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ABSTRACT 

 

2 p
P -factorization of a complete bipartite graph for p an integer was studied by Wang [1]. Further, Beiliang [2] 

extended the work of Wang [1], and studied the 2kP  -factorization of complete bipartite multigraphs. For even value of 

k in kP -factorization, the spectrum problem is completely solved [1, 2, 3]. However for odd value of k i.e. 3P , 5P , 7P

and 9P , the path factorization have been studied by a number of researchers [4, 5, 6, 7]. Again, 3P -factorizations of 

complete bipartite multigraphs and symmetric complete bipartite multi-digraphs were studied by Wang and Beiliang 

[8]. In the present paper, we study 7P - factorization of complete bipartite multigraphs and show that the necessary and 

sufficient conditions for the existence of 7P - factorization of complete bipartite multigraph are: 

 

(1) 4 3 ,n m≥  

(2) 4 3 ,m n≥
       

 

(3) 0(mod 7),m n+ ≡
 

 

(4) 7 /[6( )]mn m nλ +  is an integer. 
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1. INTRODUCTION: 

 

Let ,m nK be the complete bipartite graph with two partite set having m and n vertices. The graph ,m nKλ  is disjoint 

union of λ  graphs, each isomorphic to
,m nK  . A subgraph F of 

 ,m nKλ  is called a spanning sub graph of 
,m nKλ  if 

F contains all vertices of  
,m nKλ  . For positive integer K , a path on K -vertices is denoted by kP . A kP -factor of 

,m nKλ    is a spanning subgraph  F  of 
,m nKλ  such that every component of F is a kP , and every pair of kP  has no 

vertex in common. A kP -factorization of ,m nKλ  is a set of edge-disjoint kP -factors of ,m nKλ  which is a partition of 

the set of edges of ,m nKλ . The multigraph ,m nKλ
 
is called kP -factorable whenever it has a kP -factorization. 

 

In this paper we are discussing the necessary and sufficient conditions for the existence of a 7P − factorization of 

complete bipartite multigraph
,m nKλ  . Let 7P  be the path on seven vertices and 

,m nKλ  
 
is 

,m nK
 
in which every edge 

is taken λ  times. A spanning subgraph F  of  ,m nKλ  is called a 7P -factor if each component of  F  is isomorphic to 

7P  . If ,m nKλ  is expressed as an edge disjoint sum of 7P -factor, then this sum is called a 7P -factorization of ,m nKλ .  
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2. MAIN RESULT:  

 

The necessary and sufficient conditions for the existence of a 7P − factorization of complete bipartite multigraph

,m nKλ  are given in theorem 2.1, below. 

 

Theorem: 2.1  
,m nKλ

 
has a 7P − factorization if and only if 

(1) 4 3 ,n m≥  

(2) 4 3 ,m n≥  

(3) 0(mod 7),m n+ ≡  

(4) 7 /[6( )]mn m nλ +  is an integer. 

 

Proof: Let 
,m nKλ  is factorized into r  number of 7P − factors, and t be the number of components of   each    7P −

factor. Then  
( )

7

m n
t

+
=   and  

7
.

[6( )]

mn
r

m n

λ
=

+
  

 

Hence conditions (3) and (4) are necessary. 

 

Among these t components, let x  and y  be the number of components whose end points are in Y  and X , 

respectively. Then we has 3 4x y m+ =  and 4 3 .x y n+ =  Hence 
(4 3 )

7

m n
x

−
=  and 

(4 3 )
.

7

n m
y

−
=  From 

0 x m≤ ≤ and 0 ,y n≤ ≤ we have 3 4n m≤  and 3 4 .m n≤ Conditions (1) and (2) are, therefore necessary. 

Now we prove the following existence theorem, which is used later in this paper 

 

Theorem: 2.2 If ,m nKλ  has a 7P − factorization, then ,sm snKλ  has a 7P − factorization for every positive integer s . 

Proof: Let 
,s sK  is 1-factorable [9], and {H1, H2 … Hs} be a 1-factorization of it. For each i with 1 � i � s , replace 

every edge of Hi with a ,m n
Kλ  to get a spanning sub graph Gi of 

,sm sn
Kλ  such that the Gi’s {1 � i � s  } are pair wise 

edge disjoint and there sum is
,sm snKλ . Since ,m n

Kλ  is 7P − factorable, therefore Gi is also 7P − factorable, and hence, 

,sm snKλ  is also 7P − factorable. 

