International Journal of Mathematical Archive-2(12), 2011, Page: 2790-2796

 (C) $\$$ MA Available online through www.ijma.info ISSN 2229-5046
P_{7} - Factorization of complete bipartite multigraphs

U. S. Rajput and Bal Govind Shukla*
Department of mathematics and astronomy, Lucknow University, Lucknow, India
E-mail: usrajput@sify.com, balgovind_shukla@yahoo.com

(Received on: 25-11-11; Accepted on: 17-12-11)

Abstract

$P_{2 p}$-factorization of a complete bipartite graph for p an integer was studied by Wang [1]. Further, Beiliang [2] extended the work of Wang [1], and studied the $P_{2 k}$-factorization of complete bipartite multigraphs. For even value of k in P_{k}-factorization, the spectrum problem is completely solved [1, 2, 3]. However for odd value of k i.e. P_{3}, P_{5}, P_{7} and P_{9}, the path factorization have been studied by a number of researchers [4, 5, 6, 7]. Again, P_{3}-factorizations of complete bipartite multigraphs and symmetric complete bipartite multi-digraphs were studied by Wang and Beiliang [8]. In the present paper, we study P_{7}-factorization of complete bipartite multigraphs and show that the necessary and sufficient conditions for the existence of P_{7}-factorization of complete bipartite multigraph are:

(1) $4 n \geq 3 m$,
(2) $4 m \geq 3 n$,
(3) $m+n \equiv 0(\bmod 7)$,
(4) $7 \lambda m n /[6(m+n)]$ is an integer.

Mathematics Subject Classification: 68R10, 05C70, 05C38.
Key words: Complete bipartite Graph, Factorization of Graph, Spanning Graph.

1. INTRODUCTION:

Let $K_{m, n}$ be the complete bipartite graph with two partite set having m and n vertices. The graph $\lambda K_{m, n}$ is disjoint union of λ graphs, each isomorphic to $K_{m, n}$. A subgraph F of $\lambda K_{m, n}$ is called a spanning sub graph of $\lambda K_{m, n}$ if F contains all vertices of $\lambda K_{m, n}$. For positive integer K, a path on K-vertices is denoted by P_{k}. A P_{k}-factor of $\lambda K_{m, n}$ is a spanning subgraph F of $\lambda K_{m, n}$ such that every component of F is a P_{k}, and every pair of P_{k} has no vertex in common. A P_{k}-factorization of $\lambda K_{m, n}$ is a set of edge-disjoint P_{k}-factors of $\lambda K_{m, n}$ which is a partition of the set of edges of $\lambda K_{m, n}$. The multigraph $\lambda K_{m, n}$ is called P_{k}-factorable whenever it has a P_{k}-factorization.

In this paper we are discussing the necessary and sufficient conditions for the existence of a P_{7}-factorization of complete bipartite multigraph $\lambda K_{m, n}$. Let P_{7} be the path on seven vertices and $\lambda K_{m, n}$ is $K_{m, n}$ in which every edge is taken λ times. A spanning subgraph F of $\lambda K_{m, n}$ is called a P_{7}-factor if each component of F is isomorphic to P_{7}. If $\lambda K_{m, n}$ is expressed as an edge disjoint sum of P_{7}-factor, then this sum is called a P_{7}-factorization of $\lambda K_{m, n}$.

[^0]
2. MAIN RESULT:

The necessary and sufficient conditions for the existence of a P_{7} - factorization of complete bipartite multigraph $\lambda K_{m, n}$ are given in theorem 2.1, below.

Theorem: 2.1 $\lambda K_{m, n}$ has a P_{7} - factorization if and only if
(1) $4 n \geq 3 m$,
(2) $4 m \geq 3 n$,
(3) $m+n \equiv 0(\bmod 7)$,
(4) $7 \lambda m n /[6(m+n)]$ is an integer.

