International Journal of Mathematical Archive-2(11), 2011, Page: 2358-2369 Available online through <u>www.ijma.info</u> ISSN 2229 – 5046

$\theta \ddot{g}$ -CLOSED SETS IN TOPOLOGICAL SPACES

¹S. Ganesan, ²O. Ravi*, ³K. Mahaboob Hassain Sherieff and ⁴S.Pious Missier

¹Department of Mathematics, N. M. S. S. V. N College, Nagamalai, Madurai, Tamil Nadu, India E-mail : sgsgsgsgg77@yahoo.com

²Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India E-mail: siingam@yahoo.com

³Department of Mathematics, S.L.S. MAVMMAV College, Madurai, District, Tamil Nadu, India E-mail: rosesheri14@yahoo.com

⁴Department of Mathematics, V. O. Chidambaram College, Tuticorin, Tamil Nadu, India E-mail: spmissier@yahoo.com

(Received on: 30-10-11; Accepted on: 12-11-11)

ABSTRACT

In this paper, we offer a new class of sets called $\theta \ddot{g}$ -closed sets in topological spaces and we study some of its basic properties. The family of $\theta \ddot{g}$ -closed sets of a topological space forms a topology and is denoted by $\tau \theta \ddot{g}$. Notice that this class of sets lies between the class of θ -closed sets and the class of $\theta \omega$ -closed sets. Using these sets, we obtain a decomposition of θ -continuity and we introduce new spaces called $T \theta \ddot{g}$ and ${}_{g}T \theta \ddot{g}$. Using these spaces we obtain another decomposition of $T_{1/2}$ -spaces.

2010 Mathematics Subject Classification: 54C10, 54C08, 54C05.

Keywords and Phrases: Topological space, θg -closed set, $\theta \omega$ -closed set, $\theta \ddot{g}$ -closed set, \ddot{g} -closed set, \ddot

1. INTRODUCTION:

In 1963 Levine [17] introduced the notion of semi-open sets. Velicko [30] introduced the notion of θ -closed sets and it is well known that the collection of all θ -closed sets of a topological space forms a topology and is denoted by $\tau \theta$. Levine [16] also introduced the notion of g-closed sets and investigated its fundamental properties. This notion was shown to be productive and very useful. Dontchev and Maki [11] introduced the notion of θ -generalized closed sets.

After the advent of g-closed sets, Arya and Nour [4], Sheik John [25], Ravi and Ganesan [23] and Dontchev [10] introduced gs-closed sets, ω -closed sets, \ddot{g} -closed sets and gsp-closed sets respectively.

Quite recently, Ganesan et al. [13] have introduced the notion of $\theta\omega$ -closed sets which lies between the θ -closed sets and the θg -closed sets.

In this paper, we introduce a new class of sets called $\theta \ddot{g}$ -closed sets in topological spaces. This class lies between the class of θ -closed sets and the class of $\theta \omega$ -closed sets. We study some of its basic properties and characterizations. Interestingly it turns out that the family of $\theta \ddot{g}$ -closed sets of a topological space forms a topology. This collection is denoted by $\tau \theta \ddot{g}$. From the definitions, it follows immediately that $\tau_{\theta} \subseteq \tau \theta \ddot{g}$. Using these sets, we obtain a decomposition of θ -continuity and we introduce new type of spaces called $T \theta \ddot{g}$ -spaces and ${}_{g}T \theta \ddot{g}$ -spaces. Using these spaces, we obtain another decomposition of $T_{1/2}$ -spaces.

2. PRELIMINARIES:

Throughout this paper (X,τ) and (Y, σ) (or X and Y) represents topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X,τ) , cl(A), int(A) and A^c or X | A denote the closure of A, the interior of A and the complement of A respectively.

We recall the following definitions which are useful in the sequel.

Definition: 2.1 A subset A of a space (X,τ) is called:

(i) semi-open set [17] if $A \subseteq cl(int(A))$;

- (ii) preopen set [19] if $A \subseteq int(cl(A))$;
- (iii) α -open set [20] if A \subseteq int(cl(int(A)));

(iv) β -open set [1] (= semi-preopen set [2]) if A \subseteq cl(int(cl(A)));

(v) regular open set [26] if A = int(cl(A)).

The complements of the above mentioned open sets are called their respective closed sets.

The preclosure [21] (resp. semi-closure [8], α -closure [20], semi-pre-closure [2]) of a subset A of X, denoted by pcl(A) (resp. scl(A), α cl(A), spcl(A)), is defined to be the intersection of all preclosed (resp. semi-closed, α -closed, semi-preclosed) sets of (X, τ) containing A. It is known that pcl(A) (resp. scl(A), α cl(A), spcl(A)) is a preclosed (resp. semi-closed, α -closed, semi-closed, α -closed, semi-closed) set.

Definition: 2.2 [30]

A point x of a space X is called a θ -adherent point of a subset A of X if $cl(U) \cap A \neq \phi$, for every open set U containing x. The set of all θ -adherent points of A is called the θ -closure of A and is denoted by $cl_{\theta}(A)$. A subset A of a space X is called θ -closed if and only if $A = cl_{\theta}(A)$. The complement of a θ -closed set is called θ -open. Similarly, the θ -interior of a set A in X, written $int_{\theta}(A)$, consists of those points x of A such that for some open set U containing x, $cl(U) \subseteq A$. A set A is θ -open if and only if $A = int_{\theta}(A)$, or equivalently, X \ A is θ -closed.

