FUZZY PAIRWISE GENERALIZED ρ -CLOSED MAPPINGS WHERE $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$ IN FUZZY BITOPOLOGICAL SPACES

Bhuvaneswari Balasubramanian¹ S. Bharathi ² and N. Chandramathi^{3*}

¹Department of Mathematics, Mother Teresa Women's University Kodaikanal, Tamilnadu, India Email: drkbmaths@gmail.com

²Department of Mathematics, Angel college of Engineering and Technology, Tirupur (Dt), Tamilnadu, India Email: bharathikamesh6@gmail.com

³Department of Mathematics, Hindusthan college of Engneering and Technology, Coimbatore-32, Tamilnadu, India

Email: mathi.chandra303@gmail.com

(Received on: 23-11-11; Accepted on: 13-12-11)

ABSTRACT

In this paper we introduce and study the concept of (τ_i, τ_j) fuzzy pair wise generalized ρ - ξ - mappings, where $\rho \in \{\alpha, \alpha^*, \alpha^{***}\}$ and $\xi \in \{\text{continuous ,open closed and irresolute }\}$ and strongly fuzzy pair wise generalized α -irresolute and strongly fuzzy pair wise semi irresolute mappings in a fuzzy bi topological spaces.

Keywords:, (τ_i, τ_j) fuzzy pair wise generalized ρ - ξ - mappings where $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$ strongly fuzzy pair wise generalized α -irresolute and strongly fuzzy pair wise semi irresolute mappings

1. INTRODUCTION:

The fundamental concept of fuzzy sets was introduced by Zedeh in his classical paper[10]. Thereafter many investigations have been carried out in the general theoretical field and also in different application are as based in this concept. Chang [4] used the concept of fuzzy sets to introduce fuzzy topological spaces and several other authors continued the investigation of such spaces .Devi et al [5] introduced fuzzy generalized α -closed sets and investigated its applications.

In this paper first we introduce The concept of fuzzy pair wise generalized ρ - ξ -mappings where $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$ and $\xi \in \{\text{continuous}, \text{ open ,closed and irresolute}\}$ are introduced and studied in section 3. In section 4 , the stronger form of (τ_i, τ_j) fuzzy pair wise generalized α -irresolute and (τ_i, τ_j) fuzzy pair wise semi generalized α -irresolute mappings are introduced and compared these with existing results.

2. PRELIMINARIES:

Let X be a non empty set and I=[0,1]. A fuzzy set in X is a mapping from X into I. The null fuzzy set 0 is the mapping from X into I which assumes only the value 0 and fuzzy set 1 is a mapping from X into I which takes the value 1 only. The union $\bigcup A_{\alpha}$ (resp. intersection $\bigcap A_{\alpha}$) of a family $\{A_{\alpha}: \alpha \in \land\}$ of fuzzy sets of X is defined to be the mapping sup A_{α} (resp. Inf A_{α}). A fuzzy set A of X contained in a fuzzy set A of A is defined by A is defined by A is a fuzzy set A of A is a fuzzy set A of A in A in A is a fuzzy set A of A is a fuzzy set A of A in A in A is a fuzzy set in A defined by

 $x_{\beta}(y) = \{\beta(\beta \in (0,1]; \text{ for } y = x \ (y \in X)\}$

{0; other wise

x and β are respectively, called the support and value of x_{β} . A fuzzy point $x_{\beta} \in A$ if and only if $\beta \leq A(x)$. A fuzzy set A is the union of all fuzzy points which belongs to A

Definition 2.1:[5] Let (X, τ) be a fuzzy topological space. A fuzzy set λ in X is called (i) fuzzy generalized α-closed (in short fgαc) \Leftrightarrow αCl $(\lambda) \le \mu$ whenever $\lambda \le \mu$ and μ is a fuzzy α-open set.

- (ii) fuzzy generalized α^* -closed (in short $fg\alpha^*c$) $\Leftrightarrow \alpha Cl(\lambda) \leq Int(\mu)$ whenever $\lambda \leq \mu$ and μ is a fuzzy α -open set
- (iii) fuzzy generalized α^{**} -closed (in short $fg\alpha^{**}c$) \Leftrightarrow αCl (λ) \leq Int $Cl(\mu)$ whenever $\lambda \leq \mu$ and μ is a fuzzy α -open set.