 

Theorem: 2.3 If ,m nKλ  has a 7P − factorization, then ,m ns Kλ  has a 7P − factorization for every positive integer s . 

 

Proof: Construct a 7P − factorization of ,m nKλ  repeatedly s  number of times. Then we have a 7P − factorization of

,m ns Kλ . 

 

Now we will prove theorem 2.1. There are three cases to consider, 

 

Case: 1 ( (4 3 ) :m n=  In this case, from theorem 2.2 and theorem 2.3 
3 ,4n nKλ  has a 7P − factorization. 

 

Case:  2 (4 3 ) :n m=  obviously, 
3 ,4m mKλ  has a 7P − factorization. 

Case: 3 (4 3m n> and 4 3 ) :n m> In this case, let  
(4 3 )

,
7

n m
a

−
=  

(4 3 )
,

7

m n
b

−
= ,

7

m n
t

+
= and 

7
.

[6( )]

mn
r

m n

λ
=

+
 

 

Then from conditions (1)-(4) in theorem 2.1, , ,a b t  and r  are integers, and 0 < a  < m and 0 < b  < n. We have 

3 4a b m+ = and 4 3a b n+ = . Hence 2 ( ) .
6( )

ab
r a b

a b

λ
λ= + +

+
 Let ,

6( )

ab
z

a b

λ
=

+
 which is a positive integer. 

And let gcd (3 a , 4b) = d, 3 a = d p , 4b = dq, where gcd (p, q) = 1. Then dq is even and .
[6( )]

dpq
z

p q

λ
=

+
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These equalities imply the following equalities. 

 

6(4 3 )
,

p q z
d

pqλ

+
=  

6( )(4 3 )
,

p q p q z
m

pqλ

+ +
=  

(16 9 )(4 3 )
,

2

p q p q z
n

pqλ

+ +
=  

( )(16 9 )
,

p q p q z
r

pq

+ +
=  

2 (4 3 )
,

p p q z
a

pqλ

+
=  

3 (4 3 )
.

2

q p q z
b

pqλ

+
=  

 

Here, 

t  = the number of copies of 7P in any factor,  

r  = the number of 7P − factor in the factorization, 

a  = the number of copies of 7P  with its endpoints in Y  in a particular 7P −  factor (type M), 

b  = the number of copies of 7P  with its endpoints in X  in a particular 7P −  factor (type W), 

c  = the total number of copies of 7P  in the whole factorization. 

 

The following lemma can be verified. 

 

Lemma: 2.1 Let a , ,b  p  and q be positive integers, if gcd ( , )p q = 1 then gcd ( , ) 1p q pq+ =  and 

if gcd ( , ) 1,ap bq =  then gcd ( , ) 1.ap bq pq+ =  

 

By using p , ,q
 
and ,d  the parameters m  and n , satisfying conditions (1)-(4) in theorem 2.1 can be expressed as 

follows: 

 

Lemma: 2.2  

 

(1) If gcd ( ,9)p = 1 and gcd(q, 16) = 1 then there exist a positive integer s  such that   

12( )(4 3 ) ,m p q p q s λ= + +
 

(16 9 )(4 3 ) ,n p q p q s λ= + +
 

4 (4 3 ) ,a p p q s λ= +  3 (4 3 ) ,b q p q s λ= +  

2( )(16 9 ) .r p q p q s= + +
 

 

(2) If gcd ( ,9)p =  1 and gcd(q, 16) = 2, Let 12q q= .  Then there exist a positive integer s such that   

1 16( 2 )(2 3 ) ,m p q p q s λ= + +  1 1(8 9 )(2 3 ) ,n p q p q s λ= + +  

12 (2 3 ) ,a p p q s λ= +  1 13 (2 3 ) ,b q p q s λ= +  

1 1( 2 )(8 9 ) .r p q p q s= + +
 

 

(3) If gcd ( ,9)p = 1 and gcd(q, 16) = 4, Let 24 .q q=   Then there exist a positive integer s such that 

2 26( 4 )( 3 ) ,m p q p q s λ= + +
 2 22(4 9 )( 3 ) ,n p q p q s λ= + +

 
22 ( 3 ) ,a p p q s λ= +

 2 26 ( 3 ) ,b q p q s λ= +
 

2 2( 4 )(4 9 ) .r p q p q s= + +
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(4) If gcd ( ,9)p = 1 and gcd(q, 16) = 8, let 38 .q q=   Then there exist a positive integer s  such that 

