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ABSTRACT

In this paper by using go-open sets we define almost ga-normality and mild go.-normality also we continue the study of
further properties of go-normality. We show that these three axioms are regular open hereditary. We also define the

class of almost go-irresolute mappings and show that go-normality is invariant under almost go-irresolute M- go-
open continuous surjection.
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1. Introduction:

In 1967, A. Wilansky has introduced the concept of US spaces. In 1968, C.E. Aull studied some separation axioms
between the T, and T, spaces, namely, S; and S,. Next, in 1982, S.P. Arya et al have introduced and studied the concept
of semi-US spaces and also they made study of s-convergence, sequentially semi-closed sets, sequentially s-compact
notions. G.B. Navlagi studied P-Normal Almost-P-Normal, Mildly-P-Normal and Pre-US spaces. Recently S.
Balasubramanian and P. Aruna Swathi Vyjayanthi studied v-Normal Almost- v-Normal, Mildly-v-Normal and v-US
spaces. Inspired with these we introduce go-Normal Almost- goi-Normal, Mildly- goi-Normal, ga-US, go-S; and go-
S,. Also we examine ga-convergence, sequentially goi-compact, sequentially gal-continuous maps, and sequentially sub
ga-continuous maps in the context of these new concepts. All notions and symbols which are not defined in this paper
may be found in the appropriate references. Throughout the paper X and Y denote Topological spaces on which no
separation axioms are assumed explicitly stated.

2. Preliminaries:

Definition 2.1: Ac X is called
(i) g-closed if cl Ac U whenever Ac U and U is open in X.
(i1) go-closed if ocl(A) < U whenever Ac U and U is open in X.

Definition 2.2: A function fis said to be almost—pre-irresolute if for each x in X and each pre-neighborhood V of f(x),
pel(f (V) is a pre-neighborhood of x.

Definition 2.3: A space X is said to be
(i) T, (T) if for any x #y in X, there exist (disjoint) open sets U; V in X such that xe U and ye V.

(ii) weakly Hausdorff if each point of X is the intersection of regular closed sets of X.
(iii) normal[resp: mildly normal] if for any pair of disjoint [resp: regular-closed]closed sets F; and F,, there exist
disjoint open sets U and V such that Fc Uand F, c V.
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(iv) almost normal if for each closed set A and each regular closed set B such that AnB = ¢, there exist disjoint open
sets U and V such that AcU and B&V.

(v) weakly regular if for each pair consisting of a regular closed set A and a point x such that A N {x} = ¢, there exist
disjoint open sets U and V such that x € U and AcCV.

(vi) A subset A of a space X is S-closed relative to X if every cover of A by semiopen sets of X has a finite subfamily
whose closures cover A.

(vii) Ry if for any point x and a closed set F with x¢ F in X, there exists a open set G containing F but not x.
(viii) Ry iff for x, y € X with cl{x} # cl{y}, there exist disjoint open sets U and V such that cl{x}c U, cl{y}cV.
(ix) US-space if every convergent sequence has exactly one limit point to which it converges.

(x) pre-US space if every pre-convergent sequence has exactly one limit point to which it converges.

(xi) pre-S; if it is pre-US and every sequence <x,> pre-converges with subsequence of <x,> pre-side points.
(xii) pre-S, if it is pre-US and every sequence <x,> in X pre-converges which has no pre-side point.

(xiii) is weakly countable compact if every infinite subset of X has a limit point in X.

(xiv) Baire space if for any countable collection of closed sets with empty interior in X, their union also has empty
interior in X.

Definition 2.4: Let Ac X. Then a point x is said to be a
(1) limit point of A if each open set containing x contains some point y of A such that x #y.

(ii) To-limit point of A if each open set containing x contains some point y of A such that cI{x} # cl{y}, or equivalently,
such that they are topologically distinct.

(iii) pre-Ty-limit point of A if each open set containing x contains some point y of A such that pcl{x} # pcl{y}, or
equivalently, such that they are topologically distinct.

Note 1: Recall that two points are topologically distinguishable or distinct if there exists an open set containing one of
the points but not the other; equivalently if they have disjoint closures. In fact, the Ty—axiom is precisely to ensure

that any two distinct points are topologically distinct.

Example 1: Let X = {a, b, ¢, d} and 1 = {{a}, {b, c}, {a, b, c}, X, ¢}. Then b and c are the limit points but not the
To-limit points of the set {b, c}. Further d is a To—limit point of {b, c}.

Example 2: Let X = (0, 1) and T = {¢, X, and U, = (0, 1-1/h), n =2, 3, 4,. .. }. Then every point of X is a limit point of
X. Every point of X~U, is a Ty—limit point of X, but no point of Uy is a T—limit point of X.

Definition 2.5: A set A together with all its To—limit points will be denoted by T¢—clA.

Note 2:

(1) Every To—limit point of a set A is a limit point of the set but the converse is not true in general.
(i) In Ty—space both are same.

Note 3: Rp—axiom is weaker than T —axiom. It is independent of the To—axiom. However Ty = Ry+T)

Note 4: Every countable compact space is weakly countable compact but converse is not true in general. However, a
T,—space is weakly countable compact iff it is countable compact.