Definition 2.2:[7] Let λ be a fuzzy set in a fuzzy bi topological space(in short fbts) X. The fuzzy set λ is called (i) a $(τ_i, τ_j)$ fuzzy semi-open(briefly $(τ_i, τ_j)$ -fso)set of X if there exist a $ν ∈ τ_i$ such that $ν ≤ λ ≤ τ_j$ -Cl(ν) (ii) a $(τ_i, τ_j)$ fuzzy semi-open(briefly $(τ_i, τ_j)$ -fsc)set of X if there exist a $ν^c ∈ τ_i$ such that $τ_j$ -Int(ν) ≤ λ ≤ ν The set of all $(τ_i, τ_j)$ -fso(resp. $(τ_i, τ_j)$ -fsc) sets of a fbts X will be denoted by $(τ_i, τ_j)$ -FSO(X)(resp. $(τ_i, τ_j)$ -FSC(X))

Definition 2.3: [8] A mapping f: $(X, \tau_i, \tau_j) \rightarrow (Y, \sigma_k, \sigma_l)$ is called (τ_i, τ_j) fuzzy pair wise pre semi closed if the image of every (τ_i, τ_i) fuzzy semi-closed set in X is (τ_i, τ_i) fuzzy semi-closed in Y.

3. FUZZY PAIRWISE GENERALIZED ρ - ξ - MAPPINGS, WHERE $\rho \in \{ \alpha, \alpha^*, \alpha^{**} \}$ AND $\xi \in \{ \text{CONTINUOUS}, \text{OPEN}, \text{CLOSED AND IRRESOLUTE} \}$:

In this section we introduce the concept of fuzzy pair wise generalized α -continuous , fuzzy pair wise generalized α -open (fuzzy pair wise generalized α -closed) briefly fpg α c, fpg α -open (resp. fpg α -closed) mappings by using (τ_i, τ_j) fg α -open and (τ_i, τ_j) fg α -closed sets and study some of their basic properties. Several characterizations of these mappings are obtained.

Definition 3.1: Let (X, τ_i, τ_j) and (Y, σ_k, σ_l) be two fuzzy bi topological spaces. A map $f: (X, \tau_i, \tau_j) \to (Y, \sigma_k, \sigma_l)$ is called (i) (τ_i, τ_j) fuzzy pair wise generalized ρ-continuous if the inverse image of every fuzzy σ_k -closed (resp. fuzzy σ_k -open) set in Y is (τ_i, τ_j) fuzzy generalized ρ-closed (resp. (τ_i, τ_j) fuzzy generalized ρ-open) set in (X, τ_i, τ_j) , where $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$

- (ii) (τ_i, τ_j) fuzzy pair wise generalized α -open (resp. fuzzy pair wise generalized α -closed) if $f(\lambda)$ is a (σ_k, σ_l) fg α -open (resp. (σ_k, σ_l) fg α closed) set in Y for every τ_i -fuzzy open $(\tau_i$ -fuzzy closed) set λ of X.
- (iii) (τ_i, τ_j) fuzzy pair wise generalized α -irresolute if the inverse image of every (σ_k, σ_l) fuzzy generalized α -open (resp. (σ_k, σ_l) fuzzy generalized α -open (resp. (τ_i, τ_j) fuzzy generalized α -open (resp. (τ_i, τ_j) fuzzy generalized α -closed) in X.
- **Remark 3.2:** Suppose that $\tau_i = \tau_i$ and $\sigma_k = \sigma_1$ in definition 3.1 coincide with definition 4.1 and 5.1 of [5]

Definition 3.3: A map $f: (X, \tau_i, \tau_j) \to (Y, \sigma_k, \sigma_l)$ is called fuzzy τ_j - σ_k continuous if the inverse image of every fuzzy σ_k -closed set in Y is fuzzy τ_j -closed in X.

Theorem 3.4: If a map $f: (X, \tau_i, \tau_j) \to (Y, \sigma_k, \sigma_l)$ is fuzzy $\tau_j \cdot \sigma_k$ continuous then it is (τ_i, τ_j) fuzzy par wise generalized α -continuous.

Proof: By using the results let (X, τ_i, τ_i) be a fuzzy bi topological space

- (i) If γ and δ are (τ_i, τ_i) fuzzy generalized α -closed set then $\gamma \cup \delta$ is also (τ_i, τ_i) fuzzy generalized α -closed set.
- (ii) If σ is τ_i fuzzy α closed subset of X, then σ is (τ_i, τ_i) fuzzy generalized α -closed set.
- (iii) If σ is τ_i -fuzzy closed subset of X, then σ is (τ_i, τ_i) fuzzy generalized α -closed set.
- (iv) If σ is τ_i fuzzy α closed subset of X, then σ is $(\tau_i *, \tau_i)$ fuzzy generalized α -closed set
- (v) If σ is τ_i -fuzzy closed subset of X, then σ is (τ_i, τ_i^*) fuzzy generalized α -closed set.

