilde{x}=\left\{x_{n}\right\}_{n \in N}$). Then we have

$$
z=(S T)(z)=S(\tilde{x})=\sum_{n=1}^{\infty} x_{n} \varphi_{n}=\sum_{n=1}^{\infty} \varphi_{n}^{*}(z) \varphi_{n} .
$$

The theorem is proved.
Theorem: 4.3 Let $\left\{\varphi_{n}\right\}_{n \in N} \subset Y$ be a $b_{\tilde{X}}$-frame in Z and \tilde{N} be a space of coefficients of zero-series of the system $\left\{\varphi_{n}\right\}_{n \in N}$. Then the following properties are equivalent:
(i) there exists a continuous projector $P: \tilde{X} \rightarrow \tilde{N}$, such that $\|I-P\|=1$;
(ii) it holds a linear expansion algorithm in $\left\{\varphi_{n}\right\}_{n \in N}$, moreover if for $z \in Z$, there exists the sequence $\left\{x_{n}\right\}_{n \in N}$ from $\tilde{X}: z=\sum_{n=1}^{\infty} x_{n} \varphi_{n}$, then $\left\|\left\{x_{n}\right\}_{n \in N}\right\|_{\tilde{X}} \geq\left\|\left\{\varphi_{n}^{*}(z)\right\}_{n \in N}\right\|_{\tilde{X}}$.

Proof: Let condition (i) be fulfilled. Then \tilde{N} is complemented in \tilde{X}, i.e. $\tilde{X}=\tilde{M} \oplus \tilde{N}$, where $\tilde{M}=\operatorname{Ker} P$ (see [20], theorem 5.1). Consequently, $\left\{\varphi_{n}\right\}_{n \in N}$ is a projective $b_{\tilde{X}}$-frame in Z and by theorem 4.2 it holds a linear expansion algorithm. Take an arbitrary $z \in Z$. Suppose that there exists $\left\{x_{n}\right\}_{n \in N} \in \tilde{X}$, such that $z=\sum_{n=1}^{\infty} x_{n} \varphi_{n}$. Let S be a synthesis operator, J be a natural isomorphism between \tilde{X} and $\tilde{Z}, \quad Q=I-P, T$ be a contraction of J^{-1} on Z. Since $\tilde{X}=\tilde{M} \oplus \tilde{N}$, then $\tilde{x}=\tilde{x}_{\tilde{M}}+\tilde{x}_{\tilde{N}}$. Let $u \in Z: \tilde{x}_{\tilde{M}}=T(u)$. We have

$$
u=(S T)(u)=S\left(\tilde{x}_{\tilde{M}}\right)=S(\tilde{x})=z .
$$

Consequently, $\left\|\left\{\varphi_{n}^{*}(z)\right\}_{n \in N}\right\|_{\tilde{X}}=\|T(z)\|_{\tilde{X}}=\left\|\tilde{x}_{\tilde{M}}\right\|_{\tilde{X}}=\|Q(\tilde{x})\|_{\tilde{X}} \leq\left\|\left\{x_{n}\right\}_{n \in N}\right\|_{\tilde{X}}$.
Let now condition (ii) be fulfilled. Then by theorem 4.2 the $b_{\tilde{X}}$-frame $\left\{\varphi_{n}\right\}_{n \in N}$ is projective and so by theorem 3.3 the subspace \tilde{N} is complemented in \tilde{X}, i.e. $\tilde{X}=\tilde{M} \oplus \tilde{N}$. As above, let S be a synthesis operator, J be a natural isomorphism between \tilde{X} and $\tilde{Z}=Z \oplus \tilde{X}$ and $T \in L(Z, \tilde{X})$ be an operator determined by the expression $T(z)=\left\{\varphi_{n}^{*}(z)\right\}_{n \in N}$.