3. go-Ty LIMIT POINT:
Definition 3.01: In X, a point x is said to be a go-Ty—limit point of A if each ga-open set containing x contains some

point y of A such that gocl{x} # gacl{y}, or equivalently; such that they are topologically distinct with respect to go-
open sets.
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Example 3: regular open set = open set = Q-open set = go-open set we have r-Ty—limit point = Ty—limit point =
ao-Ty—limit point = go-Ty—limit point

Definition 3.02: A set A together with all its goi-Ty—limit points is denoted by Ty-gacl(A)

Lemma 3.01: If x is a go-Ty—limit point of a set A then x is go-limit point of A.

Lemma 3.02: If X is go-To—space then every ga-Ty—limit point and every go-limit point are equivalent.
Corollary 3.03: If X is r-Ty—space then every go-Ty—limit point and every go-limit point are equivalent.

Theorem 3.04: For x £y €X,
(i) xisa go-Ty-limit point of {y} iff xegocl{y} and yegocl{x}.
(ii) x is not a go-Ty—limit point of {y} iff either xegocl{yjor gocl{x}= gacl{y).
(iii) x is not a ga-Ty—limit point of {y} iff either xegocl{y}or yegocl{x).

Corollary 3.05:
(i) Ifxis a go-Ty—limit point of {y}, then y cannot be a ga-limit point of {x].
(ii) If gocl{x}= gocl{y}, then neither x is a go-Ty—limit point of {y} nory is a go-Tylimit point of {x}.
(iii) If a singleton set A has no go.-Ty—limit point in X, then gaclA = gacl{x)} for all xe gacl{A}.

Lemma 3.06: In X, if x is a go-limit point of a set A, then in each of the following cases x becomes go-Ty—limit point of
A ({x}#A).

(i) gocl{x) #gacl{y} for yeA, x #y.

(ii) gacl{x} = {x}

(iii) X is a go-Ty—space.

(iv) A~{x} is go-open

Corollary 3.07: In X, if x is a limit point of a set A, then in each of the following cases x becomes go-Tg—limit point of
A ({x}#A).

(i) goacl{x} #gacl{y} for yeA, x #y.

(ii) gacl{x} = {x}

(iii) X is a ga-Ty—space.

(iv) A~{x} is ga-open

4. ga-T, AND ga-R; AXIOMS, i = 0, 1:

In view of Lemma 3.6(iii), go-Ty—axiom implies the equivalence of the concept of limit point of a set with that of go.-
To-limit point of the set. But for the converse, if xe gocl{y} then gacl{x} # gacl{y} in general, but if x is a go-T¢—
limit point of {y}, then gacl{x} = gacl{y}

Lemma 4.01: In a space X, a limit point x of {y} is a ga-Ty-limit point of {y} iff gocl{x}+ gacl{y).
This lemma leads to characterize the equivalence of go-To—limit point and ga-limit point of a set as the go-Ty—axiom.

Theorem 4.02: The following conditions are equivalent:
(i) Xisaga-Ty space
(ii) Every go-limit point of a set A is a go-Ty—limit point of A
(iii) Every r-limit point of a singleton set {x} is a ga-Ty,—limit point of {x}
(iv) Foranyx, yin X, x 2y if xe gacl{y}, then x is a ga-Ty-limit point of {y}

Note 5: In a ga-Ty—space X if every point of X is a r-limit point of X, then every point of X is go-Ty—limit point of X.
But a space X in which each point is a goi-Ty—limit point of X is not necessarily a ga-Ty—space

Theorem 4.03: The following conditions are equivalent:
(i) Xisago-Ry space
(ii) Foranyx, yinX, if xe gacl{y), then x is not a go-Ty-limit point of {y}
(iii) A point go-closure set has no go-Ty—limit point in X
(iv) A singleton set has no go-Ty—limit point in X.
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Since every r-Ry—space is go-Ro—space, we have the following corollary

Corollary 4.04: The following conditions are equivalent:
(i) Xisar-Ryspace
(ii) Foranyx, yinX, if xe gacl{y), then x is not a go-Ty-limit point of {y}
(iii) A point go-closure set has no go-Ty—limit point in X
(iv) A singleton set has no go-Ty—limit point in X.

Theorem 4.05: In a go-Ry space X, a point x is go-Ty—limit point of A iff every go-open set containing x contains
infinitely many points of A with each of which x is topologically distinct

If ga-Ry space is replaced by Ry space in the above theorem, we have the following corollaries:

Corollary 4.06: In an rR,—space X,
(i) If a point x is rTy—limit point of a set then every go-open set containing x contains infinitely many points of A
with each of which x is topologically distinct.
(ii) If a point x is ga-Ty—limit point of a set then every gui-open set containing x contains infinitely many points of
A with each of which x is topologically distinct.

Theorem 4.07: X is g0-R, space iff a set A of the form A = U gacl{x;; -1 1, .} a finite union of point closure sets has no
ga-Ty—limit point.

Corollary 4.08: If X is rR, space and
(DIf A = ugacl{x; =10} afinite union of point closure sets has no go-Ty—limit point.
(IIf X = vgacl{x; ;=1 1.} then X has no go-Ty—limit point.

Theorem 4.09: The following conditions are equivalent:
(i) Xis go-Ry—space
(ii) For any x and a set in X, x is a ga.-Ty-limit point of A iff every gi-open set containing x contains infinitely
many points of A with each of which x is topologically distinct.