Proof: Let $\lambda K_{m, n}$ is factorized into r number of P_{7}-factors, and t be the number of components of each $P_{7}-$ factor. Then $t=\frac{(m+n)}{7}$ and $r=\frac{7 \lambda m n}{[6(m+n)]}$.

Hence conditions (3) and (4) are necessary.
Among these t components, let x and y be the number of components whose end points are in Y and X, respectively. Then we has $3 x+4 y=m$ and $4 x+3 y=n$. Hence $x=\frac{(4 m-3 n)}{7}$ and $y=\frac{(4 n-3 m)}{7}$. From $0 \leq x \leq m$ and $0 \leq y \leq n$, we have $3 n \leq 4 m$ and $3 m \leq 4 n$. Conditions (1) and (2) are, therefore necessary. Now we prove the following existence theorem, which is used later in this paper

Theorem: 2.2 If $\lambda K_{m, n}$ has a P_{7}-factorization, then $\lambda K_{s m, s n}$ has a P_{7}-factorization for every positive integer s. Proof: Let $K_{s, s}$ is 1-factorable [9], and $\left\{\mathrm{H}_{1}, \mathrm{H}_{2} \ldots \mathrm{H}_{s}\right\}$ be a 1-factorization of it. For each i with $1 \leq \mathrm{i} \leq s$, replace every edge of H_{i} with a $\lambda K_{m, n}$ to get a spanning sub graph G_{i} of $\lambda K_{s m, s n}$ such that the G_{i} 's $\{1 \leq \mathrm{i} \leq s\}$ are pair wise edge disjoint and there sum is $\lambda K_{s m, s n}$. Since $\lambda K_{m, n}$ is P_{7} - factorable, therefore G_{i} is also P_{7}-factorable, and hence, $\lambda K_{s m, s n}$ is also P_{7} - factorable.

Theorem: 2.3 If $\lambda K_{m, n}$ has a P_{7}-factorization, then $s \lambda K_{m, n}$ has a P_{7} - factorization for every positive integer s.
Proof: Construct a P_{7}-factorization of $\lambda K_{m, n}$ repeatedly s number of times. Then we have a P_{7}-factorization of $s \lambda K_{m, n}$.

Now we will prove theorem 2.1. There are three cases to consider,
Case: $\mathbf{1}\left((4 m=3 n)\right.$: In this case, from theorem 2.2 and theorem $2.3 \lambda K_{3 n, 4 n}$ has a P_{7}-factorization.
Case: $2(4 n=3 m)$: obviously, $\lambda K_{3 m, 4 m}$ has a P_{7}-factorization.
Case: $3(4 m>3 n$ and $4 n>3 m)$: In this case, let $a=\frac{(4 n-3 m)}{7}, b=\frac{(4 m-3 n)}{7}, t=\frac{m+n}{7}$, and $r=\frac{7 \lambda m n}{[6(m+n)]}$.
Then from conditions (1)-(4) in theorem 2.1, a, b, t and r are integers, and $0<a<\mathrm{m}$ and $0<b<\mathrm{n}$. We have $3 a+4 b=m$ and $4 a+3 b=n$. Hence $r=2 \lambda(a+b)+\frac{\lambda a b}{6(a+b)}$. Let $z=\frac{\lambda a b}{6(a+b)}$, which is a positive integer.
And let $\operatorname{gcd}(3 a, 4 \mathrm{~b})=\mathrm{d}, 3 a=\mathrm{d} p, 4 \mathrm{~b}=\mathrm{dq}$, where $\operatorname{gcd}(\mathrm{p}, \mathrm{q})=1$. Then $d q$ is even and $z=\frac{\lambda d p q}{[6(p+q)]}$.

These equalities imply the following equalities.
$d=\frac{6(4 p+3 q) z}{\lambda p q}$,
$m=\frac{6(p+q)(4 p+3 q) z}{\lambda p q}$,
$n=\frac{(16 p+9 q)(4 p+3 q) z}{2 \lambda p q}$,
$r=\frac{(p+q)(16 p+9 q) z}{p q}$,
$a=\frac{2 p(4 p+3 q) z}{\lambda p q}$,
$b=\frac{3 q(4 p+3 q) z}{2 \lambda p q}$.
Here,
$t=$ the number of copies of P_{7} in any factor,
$r=$ the number of P_{7} - factor in the factorization,
$a=$ the number of copies of P_{7} with its endpoints in Y in a particular $P_{7}-$ factor (type M),
$b=$ the number of copies of P_{7} with its endpoints in X in a particular P_{7} - factor (type W),
$c=$ the total number of copies of P_{7} in the whole factorization.
The following lemma can be verified.
Lemma: 2.1 Let a, b, p and q be positive integers, if $\operatorname{gcd}(p, q)=1$ then $\operatorname{gcd}(p+q, p q)=1$ and if $\operatorname{gcd}(a p, b q)=1$, then $\operatorname{gcd}(a p+b q, p q)=1$.

By using p, q, and d, the parameters m and n, satisfying conditions (1)-(4) in theorem 2.1 can be expressed as follows:

