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ABSTRACT
This paper deals with the existence of positive solutions of nonlinear neutral delay difference equations with positive
and negative coefficients of the form

A(r(m)Alx(n)+ p(n)x(n—=1)1)+ ¢ ,(n)x(n=0,) = q,(n)x(n-0,) = e(n),

under the following assumption that
SR S :
Z—Zqi(J) <oo,i=1,2
s=0 r(S) j=s

for various ranges of p(n). By using Banach’s contraction mapping principle, some sufficient conditions are
established for the existence of nonoscillatory solutions.
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1. INTRODUCTION:

In this paper, we consider the second order nonlinear neutral delay difference equation with forcing term of the form
A(r(mALx(m) + p(mx(n=1)1) +q,(Mx(n-0,)—q,(Mx(n-0,) =e(n) ,
where n>n,, 7>0, 0,,0, 20 are integers and r(n),q;(n),i =1,2 are sequences of nonnegative real numbers.

(Al) f,g€ C(R,R) satisfy Lipschitz condition and xf (x) >0, xg(x) > 0,for x # 0,

The nonoscillatory behaviour of linear and nonlinear neutral delay difference and differential equations with positive
and negative coefficients have been investigated by several authors, see, for example [3], [4], [5], [6], [7], [8] and [9],

the references cited therein. We refer monographs [1] and [2] for a good amount of discussion concerning existence of
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solutions of delay difference equations. Our aim in this paper is to establish nonoscillation criteria for the second order

nonlinear neutral delay difference equation (1.1) for various ranges of p(n).

As is customary, a solution of (1.1) is said to be nonoscillatory if it is eventually positive or eventually negative.

Otherwise, it will be called oscillatory.

2. MAIN RESULTS:

Theorem: 2.1 Suppose that conditions (Al) to (A3) hold and that there exists a constant P, such that

O<pn)<p <l 2.1)

Then equation (1.1) has a nonoscillatory solution.

Proof: Suppose that (2.1) holds. Choose a positive constant 72 = 1, and such that

Z Z() L=n (2.2)

o 10
Z Z%( )< —L, (2.3)
M, Z Zqzm (2.4)

where M| =max {Ll , f(l)} , M, = maX{Lz, g(l)} and L, L, are Lipschitz constants of f and g respectively

on 1-p 1.
10

Consider the Banach space X = ¢™ of all real sequences X = x(#) with the norm ||x|| =sup|x(n)|. Set
nzn

S:{xeX:lIé)l Sx(n)Sl,nan}.

Define a mapping 7, : S — X as follows:

4
S (ONCELED) ()Z%(J)f(x(] 6
(Tx) () = Z ()Zqzmg(x(j c>>+z zem nn,
T2, m<n<n,

Now, we show that Tlxis continuous. Let {xk (n)} be a sequence in X such that ”xk —x” =Q0as k — oo. Since
X is a closed set, we obtain

() ()~ |<||xk—x||{p,+az EEONIPITE zqzm}

s=ny snl

=0 as k—> oo,
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which proves that 7} x is continuous on X . Forevery x€ S and n2n,,

(T, )()_”4”1 Z ()Zqzmg(xu c))+2 Zem

<1+4p1 +1_p1 +1_p1
5 5 10
<1+pl

<1

and

1+4p1
T >—
(T,x)(n) 2= p, + 5 g()

I+4p, 1-p,
+ —_—
LA~ 10

Z%(J)f(X(J G))

1—
Py <T (x(n)) <1. Now, for x;,x, € S and n = n,, we have

Hence

_pl 1- P

(7)) ()= (T ) ()] < e =+ e =l = =

1- 1-
< (p, +Tpl+?ﬂjnx, x|

< Tp,+3
10

||x1 —xz||-

This proves that 7;is a contraction mapping. 7; has the unique fixed point x€ X . Thus x(n) is a positive solution

of equations (1.1),

1
x(n)= +5”‘ p(mx(n—1)— Z 52

i i (j)g(x(j—cz)>+i i (). nzn

Z%U)f(x(,z G))

Therefore
A(r(n)A[x(n)+ p(m)x(n—-1)])+q,(0) f (x(n—06))) - q,(n) g (x(n—0,)) =e(n),

and so x(n) is obviously a positive solution of equation (1.1). This completes the proof of the theorem.

By using similar arguments as in Theorem 2.1, we can prove the following theorem.

Theorem: 2.2 Suppose that conditions (A1) to (A3) hold and that there exists a constant p, such that

—1<—p2Sp(n)<0. (2.5)

Then equation (1.1) has a nonoscillatory solution.
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Now we prove the following theorem.

Theorem: 2.3 Suppose that conditions (A1) to (A3) hold and that there exists constants p,and p, such that

~1<p,<p(n)<p, <],

(2.6)

and p(n) changes sign such that p, <1435 p;. Then equation (1.1) has a positive solution.

Proof: As in the proof of theorem (2.1), it is possible to choose a positive number 7 2 1,

ie( )<
Z )qu pst
Z ZqZ(])

s=ny

¥y

r(s) iz

where M, =max{l,l,f(l)}, M, =max{Lz,g(1)} and

on 1=, 1.
10

&tS:{xeX:

1_(;’4 <x(n)<1, nan}.

Define a mapping 7 : S — X as follows:

(2.7)

1- 4
, 2.8
5 (2.8)

(2.9)

L, L, are Lipschitz constants of f and g respectively

4
E2Pe (=)~ > ()qu(J)f(X(J 5,)
(T,x)(n) =1+ Z ()26]2(1)8()6(] “»+Zr<s>ze(” nzn,
(T3x)(n1), n,<n<n,

Clearly, T;x is continuous. For every x€ S and n 2 n,,

1+4
(Tyx)(n) < p4+z Z%(])g(x(J c ))+Z Z ()
5 S = r(9)
<1+4p4+1—p4+1—]74
5 50 50
<12+38p4 <1
50

and

(Tx)(n) > p,+ 1+4p4

Z

5
1+4p
>—p,+ . !
Zl_p4
10
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1—
Hence 1574 S];(x(n))ﬁl. Now, for x,,x, € § and n = n,, we have

1- 1-
|(T3x1)(n)—(T3x2)(n)|S p4||x1—x2||+ 5P4||x1_x2”+ 5§4||x1_x2”

39p,+11
SpS“—O”"l_xz”

This proves that 7} is a contraction mapping. 7 has the unique fixed point x€ X. Thus x (n) is a positive solution

of equations (1.1).

Remark: 2.4 Similarly we can study the existence of positive solution of equation (1.1) for the other ranges of p(n)
by using suitable transformations. Hence the details are omitted.
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