Various characteristic properties of go-To—limit points studied so far is enlisted in the following theorem for a ready
reference.

Theorem 4.10: In a go-Ry—space, we have the following:
(i) A singleton set has no go-Ty—limit point in X.
(ii) A finite set has no go-Ty—limit point in X.
(iii) A point ga-closure has no set go.-Ty—limit point in X
(iv) A finite union point go-closure sets have no set go-Ty—limit point in X.
(v) Forx, ye X, xeTy— gacl{y} iff x = y.
(vi) Foranyx, ye X, x #y iff neither x is go-To—limit point of {y}nory is go-Ty—limit point of {x}
(vii) Forany x, ye X, x #y iff To— gacl{x} NTy— gocl{y} = ¢.
(viii)Any point xeX is a go-Ty—limit point of a set A in X iff every go-open set containing x contains infinitely
many points of A with each which x is topologically distinct.

Theorem 4.11: X is go-R; iff for any ga-open set U in X and points x, y such that xe X~U, ye U, there exists a ga-open
set Vin X such that yeVcU, xgV.

Lemma 4.12: In go-R; space X, if x is a go-Ty—limit point of X, then for any non empty go.-open set U, there exists a
non empty goi-open set V such that VcU, xg gocl(V).

Lemma 4.13: In a go- regular space X, if x is a go-Ty—limit point of X, then for any non empty go-open set U, there
exists a non empty goi-open set 'V such that gocl(V)cU, xg gocl(V).

Corollary 4.14: In a regular space X,
(i) ifxis a go-Ty—limit point of X, then for any non empty go-open set U, there exists a non empty go.-open set V
such that gacl(V)cU, xg gocl(V).
(ii) if x is a Ty—limit point of X, then for any non empty go-open set U, there exists a non empty ga-open set 'V
such that gacl(V)cU, xg gocl(V).
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Theorem 4.15: If X is a go-compact ga-R;-space, then X is a Baire Space.

Proof: Let {A,} be a countable collection of ga-closed sets of X, each A, having empty interior in X. Take A, since
A, has empty interior, A; does not contain any go-open set say Uy. Therefore we can choose a point ye U, such that

ye A;. For X is ga-regular, and ye (X~A,;)NU,, a go-open set, we can find a go-open set U; in X such that ye U,
gocl(Uy) c(X~A;)NU,. Hence U, is a non empty go-open set in X such that gacl(U;)cU, and gocl(U))NA;| = ¢.
Continuing this process, in general, for given non empty go-open set U, ;, we can choose a point of U, _; which is not in
the go-closed set A, and a go-open set U, containing this point such that gacl(U,) cU, and gacl(U,)NA, = 0. Thus
we get a sequence of nested non empty go-closed sets which satisfies the finite intersection property. Therefore

N gacl(U,) # ¢. Then some  xen gacl(U,) which in turn implies that xe U, as gacl(U,)cU,_; and x¢ A, for each n.

Corollary 4.16: If X is a compact go-R;-space, then X is a Baire Space.

Corollary 4.17: Let X be a ga-compact go-R;-space. If {A,} is a countable collection of ga-closed sets in X, each A,
having non-empty go-interior in X, then there is a point of X which is not in any of the A,

Corollary 4.18: Let X be a go-compact R;-space. If {A,} is a countable collection of ga-closed sets in X, each A,
having non-empty go.- interior in X, then there is a point of X which is not in any of the A,.

Theorem 4.19: Let X be a non empty compact go-R;-space. If every point of X is a ga-Ty—limit point of X then X is
uncountable.

Proof: Since X is non empty and every point is a ga-Ty-limit point of X, X must be infinite. If X is countable, we
construct a sequence of go.- open sets {V,,} in X as follows:

Let X = V|, then for x, is a go-Ty-limit point of X, we can choose a non empty go-open set V, in X such that V, cV,
and x;¢ gaclV,. Next for x, and non empty go-open set V,, we can choose a non empty go-open set V3 in X such
that V; cV,and x,¢ gaclV;. Continuing this process for each x,, and a non empty go-open set V,,, we can choose a non
empty goi-open set V,,;in X such that V,,; cV,and x,& gaclV,,,.

Now consider the nested sequence of ga-closed sets gaclV, D gaclV, D gaelVy D DgoclV,Do. ..
Since X is goi-compact and {gaclV,} the sequence of go-closed sets satisfies finite intersection property. By Cantors
intersection theorem, there exists an x in X such that xe gaclV,. Further xe X and xe V|, which is not equal to any of

the points of X. Hence X is uncountable.

Corollary 4.20: Let X be a non empty ga-compact go-R;-space. If every point of X is a go-Ty—limit point of X then X is
uncountable

5. ga-T\-IDENTIFICATION SPACES AND go~SEPARATION AXIOMS:

Definition 5.01: Let (X, 7) be a topological space and let R be the equivalence relation on X defined by xRy iff
gacl{x} = gacl{y}

Problem 5.02: show that xRy iff gacl{x} = gacl{y} is an equivalence relation

Definition 5.03: The space (Xy, Q(Xo)) is called the go-Ty—identification space of (X,7), where X, is the set of
equivalence classes of R and Q(X) is the decomposition topology on X,,.