Lemma: 2.2

(1) If $\operatorname{gcd}(p, 9)=1$ and $\operatorname{gcd}(\mathrm{q}, 16)=1$ then there exist a positive integer s such that
$m=12(p+q)(4 p+3 q) s / \lambda, n=(16 p+9 q)(4 p+3 q) s / \lambda$,
$a=4 p(4 p+3 q) s / \lambda, \quad b=3 q(4 p+3 q) s / \lambda$,
$r=2(p+q)(16 p+9 q) s$.
(2) If $\operatorname{gcd}(p, 9)=1$ and $\operatorname{gcd}(q, 16)=2$, Let $q=2 q_{1}$. Then there exist a positive integer s such that $m=6\left(p+2 q_{1}\right)\left(2 p+3 q_{1}\right) s / \lambda, n=\left(8 p+9 q_{1}\right)\left(2 p+3 q_{1}\right) s / \lambda$,
$a=2 p\left(2 p+3 q_{1}\right) s / \lambda, \quad b=3 q_{1}\left(2 p+3 q_{1}\right) s / \lambda$,
$r=\left(p+2 q_{1}\right)\left(8 p+9 q_{1}\right) s$.
(3) If $\operatorname{gcd}(p, 9)=1$ and $\operatorname{gcd}(\mathrm{q}, 16)=4$, Let $q=4 q_{2}$. Then there exist a positive integer s such that $m=6\left(p+4 q_{2}\right)\left(p+3 q_{2}\right) s / \lambda, n=2\left(4 p+9 q_{2}\right)\left(p+3 q_{2}\right) s / \lambda$,
$a=2 p\left(p+3 q_{2}\right) s / \lambda, \quad b=6 q_{2}\left(p+3 q_{2}\right) s / \lambda$,
$r=\left(p+4 q_{2}\right)\left(4 p+9 q_{2}\right) s$.
(4) If $\operatorname{gcd}(p, 9)=1$ and $\operatorname{gcd}(\mathrm{q}, 16)=8$, let $q=8 q_{3}$. Then there exist a positive integer s such that $m=3\left(p+8 q_{3}\right)\left(p+6 q_{3}\right) s / \lambda, n=2\left(2 p+9 q_{3}\right)\left(p+6 q_{3}\right) s / \lambda$,
$a=p\left(p+6 q_{3}\right) s / \lambda, \quad b=6 q_{3}\left(p+3 q_{3}\right) s / \lambda$,
$r=\left(p+8 q_{3}\right)\left(2 p+9 q_{3}\right) s$.
(5) If $\operatorname{gcd}(p, 9)=1$ and $\operatorname{gcd}(q, 16)=8$, let $q=16 q_{4}$. Then there exist a positive integer s such that $m=3\left(p+16 q_{4}\right)\left(p+12 q_{4}\right) s / \lambda, n=4\left(p+9 q_{4}\right)\left(p+12 q_{4}\right) s / \lambda$,
$a=p\left(p+12 q_{4}\right) s / \lambda, \quad b=12 q_{4}\left(p+12 q_{4}\right) s / \lambda$,
$r=2\left(p+16 q_{4}\right)\left(p+9 q_{4}\right) s$.
(6) If $\operatorname{gcd}(p, 9)=3$ and $\operatorname{gcd}(\mathrm{q}, 16)=1$, let $p=3 p_{1}$. Then there exist a positive integer s such that $m=12\left(3 p_{1}+q\right)\left(4 p_{1}+q\right) s / \lambda, \quad n=3\left(16 p_{1}+3 q\right)\left(4 p_{1}+q\right) s / \lambda$,
$a=12 p_{1}\left(4 p_{1}+q\right) s / \lambda, \quad b=3 q\left(4 p_{1}+q\right) s / \lambda$,
$r=2\left(3 p_{1}+q\right)\left(16 p_{1}+3 q\right) s$.
(7) If $\operatorname{gcd}(p, 9)=3$ and $\operatorname{gcd}(\mathrm{q}, 16)=2$, let $q=2 q_{1}$ and $p=3 p_{1}$. Then there exist a positive integer s such that
$m=6\left(3 p_{1}+2 q_{1}\right)\left(2 p_{1}+q_{1}\right) s / \lambda, \quad n=3\left(8 p_{1}+3 q_{1}\right)\left(2 p_{1}+q_{1}\right) s / \lambda$,
$a=6 p_{1}\left(2 p_{1}+q_{1}\right) s / \lambda, \quad b=3 q_{1}\left(2 p_{1}+q_{1}\right) s / \lambda$,
$r=\left(3 p_{1}+2 q_{1}\right)\left(8 p_{1}+3 q_{1}\right) s$.
(8) If $\operatorname{gcd}(p, 9)=3$ and $\operatorname{gcd}(\mathrm{q}, 16)=4$, let $q=4 q_{2}$ and $p=3 p_{1}$. Then there exist a positive integer s such that $m=6\left(3 p_{1}+4 q_{2}\right)\left(p_{1}+q_{2}\right) s / \lambda, \quad n=6\left(4 p_{1}+3 q_{2}\right)\left(p_{1}+q_{2}\right) s / \lambda$,
$a=6 p_{1}\left(p_{1}+q_{2}\right) s / \lambda, \quad b=6 q_{2}\left(p_{1}+q_{2}\right) s / \lambda$,
$r=\left(3 p_{1}+4 q_{2}\right)\left(4 p_{1}+3 q_{2}\right) s$.
(9) If $\operatorname{gcd}(p, 9)=3$ and $\operatorname{gcd}(q, 16)=4$, let $q=8 q_{3}$ and $p=3 p_{1}$. Then there exist a positive integer s such that $m=3\left(3 p_{1}+8 q_{3}\right)\left(p_{1}+2 q_{3}\right) s / \lambda, \quad n=6\left(2 p_{1}+3 q_{3}\right)\left(p_{1}+2 q_{3}\right) s / \lambda$,
$a=3 p_{1}\left(p_{1}+2 q_{3}\right) s / \lambda, \quad b=6 q_{3}\left(p_{1}+2 q_{3}\right) s / \lambda$,
$r=\left(3 p_{1}+8 q_{3}\right)\left(2 p_{1}+3 q_{3}\right) s$.
(10) If $\operatorname{gcd}(p, 9)=3$ and $\operatorname{gcd}(\mathrm{q}, 16)=16$, let $q=16 q_{4}$ and $p=3 p_{1}$. Then there exist a positive Integer s such that $m=3\left(3 p_{1}+16 q_{4}\right)\left(p_{1}+4 q_{4}\right) s / \lambda, \quad \mathrm{n}=12\left(\mathrm{p}_{1}+3 \mathrm{q}_{4}\right)\left(\mathrm{p}_{1}+4 \mathrm{q}_{4}\right) \mathrm{s} / \lambda$,
$a=3 p_{1}\left(p_{1}+4 q_{4}\right) s / \lambda, b=12 q_{4}\left(p_{1}+4 q_{4}\right) s / \lambda$,
$r=2\left(3 p_{1}+16 q_{4}\right)\left(p_{1}+3 q_{4}\right) s$.
(11) If $\operatorname{gcd}(p, 9)=9 \operatorname{and} \operatorname{gcd}(\mathrm{q}, 16)=1$. Let $\mathrm{p}=9 \mathrm{p}_{2}$. Then there exist a positive integer s such that
$m=4\left(9 p_{2}+q\right)\left(12 p_{2}+q\right) s / \lambda, \quad n=3\left(16 p_{2}+q\right)\left(12 p_{2}+q\right) s / \lambda$,
$a=12 p_{2}\left(12 p_{2}+q\right) s / \lambda, b=q\left(12 p_{2}+q\right) s / \lambda$,
$r=2\left(9 p_{2}+q\right)\left(16 p_{2}+q\right) s$.
(12) If $\operatorname{gcd}(p, 9)=9$ and $\operatorname{gcd}(\mathrm{q}, 16)=2$. Let $\mathrm{p}=9 \mathrm{p}_{2}$ and $q=2 q_{1}$. Then there exist a positive integer s such that $m=2\left(9 p_{2}+2 q_{1}\right)\left(6 p_{2}+q_{1}\right) s / \lambda, n=3\left(8 p_{2}+q_{1}\right)\left(6 p_{2}+q_{1}\right) s / \lambda$,
$a=6 p_{2}\left(6 p_{2}+q_{1}\right) s / \lambda, \quad b=q_{1}\left(6 p_{2}+q_{1}\right) s / \lambda$, $r=\left(9 p_{2}+2 q_{1}\right)\left(8 p_{2}+3 q_{1}\right) s$.
(13) If $\operatorname{gcd}(p, 9)=9$ and $\operatorname{gcd}(\mathrm{q}, 16)=4$. Let $\mathrm{p}=9 \mathrm{p}_{2}$ and $q=4 q_{2}$. Then there exist a positive integer s such that $m=2\left(9 p_{2}+4 q_{2}\right)\left(3 p_{2}+q_{2}\right) s / \lambda, \quad n=6\left(4 p_{2}+q_{2}\right)\left(3 p_{2}+q_{2}\right) s / \lambda$,
$a=6 p_{2}\left(3 p_{2}+q_{2}\right) s / \lambda, b=2 q_{2}\left(3 p_{2}+q_{2}\right) s / \lambda$,
$r=\left(9 p_{2}+4 q_{2}\right)\left(4 p_{2}+q_{2}\right) s$.
(14) If $\operatorname{gcd}(p, 9)=9$ and $\operatorname{gcd}(\mathrm{q}, 16)=8$. Let $\mathrm{p}=9 \mathrm{p}_{2}$ and $q=8 q_{3}$. Then there exist a positive integer s such that $m=\left(9 p_{2}+8 q_{3}\right)\left(3 p_{2}+2 q_{3}\right) s / \lambda, n=6\left(2 p_{2}+q_{3}\right)\left(3 p_{2}+2 q_{3}\right) s / \lambda$,
$a=3 p_{2}\left(3 p_{2}+2 q_{3}\right) s / \lambda, b=2 q_{3}\left(3 p_{2}+2 q_{3}\right) s / \lambda$,
$r=\left(9 p_{2}+8 q_{3}\right)\left(2 p_{2}+q_{3}\right) s$.
(15) If $\operatorname{gcd}(p, 9)=9 \operatorname{and} \operatorname{gcd}(\mathrm{q}, 16)=16$. Let $\mathrm{p}=9 \mathrm{p}_{2}$ and $q=16 q_{4}$. Then there exist a positive integer s such that $m=\left(9 p_{2}+16 q_{4}\right)\left(3 p_{2}+4 q_{4}\right) s / \lambda, n=12\left(p_{2}+q_{4}\right)\left(3 p_{2}+4 q_{4}\right) s / \lambda$,
$a=3 p_{2}\left(3 p_{2}+4 q_{4}\right) s / \lambda, b=4 p_{4}\left(3 p_{2}+4 q_{4}\right) s / \lambda$,
$r=2\left(9 p_{2}+16 q_{4}\right)\left(p_{2}+q_{4}\right) s$.
Proof: We assume that $\operatorname{gcd}(\mathrm{p}, \mathrm{q})=1, \operatorname{gcd}(\mathrm{p}, 9)=1$ and $\operatorname{gcd}(\mathrm{q}, 16)=1$ hold.
Then $\operatorname{gcd}(16 \mathrm{p}+9 \mathrm{q}, 2)=\operatorname{gcd}(4 \mathrm{p}+3 \mathrm{q}, 2)=1$ and $\operatorname{gcd}(16 \mathrm{p}, 9 \mathrm{q})=\operatorname{gcd}(4 \mathrm{p}, 3 \mathrm{q})=1$ hold. From lemma 2.2, we get $n=\frac{(16 p+9 q)(4 p+3 q) z}{2 \lambda p q}$, which is an integer.
Therefore $z / 2 p q$ must be an integer.
Let $s=z / 2 p q$, then the equalities in (1) hold. Similarly we can prove the other equalities of lemma 2.2.
Below in lemma 2.3 and 2.4 , we are giving the direct constructions of graphs for particular values of m and n given in Case 1 and 8 of lemma 2.2. The value of s is taken as 1 .

Lemma: 2.3 For any positive integer p and q , let $m=6(p+2 q)(2 p+3 q) / \lambda$ and $n=(8 p+9 q)(2 p+3 q) / \lambda$. Then $\lambda K_{m, n}$ has a P_{7}-factorization.

Proof: Let $a=2 p(2 p+3 q) / \lambda, b=3 q(2 p+3 q) / \lambda, \quad r=(p+2 q)(8 p+9 q) \quad$ and $\quad r_{1}=(p+2 q)$, $r_{2}=(8 p+9 q)$. Let X and Y be two partite set of $\lambda K_{m, n}$ and set

$$
\begin{aligned}
& X=\left\{x_{i, j}: 1 \leq i \leq r_{1}, 1 \leq j \leq m_{0}\right\}, \\
& Y=\left\{y_{i, j}: 1 \leq i \leq r_{2}, 1 \leq j \leq n_{0}\right\},
\end{aligned}
$$

where $m_{0}=m / r_{1}=6(2 p+3 q) / \lambda$ and $n_{0}=n / r_{2}=(2 p+3 q) / \lambda$.
We will construct a P_{7} - factorization of $\lambda K_{m, n}$. In P_{7}-factor of $\lambda K_{m, n}$, we have $t=(m+n) / 7=(2 p+3 q)^{2} / \lambda$ number of vertex disjoint copies, where $a=2 p(2 p+3 q) / \lambda$, will be of type M and $b=3 q(2 p+3 q) / \lambda$ type W . Here type M denotes P_{7}-factor with its ends point in Y , and type W with its end point in X . For each $1 \leq i \leq p$, let

$$
E_{i}=\left\{x_{i, j+(2 p+3 q)(u-1) / \lambda+3(2 p+3 q) v / \lambda} y_{8(i-1)+4 v+u+w, j+2 i-1 / \lambda+w / \lambda}: 1 \leq j \leq 2 p+3 q / \lambda, 1 \leq u \leq 3,0 \leq v \leq 1,0 \leq w \leq 1\right\}
$$ and for each $1 \leq i \leq q$,

let

$$
\begin{gathered}
E_{p+i}=\left\{x_{p+2(i-1)+w+t, j+((2 p+3 q) / \lambda)(v-1)+3((2 p+3 q) \mid \lambda) w+((2 p+3 q)) / \lambda) t} y_{8 p+9(i-1)+3(v-1)+u, j+(2 p+3(i-1)+u) / \lambda}\right. \\
: 1 \leq j \leq(2 p+3 q) / \lambda, 0 \leq u \leq 2,1 \leq v \leq 3,0 \leq w \leq 1,0 \leq t \leq 1\}
\end{gathered}
$$