The proof follows trivially.

Converse of the Theorem 3.4 need not be true in the following example.

Example 3.5: (τ_1, τ_2) fuzzy par wise generalized α -continuous maps need not be fuzzy τ_2 - σ_1 continuous. Let $X = \{a, b\}$, $Y = \{p, q\}$ and I = [0,1]. Define the fuzzy sets $f_1, f_2, f_3, f_4 : X \rightarrow I$ as $f_1(a) = 1$, $f_1(b) = 0$, $f_2(a) = 1$, $f_2(b) = .6$, $f_3(a) = .5$,

 $f_3(b) = .3 \text{ and } f_4(a) = .6 \text{ } f_4(b) = .5 \text{ also the fuzzy sets} \quad g_1, g_2: Y \rightarrow I \text{ as} \quad g_1(p) = .5 \text{ }, g_1(b) = 0 \text{ and } g_2(a) = 1 \text{ }, g_2(b) = 0. \\ \text{Consider the fuzzy bi topological spaces} (X, \tau_1, \tau_2) \text{ and } (Y, \sigma_1, \sigma_2) \text{ where } \tau_1 = \{0.1, f_1, f_2\}, \tau_2 = \{0.1, f_3, f_4\}, \sigma_1 = \{0.1, g_1\}$

and $\sigma 2 = \{0, 1, g_2\}$. Define a map f: $X \to Y$ as f(a)=p and f(b)=q under this mapping the inverse image of σ_1 - fuzzy closed set g_1^c is (τ_1, τ_2) fuzzy generalized α -closed set but not τ_2 –fuzzy closed in X.

Theorem 3.6: Let $f:(X, \tau_i, \tau_j) \to (Y, \sigma_k, \sigma_l)$ be a surjective map then the following conditions are equivalent.

- (i) f is (τ_i, τ_i) fuzzy pair wise generalized α -closed
- (ii) For each fuzzy set μ of Y and each fuzzy τ j-open set λ of X greater than $f^{-1}(\mu)$ there exists a (σ_k, σ_l) fuzzy generalized α -open set V of Y grater than μ such that $f^{-1}(V) \leq \lambda$.

Proof: (i) \Rightarrow (ii) Put V= 1- f (1- λ). Since f $^{-1}(\mu) \le \lambda$ we have f (1- λ) $\le 1-\mu$, also f is (τ_i, τ_j) fuzzy pair wise generalized α -closed, V is (σ_k, σ_l) fuzzy generalized α -open set of Y and $f^{-1}(V) \le 1-f^{-1}(f(1-\lambda)) = \lambda$

(ii) \Rightarrow (i) suppose that μ is any τ_j -fuzzy closed set in X. Let x_β be a fuzzy point in Y such that $x_\beta \in 1-f(\lambda)$, $f^{-1}(x_\beta) \le 1-f^{-1}(f(\mu))=1-\mu$ and $1-\mu$ is (τ_i, τ_j) fuzzy generalized α -open in X. Hence by hypothesis there exists a fuzzy (σ_k, σ_l) generalized α -open set V of Y containing x_β such that $f^{-1}(V) \le 1-\mu$. This implies that $x_\beta \in V \le 1-f(\mu)$. Hence $1-f(\mu)$ is (σ_k, σ_l) fuzzy generalized α -open in Y. Therefore $f(\mu)$ is (σ_k, σ_l) fuzzy generalized α -closed in Y.

Theorem 3.7 : A mapping $f: (X, \tau_i, \tau_j) \to (Y, \sigma_k, \sigma_l)$ is (τ_i, τ_j) fuzzy pair wise generalized α -closed if and only if (τ_i, τ_j) -fg α -Cl($f(\lambda)$) $\leq f((\tau_i$ -Cl(λ)) for every fuzzy set λ of X.

Proof: Necessity: Suppose f is fuzzy pair wise generalized α -closed and λ is any fuzzy subset of X. Since(τ_j .Cl(λ) is τ_j -fuzzy closed in X. $f((\tau_j$ -Cl(λ)) is (τ_i, τ_j) -fuzzy generalized α -closed in Y and so (τ_i, τ_j) -fg α -Cl($f(\lambda)$) $\leq f((\tau_j$ -Cl(λ)).

Sufficiency: If λ is τ_j -fuzzy closed set in X. Then by hypothesis (τ_i, τ_j) -fg α -Cl($f(\lambda)$) $\leq f((\tau_j$ -Cl($\lambda)$).= $f(\lambda)$. Therefore f is (τ_i, τ_j) fuzzy pair wise generalized α - closed.

Definition 3.8: A mapping $f: (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_k, \sigma_l)$ is called (τ_i, τ_j) fuzzy pair wise pre generalized α -closed if the image of every (τ_i, τ_j) fuzzy generalized α -closed set in X is (σ_k, σ_l) fuzzy generalized α -closed in Y.

Remark 3.9: Every (τ_i, τ_j) fuzzy pair wise pre generalized α -closed map is (τ_i, τ_j) fuzzy pair wise generalized α -closed map.

Theorem 3.10: A surjective mapping $f: (X, \tau_i, \tau_j) \to (Y, \sigma_k, \sigma_l)$ is (τ_i, τ_j) fuzzy pair wise pre generalized α-closed if and only if for each fuzzy set μ of Y and each (τ_i, τ_j) fuzzy generalized α-open set λ in X greater than $f^{-1}(\mu)$ there exists (σ_k, σ_l) fuzzy generalized α-open set V of Y greater than Y such that $f^{-1}(V) \leq \lambda$.

Proof: By using Theorem 3.6 and Remark 3.9 the proof follows.

Theorem 3.11: If f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and g: $(Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be mappings such that g of : $(X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is (τ_1, τ_2) fuzzy pair wise pre generalized α -closed (a) If f is (τ_1, τ_2) fuzzy pair wise irresolute surjection, then g is (σ_1, σ_2) fuzzy pair wise pre generalized α -closed. (b) If g is (σ_1, σ_2) fuzzy pair wise irresolute injection, then f is (τ_1, τ_2) fuzzy pair wise generalized α -closed.

Proof: (a) Suppose λ is a (σ_1, σ_2) fuzzy generalized α -closed set in Y. Since f is (τ_1, τ_2) fuzzy pair wise irresolute, f $^{-1}(\lambda)$ is (τ_1, τ_2) fuzzy generalized α -closed in X. Since gof is (τ_1, τ_2) fuzzy pair wise pre generalized α -closed and f is surjective (g of) (f $^{-1}(\lambda)$) = g(λ) is (η_1, η_2) fuzzy generalized α -closed in Z. Which implies that g is (σ_1, σ_2) fuzzy pair wise pre generalized α -closed.

(b) Suppose that λ is a (τ_1, τ_2) fuzzy generalized α -closed in X. Since gof is (τ_1, τ_2) fuzzy pair wise pre generalized α -closed, (g of) (λ) is (η_1, η_2) fuzzy generalized α -closed in Z. Since g is (σ_1, σ_2) fuzzy pair wise irresolute injection, $g^{-1}((g \circ f))(\lambda) = f(\lambda)$ is (σ_1, σ_2) fuzzy generalized α -closed in Y. This implies that f is (τ_1, τ_2) fuzzy pair wise pre generalized α -closed.

Theorem 3.12 : A mapping f: $(X, \tau_i, \tau_j) \rightarrow (Y, \sigma_k, \sigma_l)$ is (τ_i, τ_j) fuzzy pair wise generalized α -continuous if and only if for every fuzzy set λ in X f((τ_i, τ_i) -fg α Cl(λ) $\leq \sigma_k$ -Cl($f(\lambda)$)

Proof: Suppose f is (τ_i, τ_j) fuzzy pair wise generalized α- continuous . Let λ be any fuzzy set in X, then f $^{-1}(\sigma_k$ -Cl(f(λ)) is (τ_i, τ_i) fuzzy generalized α-closed in X.. Furthermore $\lambda \le f^{-1}(f(\lambda)) \le f^{-1}(\sigma_k - Cl(f(\lambda)))$.

Therefore (τ_i, τ_i) -fg α Cl $(\lambda) \le f^{-1}(\sigma_k$ -Cl $(f(\lambda))$. This implies $f(\tau_i, \tau_i)$ -fg α Cl $(\lambda) \le f(f^{-1}(\sigma_k$ -Cl $(f(\lambda))) \le (\sigma_k$ -Cl $(f(\lambda))$.

Conversely let the given conditions hold and let μ be any σ_k - fuzzy closed set in Y.

Then $f((\tau_i, \tau_j)\text{-}fg\alpha Cl(f^{-1}(\mu)) \leq (\sigma_k \text{-}Cl(f(f^{-1}(\mu)).This implies } (\tau_i, \tau_j)\text{-}fg\alpha Cl(f^{-1}(\mu)) \leq f^{-1}(\sigma_k \text{-}Cl(\mu)) \leq f^{-1}(\mu)$. Hence $f^{-1}(\mu)$ is (τ_i, τ_j) fuzzy generalized α -closed set in X hence f is fuzzy pair wise generalized α - continuous.

Theorem 3.13:A mapping $f: (X, \tau_i, \tau_j) \to (Y, \sigma_k, \sigma_l)$ is fuzzy pairwise generalized α -continuous if and only if for every fuzzy set μ in $Y((\tau_i, \tau_i)$ -fg α Cl $(f^{-1}(\mu))) \leq f^{-1}(\sigma_k - \text{Cl}(\mu))$

Proof: Using Theorem 3.12 the proof is trivial.

Theorem 3.14: A mapping f: $(X, \tau_i, \tau_j) \rightarrow (Y, \sigma_k, \sigma_l)$ is (τ_i, τ_j) fuzzy pair wise generalized α - continuous if and only if for every fuzzy set μ in Y f⁻¹ $(\sigma_k$ –Int (μ)) $\leq (\tau_i, \tau_i)$ -fg α -Int(f⁻¹ (μ)).

Proof: Suppose f is(τ_i , τ_j) fuzzy pair wise generalized α-continuous Let μ be any fuzzy set in Y. Then f⁻¹ (σ_k –Int (μ)) is a (τ_i , τ_i) fgα-open set in X. Therefore f⁻¹ (σ_k –Int (μ)) $\leq \mu$ Hence f⁻¹ (σ_k –Int (μ)) $\leq (\tau_i, \tau_i)$ -fgα-Int(f⁻¹(μ)).

Conversely let the given conditions hold and μ be any σ_k -fuzzy open set in Y.

Then we have $(\sigma_k$ –Int $f^{-1}(\mu)) \le (\tau_i, \tau_j)$ -fg α -Int $(f^{-1}(\mu))$. $\Rightarrow f^{-1}(\mu)$ is fuzzy generalized α -open and hence f is fpg α -continuous.

Definition 3.13 [7] Let (Y,η) be a fuzzy topological space. A fuzzy set μ of Y is said to be a neighborhood of a fuzzy point x_{α} if and only if there exists a fuzzy open set ν such that $x_{\alpha} \in \nu \leq \mu[6]$

A fuzzy open set is a nbd of each of its point. By N $\eta_i(y)$ we mean the nbd system of y in the fuzzy topology η_i .

Theorem 3.15: For a mapping $f: (X, \tau_i, \tau_j) \to (Y, \eta_k, \eta_1)$ the following statements are equivalent (i) f is fuzzy pair wise generalized α -continuous.

- (ii)For every fuzzy point x_{β} in X and for every $\mu \in N$ $\eta_k(f(x_{\beta}))$, there exists a $\lambda \in (\tau_i, \tau_j)$ -Fg α o(X) such that $x_{\beta} \in \lambda$ and $\lambda \leq f^{-1}(\mu)$.
- (iii) For every x_{β} in X and for every $\mu \in N$ $\eta_k(f(x_{\beta}))$, there exists a $\lambda \in (\tau_i, \tau_i)$ -Fg α o(X) such that $x_{\beta} \in \lambda$ and $f(\lambda) \le (\mu)$

Proof: (i) \Rightarrow (ii) Let x_{β} be any fuzzy point in X and let $\mu \in N$ $\eta_k(f(x_{\beta}))$, then there exist a $v \in \eta_k$ such that $f(x_{\beta}) \in v \leq \mu$. By (i) $f^{-1}(v) \in (\tau_i, \tau_i)$ -Fg $\alpha o(x_{\beta})$ and we have $x_{\beta} \in f^{-1}(v) = \lambda \leq f^{-1}(\mu)$

- $(ii) \Rightarrow (iii) \text{ Let } x_{\beta} \in X \text{ and let } \mu \in N \text{ } \eta_{k} (f(x_{\beta})), by (ii) \text{ there exist a} \quad \lambda \in (\tau_{i}, \tau_{j}) \text{-Fg}\alpha o(X) \text{ such that } x_{\beta} \in \lambda \text{ and } \lambda \leq f^{-1} (\mu) \text{ .so we have } x_{\beta} \in \lambda \text{ and } f(\lambda) \leq f(f^{-1}(\mu)) = \mu$
- (iii) \Rightarrow (i) Let μ be any η_k -fuzzy open set of Y .consider $f^{-1}(\mu)$ and let $x_\beta \in f^{-1}(\mu)$. This implies $f(x_\beta) \in f(f^{-1}(\mu)) \leq \mu$.

Since μ is η_k -fuzzy open set we have $\mu \in N$ $\eta_k(f(x_\beta))$.By(iii) there exists a $\lambda \in (\tau_i, \tau_j)$ -Fg α o(x_β) such that $x_\beta \in \lambda$ and $f(\lambda) \le \mu$. This shows that $x_\beta \in \lambda$ and $\lambda \le f^{-1}(\mu)$. Since $\lambda \in (\tau_i, \tau_j)$ -Fg α o(x_β) is fuzzy generalized α -open in x_β .

Hence f is fuzzy pair wise generalized α -continuous.

Definition 3.16: (i) A fuzzy bi topological space (X,τ_i,τ_j) is said to be (τ_i,τ_j) - fuzzy $\alpha T_{1/2}$ space if every (τ_i,τ_j) -fuzzy generalized α -closed set is τ_i -fuzzy closed.

(ii) A fuzzy bi topological space (X, τ_i, τ_j) is said to be strongly pair wise (τ_i, τ_j) - fuzzy αT_{ν_2} - space if it is (τ_i, τ_j) - fuzzy αT_{ν_2} - space and (τ_i, τ_i) - fuzzy αT_{ν_2} - space.

Remark 3.17: (i) By setting $\tau_i = \tau_i$ in definition 3.1 we obtain the definition of fuzzy αT_{i2} -space [5]

(ii) In general converse of Theorem 3.4 is not true if (X, τ_i, τ_j) is (τ_i, τ_j) - fuzzy $\alpha T_{1/2}$ space the converse of Theorem 3.4 is true.

4. STRONGLY FUZZY PAIR WISE GENERALIZED α - IRRESOLUTE MAPS AND STRONGLY FUZZY PAIR WISE SEMI GENERALIZED α - IRRESOLUTE MAPS:

In this section we are introducing two different type of stronger form of irresolute maps and discussed its relationship with existing results.

Definition 4.1: Let (X, τ_i, τ_j) and (Y, σ_k, σ_l) be two fuzzy bi topological space A mapf: $(X, \tau_i, \tau_j) \rightarrow (Y, \sigma_k, \sigma_l)$ is called (i) Strongly fuzzy pair wise generalized α-irresolute (briefly Sfpgα-irresolute) if the inverse image of every (σ_k, σ_l) -fuzzy generalized α-open(resp. (σ_k, σ_l) -fuzzy generalizedα-closed) set in Y is τ_i –fuzzy open set(resp. τ_i –fuzzy closed) set in X.

(ii) Strongly fuzzy pair wise semi generalized α -irresolute (briefly Sfpsg α -irresolute) if the inverse image of every (σ_k, σ_l) -fuzzy generalized α -open(resp.(σ_k, σ_l)-fuzzy generalized α -closed) set in Y is (τ_i, τ_j) -fuzzy semi-open set (resp:(τ_i, τ_j)-fuzzy semi-closed.) set in X.

Theorem 4.2: If a map $f: (X, \tau_i, \tau_j) \to (Y, \sigma_k, \sigma_l)$ is Strongly fuzzy pair wise generalized α -irresolute, then it is (τ_i, τ_j) -fuzzy pair wise generalized α irresolute.

Proof: Let λ be any. (σ_k, σ_l) -fuzzy generalized α -closed in Y, then $f^{-1}(\lambda)$ is τ_j -fuzzy closed in X.By the results (X, τ_i, τ_i) be a fuzzy bi topological space

- (i) If γ and δ are (τ_i, τ_i) fuzzy generalized α -closed set then $\gamma \cup \delta$ is also (τ_i, τ_i) fuzzy generalized α -closed set.
- (ii) If σ is τ_j fuzzy α closed subset of X, then σ is (τ_i, τ_j) fuzzy generalized α -closed set.
- (iii) If σ is τ_i -fuzzy closed subset of X, then σ is (τ_i, τ_i) fuzzy generalized α -closed set.
- (iv) If σ is τ_j fuzzy α closed subset of X, then σ is $(\tau_i *, \tau_j)$ fuzzy generalized α -closed set
- (v) If σ is τ_j -fuzzy closed subset of X, then σ is (τ_i, τ_j^*) fuzzy generalized α -closed set. It is. (τ_i, τ_j) -fuzzy generalized α -closed in X. Hence f is (τ_i, τ_j) -fuzzy pair wise generalized α -irresolute