Let Px: (X, 7)— (X, O(Xp)) denote the natural map
Lemma 5.04: If xeX and A c X, then xe goclA iff every ga-open set containing x intersects A.

Theorem 5.05: The natural map Px:(X,7)— (Xo, Q(Xy)) is closed, open and P “l(Py(0)) = O for all Oe PO(X,t) and
(Xo, O(Xp)) is go-T

Proof: Let Oc PO(X,7 ) and let Ce Px(O). Then there exists xe O such that Px(x) = C. If yeC, then gacl{y} =

gacl{x}, which, by lemma, implies ye O. Since 7 < PO(X, 7), then Px ~(Px(U)) = U for all Ue 7, which implies Py is
closed and open.
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Let G, He X, such that G # H and let xe G and yeH. Then gacl{x} # gacl{y}, which implies that xe¢ gaci{y} or
ye gacl{x}, say x¢ gacl{y}. Since Px is continuous and open, then Ge A = Px{X~gacl{y}}¢ PO(X, O(X,)) and He A

Theorem 5.06: The following are equivalent:
(i) X is gaRy (ii) Xo = { gocl{x}: xe X} and (iii) (X, Q(Xy)) is g T,

Proof: (i) = (ii) Let CeX,, and let xeC. If yeC, then yegacl{y} = gacl{x}, which implies Cegacl{x}. If
ye gacl{x}, then xe gacl{y}, since, otherwise, xe X~gacl{y}e PO(X, ) which implie gacl{x}c X~ gacl{y}, which is
a contradiction. Thus, if ye gacl{x}, then xe gacl{y}, which implies gacl{y} = gacl{x} and yeC. Hence X, =
{gocl{x}: xe X}

(ii) = (iii) Let A # Be X,. Then there exists x, ye X such that A = gacl{x}; B = gacl{y}, and gacl{x}ngacl{y} = 0.
Then Ae C = Px (X~ gacl{y})e PO(X,, O(Xp)) and B¢ C. Thus (X,, O(Xy)) is ga-T,

(iii) = (i) Let xeUegaO(X). Let y¢ U and C,, C, €X, containing x and y respectively. Then x& gacl{y}, which
implies C, # C, and there exists goi-open set A such that C,e A and Cy& A. Since Px is continuous and open, then ye B =
Px'(A)e xe gaO0(X) and x¢ B, which implies y& gocl{x}. Thus gacl{x}c U. This is true for all gacl{x} implies
Ngacl{x}c U. Hence X is go-R,

Theorem 5.07: (X, t) is g0-R; iff (Xo, O(Xp)) is gat-T,
The proof is straight forward from using theorems 5.05 and 5.06 and is omitted

Theorem 5.08: X is go-T;; i = 0, 1, 2. iff there exists a go-continuous, almost—open, 1-1 function from (X, 7) into a
go-T; space; i=0,1,2. respectively.

Proof: If X is ga-T;; i = 0, 1, 2, then the identity function on X satisfies the desired properties. The converse is (ii) part
of Theorem 2.13.

The following example shows that if f: (X, 7)— (Y, o) is continuous, ga-open, bijective, Ae PO(Y, 6), and (Y, ©)
ga-T;; 1=0,1,2, then f -l (A) need not be ag —open and (X, 7 ) need not be go-T; ; i=0,1,2

Theorem 5.09: If /- (X, © )— (Y, 0) is ga-continuous, go-open, and x, yeX such that gacl{x} = gaclfy}, then
gacl{ ix)} = gacl{ A1y)}.

Theorem 5.10: The following are equivalent

(i) (X, t)isgo-Ty

(ii) Elements of Xy are singleton sets and

(iii)There exists a go-continuous, gai-open, 1-1 functionf: (X, ©)— (Y, o), where (Y, o) is go-Ty

Proof: (i) is equivalent to (ii) and (i) = (iii) are straight forward and is omitted.

(iii) = (i) Let x, ye X such that f(x) # f(y), which implies gacl{f(x)} # gocl{f(y)}. Then by theorem 5.09 gacl{x} #
gocl{y}. Hence (X, 7)is ga-Ty

Corollary 5.11: A space (X, ) is ga-T;; i = 1,2 iff (X, 7)is go-T;__;; i = 1,2, respectively, and there exists a
go-continuous, go-open, 1-1 function f: (X, ) into a go-Ty space.

Definition 5.04:f:X—Y is point— ga-closure 1-1 iff for x, ye X such that gacl{x} # goacl{y}, gocl{f(x)} #
gocl{f(y)}.

Theorem 5.12:

(i) If /- (X, T)—> (Y, 0) is point— ga-closure 1-1 and (X, T) is go-Ty then fis 1-1

(i) If /2 (X, ©)—>(Y, ©), where (X, T)and (Y, o) are ga-T, then fis point— gu-closure 1-1 iff fis 1-1

Proof: omitted

The following result can be obtained by combining results for ga-Ty— identification spaces, go-induced functions and

go-T; spaces; i=1,2.
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Theorem 5.13: X is go-R; ; i = 0,1 iff there exists a go-continuous, almost—open point— go-closure 1-1 function
S (X, t)into a ga-R; space; i = 0,1 respectively.