Let $F=\bigcup_{1 \leq i \leq p+q} E_{i}$, then the graph F is a P_{7}-factor of $\lambda K_{m, n}$. Define a bijection σ from $X \cup Y$ onto $X \cup Y$, i.e. σ : $X \cup Y \xrightarrow[\text { onto }]{ } X \cup Y$ such that $\sigma\left(\mathrm{x}_{\mathrm{i}, \mathrm{j}}\right)=\mathrm{x}_{\mathrm{i}+1, \mathrm{j}}$ and $\sigma\left(\mathrm{y}_{\mathrm{i}, \mathrm{j}}\right)=\mathrm{y}_{\mathrm{i}+1, \mathrm{j}} \quad$ where $\mathrm{i} \in\left(1,2 \ldots \mathrm{r}_{1}\right)$ and $\mathrm{j} \in\left(1,2 \ldots \mathrm{r}_{2}\right)$. Let $F_{\xi, \eta}=$ $\left\{\sigma^{\xi}(\mathrm{x}) \sigma^{\eta}(\mathrm{y}): \mathrm{x} \in \mathrm{X}, \mathrm{y} \in \mathrm{Y}, \mathrm{xy} \in \mathrm{F}\right\}$.

Therefore, the graphs, $F_{\xi, \eta}\left\{1 \leq \xi \leq \mathrm{r}_{1}, 1 \leq \eta \leq \mathrm{r}_{2}\right\}$, are edge disjoint P_{7} - factor of $\lambda K_{m, n}$ and its union is also $\lambda K_{m, n}$. Thus $\left\{F_{\xi, \eta} ; 1 \leq \xi \leq \mathrm{r}_{1}, 1 \leq \eta \leq \mathrm{r}_{2}\right\}$ is a P_{7}-factorization of $\lambda K_{m, n}$.

Lemma: 2.4 For any positive integer p and q, let $m=6(3 p+4 q)(p+q) / \lambda$ and $n=6(4 p+3 q)(p+q) / \lambda$. Then $\lambda K_{m, n}$ has a P_{7}-factorization.

Proof Let $a=6 p(p+q) / \lambda, b=6 q(p+q) / \lambda, r=(3 p+4 q)(4 p+3 q)$ and $r_{1}=(3 p+4 q), r_{2}=(4 p+3 q)$.
Let X and Y be two partite set of $\lambda K_{m, n}$ and set

$$
\begin{aligned}
& X=\left\{x_{i, j}: 1 \leq i \leq r_{1}, 1 \leq j \leq m_{0}\right\} \\
& Y=\left\{y_{i, j}: 1 \leq i \leq r_{2}, 1 \leq j \leq n_{0}\right\}
\end{aligned}
$$

Where $m_{0}=m / r_{1}=6(p+q) / \lambda$ and $n_{0}=n / r_{2}=6(p+q) / \lambda$.

We will construct a P_{7} - factorization of $\lambda K_{m, n}$. In P_{7}-factor of $\lambda K_{m, n}$, we have $t=(m+n) / 7=6(p+q)^{2} / \lambda$ number of vertex disjoint copies, where $a=6 p(p+q) / \lambda$, will be of type M and $b=6 q(p+q) / \lambda$, type W . Here type M denotes P_{7}-factor with its ends point in Y , and type W with its end point in X .