A point x of a space X is called a δ -adherent point of a subset A of X if $int(cl(U)) \cap A \neq \phi$, for every open set U containing x. The set of all δ -adherent points of A is called the δ -closure of A and is denoted by $cl_{\delta}(A)$. A subset A of a space X is called δ -closed if and only if $A = cl_{\delta}(A)$. The complement of a δ -closed set is called δ -open. Similarly, the δ -interior of a set A in X, written $int_{\delta}(A)$, consists of those points x of A such that for some regularly open set U containing x, U \subseteq A. A set A is δ -open if and only if $A = int_{\delta}(A)$, or equivalently, X \ A is δ -closed.

The family of all θ -open (resp. δ -open) subsets of (X, τ) forms a topology on X and is denoted by τ_{θ} (resp. τ_{δ}). From the definitions it follows immediately that $\tau_{\theta} \subseteq \tau_{\delta} \subseteq \tau$. [7].

Definition: 2.3 A point $x \in X$ is called a semi θ -cluster [9] point of A if $A \cap scl(U) \neq \phi$ for each semi-open set U containing x.

The set of all semi θ -cluster points of A is called the semi- θ -cluster of A and is denoted by scl θ (A). Hence, a subset A is called semi- θ -closed if scl θ (A) = A. The complement of a semi- θ -closed set is called semi- θ -open set.

Recall that a subset A of a space (X, τ) is said to be δ -semi-open [22] if A \subseteq cl(int δ (A)).

Definition: 2.4 A subset A of a space (X, τ) is called:

(i) a generalized closed (briefly, g-closed) set [16] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(ii) a generalized semi-closed (briefly, gs-closed) set [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

- (iii) a semi-generalized closed (briefly, sg-closed) set [5] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- (iv) an α -generalized closed (briefly, α g-closed) set [18] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).

(v) a generalized semi-preclosed (briefly, gsp-closed) set [10] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . (vi) a generalized preclosed (briefly, gp-closed) set [21] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . (vii) a \hat{g} -closed set [27] (= ω -closed set [25]) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) . (viii) a \hat{g} -closed set [23] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .

(ix) ψ -closed set [29] if scl(A) \subseteq U whenever A \subseteq U and U is sg-open in (X, τ).

(x) a θ -generalized closed set (briefly, θg -closed) [11] if $cl_{\theta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(xi) a $\theta \omega$ -closed set [13] if $cl_{\theta}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in (X, τ) .

Remark: 2.5 The collection of all θg -closed (resp. \ddot{g} -closed, $\theta \omega$ -closed, sg-closed, ψ -closed, ω -closed, g-closed, g-closed, θ -closed, semi-closed) sets of X is denoted by $\theta G C(X)$ (resp. $\ddot{G} C(X)$, $\theta \omega C(X)$, SG C(X), $\psi C(X)$, $\omega C(X)$, G C(X), $\theta C(X)$, $\alpha C(X)$, S C(X)).

We denote the power set of X by P(X).

Remark: 2.6 [6] We have the following diagram in which the converses of the implications need not be true.

Remark: 2.7 [25]

(i) Every θ -closed set is θg -closed.

(ii) θg -closed sets and ω -closed sets are independent.

Remark: 2.8 [7] (X, τ) is regular if and only if $\tau_{\theta} = \tau$.

Remark: 2.9 [24] A space X is called $\tau \ddot{g}$ if \ddot{g} -closed set in X is closed.

Definition: 2.10 A topological space (X,τ) is called a R₁-space [12] if every two different points with distinct closures have disjoint neighborhoods.

Proposition: 2.11 [7] Let (X, τ) be a space. Then,

- (i) if $A \subseteq X$ is preopen then $cl(A) = cl_{\theta}(A)$.
- (ii) (X, τ) is R_1 if and only if $cl({x}) = cl_{\theta}({x})$ for each $x \in X$.

Proposition: 2.12 [12, 14] Let (X, τ) be a space. If $A \subseteq X$ is preopen then $cl(A) = \alpha cl(A) = cl_{\delta}(A)$.

Definition: 2.13 [16] A space (X, τ) is called $T_{1/2}$ -space if every g-closed set is closed.

Lemma: 2.14 [13] In any space, if a singleton is θ -open then it is regular open.

Lemma: 2.15 [13] In a regular space, singleton is θ -open if and only if it is regular open.

Lemma: 2.16 [13] If A is both closed and preopen of a topological space X, then the following are equivalent.

- (i) A is θ -closed.
- (ii) A is δ -closed.
- (iii) A is α -closed.

Lemma: 2.17 [13] If a subset A of a space (X, τ) is clopen, then the following are equivalent.

- (i) A is θ -closed.
- (ii) A is δ -closed.
- (iii) A is α -closed.
- (iv) A is regular closed.

3. $\theta \ddot{g}$ -CLOSED SETS:

We introduce the following definition.

Definition: 3.1 A subset A of X is called a $\theta \ddot{g}$ -closed set if $cl_{\theta}(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open in (X, τ) . The complement of $\theta \ddot{g}$ -closed set is called $\theta \ddot{g}$ -open set.

The collection of all $\theta \ddot{g}$ -closed sets of X is denoted by $\theta \ddot{G} C(X)$.

Proposition: 3.2 Every θ -closed set is $\theta \ddot{g}$ -closed.

Proof: Let A be a θ -closed set and G be any sg-open set containing A in (X,τ) . Since A is θ -closed, $cl_{\theta}(A) = A$ for every subset A of X. