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ABSTRACT 

The concept of vector valued Dirichlet series was introduced by B. L. Srivastava [2] who characterized the growth of 

entire functions represented by these series. In this paper we introduce the generalized order and generalized type of 

entire functions slow growth. 
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1. INTRODUCTION: 
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Then, the vector valued Dirichlet series in (1.1) represents an entire function ( )f s
 
(see [2]). In [2], B. L. Srivastava 

defined the growth parameters such as order, type, lower order, lower type of the vector valued entire Dirichlet series. 

He also obtained the result for coefficient characterization of order and type. In this paper we obtain the generalised 

order and generalised type of vector valued Dirichlet series. 

   

For the entire function ( )f s  defined as above by (1.1) the maximum modulus, the maximum term and the index of 

maximum term are defined as 
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The order ρ  of  ( )f s  is defined as  
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and for 0 ρ< < ∞  the type T  of ( )f s  is defined as (see [2]) 
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We shall call the entire function ( )f s to be of slow growth if the order 0.ρ = We obtain the characterization of 

growth parameters. in the context of generalised order and generalised type of vector valued Dirichlet series of slow 

growth. Let Φ denote the class of functions ( )h x satisfying the following conditions: 
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that is , ( )h x is slowly increasing.  

 

Let ( ) ,xα ∈Φ  the generalised order ( , )fρ α of the entire function ( )f s  given by (1.1) can be defined as   
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For 0 ρ< < ∞  the generalised type ( , )T fα  of the entire function ( )f s  is defined by 
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2. MAIN RESULTS: 

 

Now we prove 

 

Lemma: 1 If the vector valued Dirichlet series given by (1.1) satisfies (1.2) and (1.3), then   
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Proof: From the equation (1.2), for a given 0,ε >  there exists an integer ,N  such that for n N> ,  
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 where ( , )K ε η is a positive constant depending on andε η . Hence           
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By (1.4), it follows that 
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The reverse inequality follows from the well known relation ( ) ( ).m Mσ σ≤ Hence the Lemma is proved. 

 

Lemma: 2 If the vector valued Dirichlet series given by (1.1) satisfies (1.2) and (1.3), then 
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The result can be proved on the lines of [3].Hence we omit the proof. 

 

Next we prove 

 

Theorem: 1 Let the vector valued Dirichlet series (1.1) satisfy (1.2) and (1.3), then 
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Proof: We prove this theorem in two steps. 

 

Case I: When 1,p =  by condition (ii), if 
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For 1,p = from the given condition (ii),we can easily deduce that ( ) logkα σ σ≅ . If 1A < then there exists ε > 0 

such that 1A ε+ < .For sufficiently large values of ,σ we get 
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When n  is large enough, setting 
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Now using (1.4) for the functionα , we get  
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When 2,3...,p = we suppose that A < ∞ . From the above proof, it follows that  
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Choose ( )nσ σ λ=  to be the unique root of the equation 
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By (1.4), when σ  is sufficiently large, we have ( 1) (1 (1)) ( )oα σ α σ− = + , thus 
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Now proceeding to limits, since 0is arbitrary,ε > we obtain 
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The above inequality obviously holds when A = ∞ . 
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From (2.2) and the above inequality, it follows that  
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As in Lemma 2 (see [1]), we have 
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Combining the inequalities obtained in case I and II, we get (a) and (b) above and the proof of Theorem 1is complete. 

 

Theorem: 2. Let the entire function represented by the vector valued Dirichlet series (1.1) satisfiy (1.2) and (1.3), and 
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We suppose Η < ∞ . Then for a given
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The above inequality obviously holds when Η = ∞ . 
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From (2.6) and the above inequality, it follows that 
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Hence, by Corollary 2 see [1], it follows that  
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Combining (2.5) and the above inequality, we obtain (2.4). This completes the proof. 
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