6. ga-Normal; Almost go-normal and Mildly go-normal spaces:

Definition 6.1: A space X is said to be gai-normal if for any pair of disjoint closed sets F; and F,, there exist disjoint
ga-open sets U and V such that FicUand F, c V.

Example 4: Let X = {a, b, c} and T = {9, {a}, {b, c}, X}. Then X is ga-normal.

Example 5: Let X = {a, b, ¢, d} and © = {¢,{b, d},{a, b, d},{b, c, d}, X}. Then X is not gai-normal and is not normal.
We have the following characterization of goi-normality.

Theorem 6.1: For a space X the following are equivalent:

(i) Xis go-normal.

(ii) For every pair of open sets U and V whose union is X, there exist gai-closed sets A and B such that AcU, B cV
and AUB =X.

(iii) For every closed set F and every open set G containing F, there exists a gai-open set U such that

FcUcgal(U) cG.

Proof: (a)=(b): Let U and V be a pair of open sets in a go-normal space X such that X =UUV. Then X-U, X-V are
disjoint closed sets. Since X is go-normal there exist disjoint goi-open sets U; and V such that X-U c U, and X-V c
V. Let A=X-U;, B=X-V,. Then A and B are ga-closed sets such that A cU, B cV and AUB = X.

(b) =(c): Let F be a closed set and G be an open set containing F. Then X-F and G are open sets whose union is X.
Then by (b), there exist ga-closed sets W, and W, such that W; < X-F and W, ¢ G and W; UW, = X. Then Fc X-W,,
X-G < X-W; and (X-W)N(X-W,)= ¢. Let U= X-W, and V= X-W,. Then U and V are disjoint goi-open sets such that
FcUcX-VcG.As X-V is ga-closed set, we have gacl(U) cX-V and FcUc gacl(U)cG.

(c) = (a): Let F; and F, be any two disjoint closed sets of X. Put G = X-F,, then F;NG = ¢. F; c G where G is an open
set. Then by (c), there exists a go-open set U of X such that F; ¢ U c gacl(U)cG. It follows that F, ¢ X-gacl(U) =V,
say, then V is ga-open and U N V = ¢. Hence F, and F, are separated by go-open sets U and V. Therefore X is ga-
normal.

Theorem 6.2: A regular open subspace of a goi-normal space is go-normal.

Proof: Let Y be a regular open subspace of a ga-normal space X. Let A and B be disjoint closed subsets of Y. As Y is
regular open, A,B are closed sets of X. By go-normality of X, there exist disjoint goi-open sets U and V in X such that
A cU and BcV, UNnY and VNY are go-open in Y such that AcUNY and BcVNY. Hence Y is goi-normal.

Example 6: Let X = {a, b, c} with t = {¢, {a}, {b}, {a, b}, X} is ga-normal and go-regular.
However we observe that every ga-normal go-Ry space is go-regular.
Now, we define the following.

Definition 6.2: A function f: X — Y is said to be almost — ga-irresolute if for each x in X and each go-neighborhood V
of fix), gacl(f (V) is a go-neighborhood of x.

Clearly every go-irresolute map is almost go-irresolute.
The Proof of the following lemma is straightforward and hence omitted.

Lemma 6.1: f is almost go-irresolute iff f vy < ga-int(gacl(f 'V)))) for every VegaO(Y). Now we prove the
following.

Lemma 6.2: fis almost ga-irresolute iff flgacl(U)) c gacl(f(U)) for every Ue gaO(X).

Proof: Let Ue g@O(X).Suppose y¢ gocl(f(U)). Then there exists Ve gaO(y) such that Vf (U) =¢.
Hence f(V)NU = ¢. Since Ue gaO(X), we have go-int(gacl(f'(V))) N gael(U) = ¢. Then by lemma 6.1,
£ (V) gacl(U) = ¢ and hence VNf(gacl(U)) = ¢. This implies that ye f(gacl(U)).
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Conversely, if Ve gaO(Y), then W = X-gacl(f "V))e ga0(X). By hypothesis, flgacl(W))c gocl(fiW))) and hence X-
go-int(gacl(f'(V))) = gacl(W) < f'(gacl(fiW))) < figacl[f X+ (V)]) < f '[gacl(Y-V)] = f(Y-V) =X (V).

Therefore, f'(V)c ga-int(gacl(f'(V))). By lemma 6.1, fis almost go-irresolute.
Now we prove the following result on the invariance of go-normality.

Theorem 6.3: If f is an M- ga-open continuous almost go-irresolute function from a go-normal space X onto a space
Y, then Y is ga-normal.

Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, f'(A) is closed and f
'(B) is an open set of X such that /' (A) c f'(B). As X is go-normal, there exists a gai-open set U in X such that f'(A)
c U c gacl(U)c f'(B). Then fif(A))c AU) c flgaclU)) < £ (B)). Since f is M-go-open almost go-irresolute
surjection, we obtain Ac f (U) c gacl(f(U)) c B. Then again by Theorem 6.1 the space Y is gai-normal.

Lemma 6.3: A mapping f is M- go-closed if and only if for each subset B in Y and for each go-open set U in X
containing f'(B), there exists a gai-open set V containing B such that f'(V)cU.