For each $1 \leq i \leq p$, let
$E_{i}=\left\{x_{3(i-1)+u, j} y_{4(i-1)+u+v, j+6(i-1) / \lambda+2(u-1) / \lambda+v / \lambda}: 1 \leq j \leq 6(p+q) / \lambda, 1 \leq u \leq 3,0 \leq v \leq 1\right\}$.
And for each $1 \leq i \leq q$, let
$E_{p+i}=\left\{x_{3 p+4(i-1)+u+v, j} y_{4 p+3(i-1)+u, 6 p / \lambda+j+6(i-1) / \lambda+2(u-1) / \lambda+v}: 1 \leq j \leq 6(p+q) / \lambda, 1 \leq u \leq 3,0 \leq v \leq 1\right\}$.
Let $F=\bigcup_{1 \leq i \leq p+q} E_{i}$, then the graph F is a P_{7}-factor of $\lambda K_{m, n}$. Define a bijection σ from $X \cup Y$ onto $X \cup Y$,
i.e. $\sigma: X \cup Y \xrightarrow[\text { onto }]{ } X \cup Y$ such that $\sigma\left(\mathrm{x}_{\mathrm{i}, \mathrm{j}}\right)=\mathrm{x}_{\mathrm{i}+1, \mathrm{j}}$ and $\sigma\left(\mathrm{y}_{\mathrm{i}, \mathrm{j}}\right)=\mathrm{y}_{\mathrm{i}+1, \mathrm{j}}$ where $\mathrm{i} \in\left(1,2 \ldots \mathrm{r}_{1}\right)$ and $\quad \mathrm{j} \in\left(1,2 \ldots \mathrm{r}_{2}\right)$. Let $F_{\xi, \eta}=\left\{\sigma^{\xi}(\mathrm{x}) \sigma^{\eta}(\mathrm{y}): \mathrm{x} \in \mathrm{X}, \mathrm{y} \in \mathrm{Y}, \mathrm{xy} \in \mathrm{F}\right\}$.

Therefore, the graphs $F_{\xi, \eta}\left\{1 \leq \xi \leq r_{1}, 1 \leq \eta \leq r_{2}\right\}$, are edge disjoint P_{7}-factor of $\lambda K_{m, n}$ and its union is also $\lambda K_{m, n}$.
Thus $\left\{F_{\xi, \eta} ; 1 \leq \xi \leq r_{1}, 1 \leq \eta \leq r_{2}\right\}$ is a P_{7}-factorization of $\lambda K_{m, n}$.
Proof (Theorem (2.1)): By using theorem 2.2 and theorem 2.3 with lemma 2.2 to 2.4 , it can be seen that when the parameters m and n satisfy the conditions (1) - (4) in theorem 2.1, the complete bipartite multigraph $\lambda K_{m, n}$ has P_{7} factorization. This completes the proof of theorem 2.1.

REFERENCES:

[1] Wang H: $P_{2 p}$-factorization of a complete bipartite graph, discrete math. 120 (1993), 307-308.
[2] Beiling Du: $P_{2 k}$-factorization of complete bipartite multi graph. Australasian Journal of Combinatorics 21(2000), 197-199.
[3] Ushio K: G-designs and related designs, Discrete Math., 116(1993), 299-311.
[4] Ushio K: P_{3} - factorization of complete bipartite graphs. Discrete math. 72 (1988) 361-366.
[5] Wang J and Du B: P_{5} - factorization of complete bipartite graphs. Discrete math. 308 (2008) 1665 - 1673.
[6] Wang J: P_{7}-factorization of complete bipartite graphs. Australasian Journal of Combinatorics, volume 33 (2005), 129-137.
[7] U. S. Rajput and Bal Govind Shukla: P_{9} - factorization of complete bipartite graphs. Applied Mathematical Sciences, volume 5(2011), 921-928.
[8] Wang J and Du B: P_{3} - factorization of complete bipartite multigraphs and symmetric complete bipartite multidigraphs. Utilitas Math. 63 (2003) 213-228.
[9] Harary F: Graph theory. Adison Wesley. Massachusetts, 1972.

[^0]: *Corresponding author: Bal Govind Shukla*,*E-mail: balgovind_shukla@yahoo.com