3 33( 8 )( 6 ) ,m p q p q s λ= + +
 3 32(2 9 )( 6 ) ,n p q p q s λ= + +

 

3( 6 ) ,a p p q s λ= +
 3 36 ( 3 ) ,b q p q s λ= +

 
3 3( 8 )(2 9 ) .r p q p q s= + +

  

(5) If gcd ( ,9)p = 1 and gcd(q, 16) = 8, let 416 .q q=   Then there exist a positive integer s such that 

4 43( 16 )( 12 ) ,m p q p q s λ= + +
 4 44( 9 )( 12 ) ,n p q p q s λ= + +

 

4( 12 ) ,a p p q s λ= +
 4 412 ( 12 ) ,b q p q s λ= +

 

4 42( 16 )( 9 ) .r p q p q s= + +
  

(6) If  gcd ( ,9)p = 3 and gcd(q, 16) = 1, let 13 .p p=   Then there exist a positive integer s such that 

1 112(3 )(4 ) ,m p q p q s λ= + +
 1 13(16 3 )(4 ) ,n p q p q s λ= + +

 

1 112 (4 ) ,a p p q s λ= +
    13 (4 ) ,b q p q s λ= +

 

1 12(3 )(16 3 ) .r p q p q s= + +
 

 

(7) If  gcd ( ,9)p = 3 and gcd(q, 16) = 2, let 12q q= and 13 .p p=   Then there exist a positive integer s  such that 

1 1 1 16(3 2 )(2 ) ,m p q p q s λ= + +
  1 1 1 13(8 3 )(2 ) ,n p q p q s λ= + +

 

1 1 16 (2 ) ,a p p q s λ= +
  1 1 13 (2 ) ,b q p q s λ= +

 

1 1 1 1(3 2 )(8 3 ) .r p q p q s= + +
  

(8) If  gcd ( ,9)p = 3 and gcd(q, 16) = 4, let 24q q=  and 13 .p p=   Then there exist a positive integer s  such that 

1 2 1 26(3 4 )( ) ,m p q p q s λ= + +   1 2 1 26(4 3 )( ) ,n p q p q s λ= + +  

1 1 26 ( ) ,a p p q s λ= +    2 1 26 ( ) ,b q p q s λ= +  

1 2 1 2(3 4 )(4 3 ) .r p q p q s= + +
 

 

(9)  If gcd ( ,9)p = 3 and gcd(q, 16) = 4, let 38q q=  and 13 .p p=   Then there exist a positive integer s  such that 

1 3 1 33(3 8 )( 2 ) ,m p q p q s λ= + +
  1 3 1 36(2 3 )( 2 ) ,n p q p q s λ= + +

 

1 1 33 ( 2 ) ,a p p q s λ= +
   3 1 36 ( 2 ) ,b q p q s λ= +

 

1 3 1 3(3 8 )(2 3 ) .r p q p q s= + +
  

(10) If gcd ( ,9)p = 3 and gcd (q, 16) = 16, let 416q q= and 13 .p p= Then there exist a positive Integer s  such that 

1 4 1 43(3 16 )( 4 ) ,m p q p q s λ= + +   1 4 1 4n =12(p +3q )(p +4q )s/λ , 

1 1 43 ( 4 ) ,a p p q s λ= + 4 1 412 ( 4 ) ,b q p q s λ= +  

1 4 1 42(3 16 )( 3 ) .r p q p q s= + +
 

 

(11) If gcd ( ,9)p = 9 and gcd (q, 16) = 1. Let p = 9p2. Then there exist a positive integer s  such that 

2 24(9 )(12 ) ,m p q p q s λ= + +  2 23(16 )(12 ) ,n p q p q s λ= + +  

2 212 (12 ) ,a p p q s λ= +  2(12 ) ,b q p q s λ= +  

 

2 22(9 )(16 ) .r p q p q s= + +
 

 

(12) If gcd ( ,9)p = 9 and gcd (q, 16) = 2. Let p = 9p2 and 12 .q q=  Then there exist a positive    integer s  such that

2 1 2 12(9 2 )(6 ) ,m p q p q s λ= + +  2 1 2 13(8 )(6 ) ,n p q p q s λ= + +  
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2 2 16 (6 ) ,a p p q s λ= +  1 2 1(6 ) ,b q p q s λ= +  