Now we prove the following:

Theorem 6.4: If f is an M- ga-closed continuous function from a go-normal space onto a space Y, then Y is go-
normal.

Proof of the theorem is routine and hence omitted.
Now in view of lemma 2.2 [9] and lemma 6.3, we prove that the following result.

Theorem 6.5: If f is an M- goi-closed map from a weakly Hausdorff go-normal space X onto a space Y such that f'(y)
is S-closed relative to X for each ye Y, then Y is go-T,.

Proof: Let y; and y, be any two distinct points of Y. Since X is weakly Hausdorff, £ (y,) and f"'(y,) are disjoint closed
subsets of X by lemma 2.2 [9]. As X is gai-normal, there exist disjoint go-open sets V, and V, such that f ' (y;) < V;, for
i=1,2. Since f is M- goi-closed, there exist go-open sets U; and U, containing y, and y, such that /' (U) c V,

fori=1, 2. Then it follows that U;nU, = ¢. Hence Y is ga-T>.

Theorem 6.6: For a space X we have the following:
(a) If X is normal then for any disjoint closed sets A and B, there exist disjoint go-open sets U, V such that A — U and
BcV;

(b) If X is normal then for any closed set A and any open set V containing A, there exists an goi-open set U of X such
that AcUcgoacl(U) V.

Definition 6.2: X is said to be almost ga-normal if for each closed set A and each regular closed set B such that
ANB = ¢, there exist disjoint goi-open sets U and V such that AcU and BcV.

Clearly, every go-normal space is almost ga-normal, but not conversely in general.
Example 7: Let X = {a, b, c} and © = {¢,{a}, {a, b}, {a, c}, X}.Then X is almost ga-normal and not ga-normal.
Now, we have characterization of almost gai-normality in the following.

Theorem 6.7: For a space X the following statements are equivalent:
(i) X s almost goi-normal

(ii) For every pair of sets U and V, one of which is open and the other is regular open whose union is X, there exist go-
closed sets G and H such that GcU, HcV and GUH = X.

(iii) For every closed set A and every regular open set B containing A, there is a go-open set V such that A cVc
gacl(V) c B.

Proof: (a)=(b) Let U be an open set and V be a regular open set in an almost ga-normal space X such that UV = X.
Then (X-U) is closed set and (X-V) is regular closed set with (X-U)N(X-V) = ¢. By almost  goa-normality of X, there

© 2011, IJMA. All Rights Reserved 2825



S. Balasubramanian** and M. Lakshmi Sarada’/ On ga-Separation Axioms/ IIMA- 2(12), Dec.-2011, Page: 2818-2830

exist disjoint ga-open sets Uy and V; such that X-U c U; and X-V < V. Let G = X-U; and H = X-V,. Then G and H
are ga-closed sets such that GcU, HcV and GUH = X.

(b) = (¢) and (c) = (a) are obvious.
One can prove that almost ga-normality is also regular open hereditary.

Almost goi-normality does not imply almost go-regularity in general. However, we observe that every almost
ga-normal go-R space is almost ga-regular.

Next, we prove the following.

Theorem 6.8: Every almost regular, v-compact space X is almost goi-normal.

Recall that a function f: X— Y is called rc-continuous if inverse image of regular closed set is regular closed.
Now, we state the invariance of almost goi-normality in the following.

Theorem 6.9: If fis continuous M- ga-open rc-continuous and almost ga-irresolute surjection from an almost
go-normal space X onto a space Y, then Y is almost goi-normal.

Definition 6.3: A space X is said to be mildly goi-normal if for every pair of disjoint regular closed sets F; and F, of X,
there exist disjoint go-open sets U and V such that Fyc Uand F, c V.

Example 8: Let X = {a, b, c} and T = {¢,{b},{a, b},{b, c}, X}. Then X is mildly go-regular.
We have the following characterization of mild goi-normality.

Theorem 6.10: For a space X the following are equivalent.
(i) X is mildly go--normal.

(ii) For every pair of regular open sets U and V whose union is X, there exist ga-closed sets G and H such that G c U,
Hc Vand GUH =X.

(iii) For any regular closed set A and every regular open set B containing A, there exists a goi-open set U such that
AcUcgacl(U)cB.

(iv) For every pair of disjoint regular closed sets, there exist ga-open sets U and V such that AcU, BcV and
gocl(U)n gacl(V) = ¢.

This theorem may be proved by using the arguments similar to those of Theorem 6.7.
Also, we observe that mild ga-normality is regular open hereditary.
We define the following

Definition 6.4: A space X is weakly go-regular if for each point x and a regular open set U containing {x}, there is a
ga-open set V such that xe V cclV c U.

Example 9: Let X = {a, b, c} and © = {¢,{b}.{a, b}.{b, c}, X}. Then X is weakly ga-regular.
Example 10: Let X = {a, b, ¢} and T = {¢,{a},{b}.{a, b}, X}. Then X is not weakly ga.-regular.

Theorem 6.11: If f: X — Y is an M- go-open rc-continuous and almost ga-irresolute function from a mildly go-
normal space X onto a space Y, then Y is mildly gai-normal.