Example 4.3: (τ_i, τ_j) -fuzzy pair wise generalized α irresolute need not be Strongly fuzzy pair wise generalized α-irresolute Let $X = \{a, b\}$, $Y = \{p, q\}$ and I = [0,1]. Define the fuzzy sets f_1 , f_2 , f_3 , $f_4 : X \to I$ as $f_1(a) = 1$, $f_1(b) = 0$, $f_2(a) = 1$, $f_2(b) = .6$, $f_3(a) = .5$, $f_3(b) = .3$ and $f_4(a) = .6$ f $f_4(b) = .5$ also the fuzzy sets $g_1, g_2 : Y \to I$ as $g_1(p) = .5$, $g_1(b) = 0$ and $g_2(a) = 1$, $g_2(b) = 0$. Consider the fuzzy bi topological spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) where $\tau_1 = \{0, 1, f_1, f_2\}$, $\tau_2 = \{0, 1, f_3, f_4\}$, $\sigma_1 = \{0, 1, g_1\}$ and $g_2 = \{0, 1, g_2\}$. In this mapping the inverse image of (σ_1, σ_2) fuzzy closed set λ : $X \to I$ defined as $\lambda(a) = .5$ and $\lambda(b) = 1$ in Y is (τ_1, τ_2) fuzzy generalized α-closed set in X but not τ_2 - fuzzy closed in X. Hence f is (τ_i, τ_j) -fuzzy pair wise generalized α irresolute but not be Strongly fuzzy pair wise generalized α -irresolute

Theorem 4.4: If a map $f: (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_k, \sigma_l)$ is Strongly fuzzy pair wise semi generalized α - irresolute, then τ_i -Int $(.\tau_i$ - Cl $(f^{-1}(\lambda))) \leq f^{-1}(\lambda)$

Proof: Let λ be any. (σ_k, σ_1) -fuzzy generalized α-closed set in Y. then $f^{-1}(\lambda)$ is (τ_i, τ_j) -fuzzy semi-closed in X. By definition of (τ_i, τ_j) -fuzzy semi-closed there exist a τ_i - fuzzy closed set v such that $.\tau_j$ –Int $(v) \le f^{-1}(\lambda) \le v$ and hence. τ_j –Int $(v) \le f^{-1}(\lambda) \le \tau_i$ - Cl $(f^{-1}(v) \le v$. Since, τ_j –Int (v) is the $.\tau_j$ –fuzzy open set less than v, we have $.\tau_j$ –Int $(.\tau_i$ - Cl $(f^{-1}(\lambda)) \le .\tau_j$ –Int $(v) \le f^{-1}(\lambda)$

Definition 4.5: (Y, η_i , η_j) be a fuzzy topological space. A fuzzy set μ of y is said to be a fuzzy generalized α-neighborhood (briefly fgαnbd) of a fuzzy point x_β if and only if there exist a.(η_i , η_j) - fuzzy generalized α-open set ν in η_i such that $x_\beta \in \nu \leq \mu$

A fuzzy generalized α -open set is a fg α nbd of each of its points. By N $^{g\alpha}$ η_i (y) we mean the fg α nbd system of y in the fuzzy topology η_i .

Theorem 4.6: The following properties are equivalent for a function $f:(X, \tau_i, \tau_j) \to (Y, \eta_k, \eta_l)$

- (i) The function f is strongly fuzzy pair wise generalized α -irresolute
- (ii) For every fuzzy point x_{β} in X and for every $\mu \in N^{g\alpha} \eta_k(f(x_{\beta}))$, there exist a $\lambda \in N\tau_i(x_{\beta})$ such that $x_{\beta} \in \lambda$ and $f(\lambda) \leq \mu$
- (iii) The set $f^{-1}(\mu)$ is τ_i -fuzzy closed in X for every $.(\tau_i, \tau_i)$ -fuzzy generalized α -closed set μ of Y.

Proof: (i) \Rightarrow (ii) Let x_{β} be any fuzzy point in X and Let $\mu \in N^{g\alpha} \eta_k(f(x_{\beta}))$, then there exist a (η_k, η_1) -fuzzy generalized α -open set ν in η_k such that $f(x_{\beta}) \in \nu \leq \mu$. By (i) set $f^{-1}(\nu) \in N\tau_j(x_{\beta})$ and we have $x_{\beta} \in f^{-1}(\nu) = \lambda \leq f^{-1}(\mu) \Rightarrow f(\lambda) \leq f(f^{-1}(\mu)) = \mu$.

(ii) \Rightarrow (i) Let μ be any (η_k, η_1) -fuzzy generalized α -open set in Y, it is claimed that $f^{-1}(\mu) \le \tau_i$ —Int $(f^{-1}(\mu))$.

Let $x_{\beta} \in f^{-1}(\mu)$, by (ii) there exists a fuzzy open set λ in τ_j of X such that $x_{\beta} \in \lambda$ and $f(\lambda) \le \mu$. Thus we have that $x_{\beta} \in \lambda$ = τ_i –Int $(\lambda) \le \tau_i$ –Int $(f^{-1}(\mu))$. Hence $f^{-1}(\mu) \le \tau_i$ –Int $(f^{-1}(\mu))$. Therefore $f^{-1}(\mu)$ is τ_i -fuzzy open in X.