2 1 2 1(9 2 )(8 3 ) .r p q p q s= + +
 

 

(13) If gcd ( ,9)p = 9 and gcd (q, 16) = 4. Let p = 9p2 and 24 .q q=  Then there exist a positive integer s  such that

2 2 2 22(9 4 )(3 ) ,m p q p q s λ= + +  2 2 2 26(4 )(3 ) ,n p q p q s λ= + +  

2 2 26 (3 ) ,a p p q s λ= +  2 2 22 (3 ) ,b q p q s λ= +  

2 2 2 2(9 4 )(4 ) .r p q p q s= + +
 

 

(14) If gcd ( ,9)p = 9 and gcd (q, 16) = 8. Let p = 9p2 and 38 .q q=  Then there exist a positive integer s  such that

2 3 2 3(9 8 )(3 2 ) ,m p q p q s λ= + +  2 3 2 36(2 )(3 2 ) ,n p q p q s λ= + +  

2 2 33 (3 2 ) ,a p p q s λ= + 3 2 32 (3 2 ) ,b q p q s λ= +  

2 3 2 3(9 8 )(2 ) .r p q p q s= + +  

 

(15) If gcd ( ,9)p = 9 and gcd (q, 16) = 16. Let p = 9p2 and 416 .q q=  Then there exist a positive integer s  such that
 

2 4 2 4(9 16 )(3 4 ) ,m p q p q s λ= + +  2 4 2 412( )(3 4 ) ,n p q p q s λ= + +  

2 2 43 (3 4 ) ,a p p q s λ= +  4 2 44 (3 4 ) ,b p p q s λ= +  

2 4 2 42(9 16 )( ) .r p q p q s= + +
 

 

Proof: We assume that gcd(p, q) = 1, gcd(p, 9) = 1 and gcd(q, 16) = 1 hold.  

 

Then gcd(16p + 9q, 2) = gcd(4p + 3q, 2) = 1 and gcd(16p, 9q) = gcd(4p, 3q) = 1 hold. From lemma 2.2, we get

(16 9 )(4 3 )

2

p q p q z
n

pqλ

+ +
=

 

, which is an integer. 

Therefore 2z pq  must be an integer.  

 

Let 2s z pq= , then the equalities in (1) hold. Similarly we can prove the other equalities of lemma 2.2.  

 

Below in lemma 2.3 and 2.4, we are giving the direct constructions of graphs for particular values of m and n given in  

Case 1 and 8 of lemma 2.2. The value of s is taken as 1. 

 

Lemma: 2.3 For any positive integer p and q, let 6( 2 )(2 3 )m p q p q λ= + +  and (8 9 )(2 3 ) .n p q p q λ= + +

Then ,m nKλ has a 7P − factorization. 

 

Proof: Let 2 (2 3 )a p p q λ= + , 3 (2 3 )b q p q λ= + , ( 2 )(8 9 )r p q p q= + +  and 1 ( 2 )r p q= + , 

2 (8 9 )r p q= + . Let X and Y be two partite set of  
,m n

Kλ  and set 

                          
, 1 0

, 2 0

{ :1 ,1 },

{ :1 ,1 },

i j

i j

X x i r j m

Y y i r j n

= ≤ ≤ ≤ ≤

= ≤ ≤ ≤ ≤
 

 where 0 1 6(2 3 )m m r p q λ= = +  and 0 2 (2 3 )n n r p q λ= = + . 

We will construct a 7P − factorization of
,m nKλ . In 7P -factor of

,m nKλ , we have 
2( ) 7 (2 3 )t m n p q λ= + = +  

number of vertex disjoint copies, where 2 (2 3 )a p p q λ= + , will be of type M and 3 (2 3 )b q p q λ= +
 
type W. 