Proof: Let A be a regular closed set and B be a regular open set containing A. Then by rc-continuity of f, f~'(A)is a
regular closed set contained in the regular open set f'(B). Since X is mildly go-normal, there exists a go-open set V
such that f'(A) cVc gacl(V)  f'(B) by Theorem 6.10. As f'is M- go-open and almost gai-irresolute surjection, it
follows that fiV)e gaO(Y) and Ac fiV) c gacl(fiV))c B. Hence Y is mildly goi-normal.
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Theorem 6.12: If /: X — Y is rc-continuous, M- ga-closed map from a mildly goi-normal space X onto a space Y, then
Y is mildly goi-normal.

7. ga-US spaces:

Definition 7.1:A sequence <x,> is said to be go-converges to a point x of X, written as <x,> —*% x if <x,> is
eventually in every gai-open set containing X.

Clearly, if a sequence <x,> r-converges to a point x of X, then <x,> ga-converges to X.

Definition 7.2: X is said to be ga-US if every sequence <x,> in X go-converges to a unique point.

Theorem 7.1: Every ga-US space is go-T.

Proof: Let X be ga-US space. Let x and y be two distinct points of X. Consider the sequence <x,> where x, = x for
every n. Cleary, <x,> — %% x. Also, since x # y and X is go-US, <x,> cannot go-converge to y, i.e, there exists a goi-
open set V containing y but not x. Similarly, for the sequence <y,> where y, =y for all n, and proceeding as above we
get a goi-open set U containing x but not y. Thus, the space X is go-T;.

Theorem 7.2: Every go-T, space is gai-US.

Proof: Let X be go-T, space and <x,> be a sequence in X. If possible suppose that <x,> go-converge to two distinct
points x and y. That is, <x,> is eventually in every ga-open set containing x and also in every goi-open set containing
y. This is contradiction since X is go-T, space. Hence the space X is ga-US.

Definition 7.3: A set F is sequentially ga-closed if every sequence in F gai-converges to a point in F.

Theorem 7.3: X is goi-US iff the diagonal set is a sequentially go-closed subset of X x X.

Proof: Let X be ga-US. Let <x,, x,> be a sequence in A. Then <x,> is a sequence in X. As X is ga-US, <x,> — %% x
for a unique x € X. i.e., if <x,> —**x and y. Thus, x = y. Hence A is sequentially go-closed.

Conversely, let A be sequentially go-closed and let <x,> — *“ x and y. Hence <x,, x,> — *” (x,y). Since A is
sequentially ga-closed, (x,y) € A which means that x =y implies space X is go-US.

Definition 7.4: A subset G of a space X is said to be sequentially ga-compact if every sequence in G has a
subsequence which ga-converges to a point in G.

Theorem 7.4: In a ga-US space every sequentially goi-compact set is sequentially ga-closed.

Proof: Let X be go-US space. Let Y be a sequentially goi-compact subset of X. Let <x,> be a sequence in Y.
Suppose that <x,> goi-converges to a point in X-Y. Let <x,,> be subsequence of <x,> that goi-converges to a point

y € Y since Y is sequentially go-compact. Also, let a subsequence <x,,> of <x,> go-converge to x € X-Y. Since
<Xyp> 18 a sequence in the gai-US space X, x = y. Thus, Y is sequentially go-closed set.

Next, we give a hereditary property of gai-US spaces.

Theorem 7.5: Every regular open subset of a go-US space is gai-US.

Proof: Let X be a ga-US space and Y c X be an regular open set. Let <x,> be a sequence in Y. Suppose that <x,> goi-
converges to x and y in Y. We shall prove that <x,> go-converges to x and y in X. Let U be any go-open subset of X
containing x and V be any go-open set of X containing y. Then, UNY and VNY are go-open sets in Y. Therefore,
<x,> is eventually in UNY and VMY and so in U and V. Since X is ga-US, this implies that x = y. Hence the subspace
Y is ga-US.

Theorem 7.6: A space X is go.-T, iff it is both go-R,; and go-US.

Proof: Let X be ga-T, space. Then X is go-R; and gai-US by Theorem 7.2.

Conversely, let X be both go-R; and go-US space. By Theorem 7.1, X is both go-T; and ga-R; and, it follows that
space X is goi-T,.
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Definition 7.5: A point y is a go-cluster point of sequence <x,> iff <x,> is frequently in every ga-open set containing
x. The set of all ga-cluster points of <x,> will be denoted by go-cl(x,).

Definition 7.6: A point y is go-side point of a sequence <x,> if y is a go-cluster point of <x,> but no subsequence of
<Xp> gOi-converges toy.

Now, we define the following.

Definition 7.7: A space X is said to be

(i) go-S;ifitis ga-US and every sequence <x,> ga-converges with subsequence of <x,> go.-side points.

(i1) go-S, if it is go-US and every sequence <x,> in X go-converges which has no ga-side point.

Lemma 7.1: Every ga-S, space is ga-S; and Every ga-S; space is ga-US.

Using sequentially continuous functions, we define sequentially goi-continuous functions.

Definition 7.8: A function fis said to be sequentially go-continuous at x € X if f{x,) — ¢¥ f(x) whenever <x,> — % x.

If fis sequentially go-continuous at all xe X, then fis said to be sequentially go-continuous.

Theorem 7.7: Let fand g be two sequentially go-continuous functions. If Y is ga-US, then the set A = {x | fix) = g(x)}
is sequentially goi-closed.