Denote by Q the operator projecting \tilde{X} on \tilde{M} along \tilde{N} and $P=I-Q$. Take an arbitrary $\tilde{x} \in \tilde{X}$. Obviously, there exists $\tilde{x}_{\tilde{N}}=\tilde{x}-Q(\tilde{x}) \in \tilde{N}$. Since $Q(\tilde{x}) \in \tilde{M}$, then there exists $z \in Z$ such that $T(z)=Q(\tilde{x})$, since $T(Z)=\tilde{M}$. We have

$$
z=(S T)(z)=S(Q(\tilde{x}))=S(\tilde{x})=\sum_{n=1}^{\infty} x_{n} \varphi_{n}
$$

According to the condition we get $\left\|\left\{x_{n}\right\}_{n \in N}\right\|_{\tilde{X}} \geq\left\|\left\{\varphi_{n}^{*}(z)\right\}_{n \in N}\right\|_{\tilde{X}}$. Consequently,

$$
\left\|\left\{x_{n}\right\}_{n \in N}\right\|_{\tilde{X}} \geq\|T(z)\|_{\tilde{X}}=\|Q(\tilde{x})\|_{\tilde{X}},
$$

therefore $\|Q\|=1$. The theorem is proved.

REFERENCES:

[1] Duffin R.J., Schaeffer A, C. A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341-366.
[2] Gröchenig K. Describing functions: atomic decompositions versus frames, Monatsch. Math., 112:1 (1991), 1-41.
[3] Casazza P.G., Han D., Larson D.R. Frames for Banach spaces, Contemp. Math., 247 (1999), 149-182.
[4] Han D., Larson D.R. Frames, bases and group representations, Memoirs, Amer. Math. Soc., 147:697 (2000), 1-91.
[5] Casazza P.G., Christensen O., Stoeva D.T. Frame expansions in separable Banach spaces J. Math. Anal. Appl., 307:2 (2005), 710-723.
[6] Christensen O., Stoeva D.T. p-Frames in separable Banach spaces, Adv. Comput. Math., 18:2 (2003), 117-126.
[7] Terekhin P.A. Banach frames in affine synthesis problems, Matem. Sb, 200:9 (2009), 127-146.
[8] Terekhin P.A. Frames in Banach spaces, Functional analysis and its applications, 44: 3 (2010), 50-62.
[9] Bari N.K. Biorthogonal systems and basis in Hilbert spaces, Ucheniye zapiski MQU, 4:148 (1951), 69-107.
[10] Veic B.I. Bessel and Hilbert systems in Banach spaces and stability problems, Iz. Vuz., math., 2:45 (1965), 7-23.
[11] Bilalov B.T., Guseynov Z.G. -Bessel and K-Hilbert systems. K-bases, Dokl. RAN, 429:3 (2009), 1-3.
[12] Canturija Z.A. On some properties of biorthogonal systems in Banach space and their applications in spectral theory, Soobs Akad. Nauk Gruz. SSR, 2:34 (1964), 271-276.
[13] Pelczunski A., Singer I. On non-equivalent bases and conditional bases in Banach spaces, Studia Math., 25 (1964), 525.
[14] Ismailov M.I. $\quad b$-Hilbert systems, Proceedings of IMM of NAS of Azerb. XXX: XL (2010), 119-122.
[15] Naimark M.A. Spectral functions of symmetric operator, IZV. AN SSSR, ser. matem., 4:3 (1940), 277-318.
[16] Christensen O. An Introduction to Frames and Riesz Bases, Appl. Numer. Harmon. Anal., Birkhuser, Boston, MA, 2002.
[17] Kozlov V.Y. On local characteristics of complete orthogonal normalized system of functions, Mat. Sb., 23:3 (1948), 441-474.
[18] Lukashenko T.P. On properties of orthorecurvive expansions in nonorthogonal systems. Vestn. Mosk. Un-ta, ser. matem, mech., 1 (2001), 6-10.
[19] Kashin B.S, Kulikova T. Yu. Remark on description of general form frames. Matem. zametki, 72:6 (2002), 941-945.
[20] Rudin U. Functional Analysis, Mir, 1975.

[^0]: *Corresponding author: M. I. Ismailov*,*E-mail: miqdadismailov1@rambler.ru