Here type M denotes 7P -factor with its ends point in Y, and type W with its end point in X. For each 1 ,i p≤ ≤  let

  

{ }, (2 3 )( 1) 3(2 3 ) 8( 1) 4 , 2 1 :1 2 3 ,1 3,0 1,0 1i i j p q u p q v i v u w j i wE x y j p q u v wλ λ λ λ λ+ + − + + − + + + + − += ≤ ≤ + ≤ ≤ ≤ ≤ ≤ ≤  

and for each 1 ,i q≤ ≤   
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let 

{ 2( 1) , ((2 3 ) )( 1) 3((2 3 ) ) ((2 3 ) )p i p i w t j p q v p q w p q t
E x λ λ λ+ + − + + + + − + + + +=

8 9( 1) 3( 1) , (2 3( 1) )p i v u j p i uy λ+ − + − + + + − +  

                                              }:1 (2 3 ) ,0 2,1 3,0 1,0 1 .j p q u v w tλ≤ ≤ + ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤  

 

Let
1

,ii p q
F E

≤ ≤ +
=� then the graph F is a 7P -factor of 

,m nKλ .Define a bijection � from X Y∪ onto X Y∪ , i.e. � : 

X Y∪  →
onto

 X Y∪  such that �(xi, j) = xi+1, j and �(yi, j) = yi+1,j     where i∈(1,2…r1) and    j∈(1,2…r2). Let 
,Fξ η = 

{� �(x) � �(y): x∈X, y∈Y, xy∈F}. 

 

Therefore, the graphs, 
,Fξ η  {1���r1, 1� � �r2}, are edge disjoint 7P - factor of 

,m nKλ   and its union is also 
,m nKλ . 

Thus {
,Fξ η ; 1���r1, 1���r2} is a 7P - factorization of

,m nKλ  . 

 

Lemma: 2.4 For any positive integer p  and ,q  let 6(3 4 )( )m p q p q λ= + +  and 6(4 3 )( ) .n p q p q λ= + +

Then 
,m nKλ has a 7P − factorization. 

 

Proof Let 6 ( ) , 6 ( ) ,a p p q b q p qλ λ= + = +  (3 4 )(4 3 )r p q p q= + + and 1 (3 4 ),r p q= +  2 (4 3 )r p q= + .  

Let X and Y be two partite set of  
,m nKλ  and set 

 

                          
, 1 0

, 2 0

{ :1 ,1 },

{ :1 ,1 }.

i j

i j

X x i r j m

Y y i r j n

= ≤ ≤ ≤ ≤

= ≤ ≤ ≤ ≤
 

Where 0 1 6( )m m r p q λ= = +  and  0 2 6( ) .n n r p q λ= = +   

 

We will construct a 7P − factorization of
,m nKλ . In 7P -factor of

,m nKλ , we have
2( ) 7 6( )t m n p q λ= + = +  

number of vertex disjoint copies, where 6 ( )a p p q λ= + , will be of type M and 6 ( ) ,b q p q λ= +
 
type W. Here 

type M denotes 7P -factor with its ends point in Y, and type W with its end point in X. 

 

For each 1 ,i p≤ ≤  let 

{ }3( 1) , 4( 1) , 6( 1) 2( 1)
:1 6( ) ,1 3,0 1 .

i i u j i u v j i u v
E x y j p q u vλ λ λ λ− + − + + + − + − += ≤ ≤ + ≤ ≤ ≤ ≤  

And for each 1 ,i q≤ ≤  let 

{ }3 4( 1) , 4 3( 1) ,6 6( 1) 2( 1)
:1 6( ) ,1 3,0 1 .

p i p i u v j p i u p j i u v
E x y j p q u vλ λ λ λ+ + − + + + − + + + − + − += ≤ ≤ + ≤ ≤ ≤ ≤  

 

Let
1

,ii p q
F E

≤ ≤ +
=� then the graph F is a 7P -factor of

,m nKλ . Define a bijection � from X Y∪ onto X Y∪ , 

 

 i.e. � : X Y∪  →
onto

 X Y∪  such that �(xi, j) = xi+1, j and �(yi, j) = yi+1,j where i∈(1,2…r1) and    j∈(1,2…r2). Let 

,Fξ η = {� �(x) � �(y): x∈X, y∈Y, xy∈F}. 

 

 

Therefore, the graphs ,Fξ η  1 2{1 ,1 },r rξ η≤ ≤ ≤ ≤  are edge disjoint 7P -factor of 
,m nKλ   and its union is also

,m nKλ .  

 

Thus {
,Fξ η ; 1 21 ,1r rξ η≤ ≤ ≤ ≤ } is a 7P - factorization of

,m nKλ  . 

 

Proof (Theorem (2.1)): By using theorem 2.2 and theorem 2.3 with lemma 2.2 to 2.4, it can be seen that when the 

parameters m and n satisfy the conditions (1) – (4) in theorem 2.1, the complete bipartite multigraph 
,m nKλ  has 7P - 

factorization. This completes the proof of theorem 2.1. 
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