Proof: Let Y be ga-US and suppose that there is a sequence <x,> in A go-converging to x € X. Since f and g are
sequentially go-continuous functions, f (x,) — *% f(x) and g(x,) — *% g(x). Hence f(x) = g(x) and x€ A. Therefore, A is
sequentially go-closed.

Next, we prove the product theorem for ga-US spaces.
Theorem 7.8: Product of arbitrary family of ga-US spaces is go-US.

Proof: Let X = [T, X5 where X, is go-US. Let a sequence <x,> in X go-converges to X (= x;) and y (= yj). Then
<xm> = *% x;, and y,, for all Ae A. For suppose there exists a [le A such that <x,,> does not go-converges to x,. Then
there exists a T,- go-open set U, containing x, such that <x,,> is not eventually in U,. Consider the set U = [, Xy x
U,. Then U is a gai-open subset of X and x € U. Also, <x,> is not eventually in U, which contradicts the fact that <x,>

—8%x. Thus we get <xp> — *“ x) and y;, for all Ae A. Since X is gai-US for each Ae A. Thus x = y. Hence X is got-
US.

8. Sequentially sub- ga-continuity:

Definition 8.1: A function fis said to be
(i) sequentially nearly goi-continuous if for each point xe X and each sequence <x,> — *% x in X, there exists a
subsequence <x> of <x,> such that <f(X)>—> *“ f(x).

(ii) sequentially sub- go-continuous if for each point xe X and each sequence <x,> — ¥ x in X, there exists a
subsequence <x,> of <x,> and a point ye Y such that <f(x,)> —*%y.

(iii) sequentially go-compact preserving if f{K) is sequentially gai-compact in Y for every sequentially ga-compact set
Kof X.

Lemma 8.1: Every function fis sequentially sub- ga-continuous if Y is a sequentially goi-compact.

Proof: Let <x,> — **x in X. Since Y is sequentially goi-compact, there exists a subsequence {fix,)} of {f(x,)} go-
converging to a point ye Y. Hence fis sequentially sub- gai-continuous.

Theorem 8.1: Every sequentially nearly ga-continuous function is sequentially goi-compact preserving.

Proof: Assume fis sequentially nearly go-continuous and K any sequentially gai-compact subset of X. Let <y,> be any
sequence in f (K). Then for each positive integer n, there exists a point x, € K such that f(x,) = y,. Since <x,> is a
sequence in the sequentially go-compact set K, there exists a subsequence <x,> of <x,> go-converging to a point X €
K. By hypothesis, fis sequentially nearly go-continuous and hence there exists a subsequence <x;> of <x,> such that
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f(x)— #% fix). Thus, there exists a subsequence <y;> of <y,> go-converging to f{x)e f(K). This shows that f(K) is
sequentially goi-compact setin Y.

Theorem 8.2: Every sequentially a-continuous function is sequentially ga-continuous.

Proof: Let f be a sequentially a-continuous and <x,> —* xe X. Then <x,> —“ x. Since f is sequentially a-continuous,
Fx)—%(x). But we know that <x,> —%x implies <x,> — ¢* x and hence f(x,)— *“ f(x) implies fis sequentially
ga-continuous.

Theorem 8.3: Every sequentially go-compact preserving function is sequentially sub- go-continuous.

Proof: Suppose fis a sequentially ga-compact preserving function. Let x be any point of X and <x,> any sequence in
X go-converging to x. We shall denote the set {x,In=1,2,3 ...} by A and K= A U {x}. Then K is sequentially
ga-compact since (x,) — *“ x. By hypothesis, f is sequentially go-compact preserving and hence f (K) is a sequentially
ga-compact set of Y. Since {f(x,)} is a sequence in f{K), there exists a subsequence {f(x,)} of {f(x,)} g-converging
to a point ye f{(K). This implies that fis sequentially sub- ga-continuous.

Theorem 8.4: A function /2 X— Y is sequentially goi-compact preserving iff fx: K — fiK) is sequentially sub- ga-
continuous for each sequentially goi-compact subset K of X.

Proof: Suppose fis a sequentially go-compact preserving function. Then f(K) is sequentially gai-compact set in Y for
each sequentially go-compact set K of X. Therefore, by Lemma 8.1 above, fix: K— f(K) is sequentially ga-continuous
function.

Conversely, let K be any sequentially goi-compact set of X. Let <y,> be any sequence in f{K). Then for each positive
integer n, there exists a point x,€ K such that f(x,) = y,. Since <x,> is a sequence in the sequentially go-compact set K,
there exists a subsequence <x,> of <x,> go-converging to a point x € K. By hypothesis, f x: K— f(K) is sequentially

sub- ga-continuous and hence there exists a subsequence <y, > of <y,> ga-converging to a point ye f{K).This implies
that f{K) is sequentially goi-compact set in Y. Thus, fis sequentially go.-compact preserving function.

The following corollary gives a sufficient condition for a sequentially sub- ga-continuous function to be sequentially
ga-compact preserving.

Corollary 8.1: If fis sequentially sub- go-continuous and f{K) is sequentially go-closed set in Y for each sequentially
ga-compact set K of X, then f'is sequentially go-compact preserving function.

Proof: Omitted.
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