(i) \Rightarrow (iii) Let μ be any (η_k, η_l) -fuzzy generalized α -closed in Y set v=1- μ is (η_k, η_l) -fuzzy generalized α -open in Y. By (i) $f^{-1}(v) = f^{-1}(1-\mu) = 1 - f^{-1}(\mu)$ is τ_i -fuzzy open in X and hence $f^{-1}(\mu)$ is τ_i -fuzzy closed in X.

(iii)⇒(i) is obvious.

Theorem 4.7 For a mapping $f: (X, \tau_i, \tau_j) \to (Y, \eta_k, \eta_l)$ the following statements are equivalent

- (i) f is Strongly fuzzy pair wise semi generalized α -irresolute
- (ii) For every fuzzy point x_β in X and for every $\mu \in N^{g\alpha} \eta_k(f(x_\beta))$, there exist a $\lambda \in (\tau_i, \tau_j)$ -FSO(X) such that $x_\beta \in \lambda$ and $f(\lambda) \leq \mu$
- (iii) For each (η_k, η_1) -fuzzy generalized α -open set μ of Y $f^{-1}(\mu) \leq \tau_j$ -Cl $(\tau_i$ Int $(f^{-1}(\mu)))$
- (iv) $f^{-1}(\mu)$ is $.(\tau_i, \tau_i)$ -fuzzy semi closed in X for every (η_k, η_1) -fuzzy generalized α -closed set μ of Y.

Proof: (i) \Rightarrow (ii)Let $x_{\beta} \in X$ and let $\mu \in N^{g\alpha} \eta_k(f(x_{\beta}))$, then there exist a (η_k, η_1) -fuzzy generalized α -open set ν in η_k such that $f(x_{\beta}) \in \nu \leq \mu$. By (i) $f^{-1}(\nu) \in (\tau_i, \tau_i)$ -FSO(X) such that $x_{\beta} \in f^{-1}(\nu) = \lambda \leq f^{-1}(\mu) \Rightarrow f(\lambda) \leq \mu$.

- (ii) \Leftrightarrow (iii) it is true by using Thorem3.14[7]
- $(iii) \Leftrightarrow (iv) \text{ trivial using Definition 4.1}$
- (ii) \Rightarrow (i) Let μ be any (η_k, η_1) -fuzzy generalized α -closed in Y. Let $x_\beta \in f^{-1}(\mu)$. This implies that $f(x_\beta) \in f(f^{-1}(\mu)) \leq \mu$.

Since μ is (η_k, η_l) -fuzzy generalized α -open set we have $\mu \in N^{g\alpha} \eta_k(f(x_\beta))$. By (ii) there exists a $\lambda \in (\tau_i, \tau_j)$ -FSO(X) such that $x_\beta \in \lambda$ and $f(\lambda) \le \mu$. This shows that $x_\beta \in \lambda \le f^{-1}(\mu)$. Hence by Theorem 2.8[7] $f^{-1}(\mu)$ is (τ_i, τ_j) fuzzy semi open in X

REFERENCES:

- [1] K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math .Anal. App. 82(1981), 14-32.
- [2] G. Balasubramanian, P. Sundaram, On some generalization of continuous functions, Fuzzy Sets and Systems 86 (1997) 93-100.
- [3] A.S. Bin Shahna, On fuzzy strong semi-continuity and fuzzy pre continuity Fuzzy Sets and System, 44(1991), 303-308.
- [4] C. L. Chang, Fuzzy topological spaces, J. Math, Anal. Appl. (1968)182-190.

- [5] R. Devi K. Bhuvaneswari and G. Balasubramanian On fuzzy generalized α -extremally disconnectedness Bull. Cal. Math. Soc (accepted).
- [6] P.M Pu and Y.M Lin, Fuzzy topology I .neighborhood structure of a fuzzy point and Moore-Smith convergence, J.Math. Anal.Appl. 76(1980)571-599.
- [7] P. Sampath Kumar Semi-open sets, semi-continuity and semi open mappings in fuzzy bi topological spaces, Fuzzy Sets and Systems 64 (1994) 421-426.
- [8] S.S. Thakur, U.D Tapi and R.Malviya, Pair wise fuzzy semi closed mappings. J. Indian Acad.Mah.Vol.20, No.2 (1998).
- [9] H. Maki, R. Devi and K. Balachandran, Generalized α -closed sets in topology. Bulletin of Fukuoka University of Education, Vol. 42, part III, 13-21(1993).

[10] L.A. Zadeh, Fuzzy Sets. Inform. and Control 8(1965), 338-353.
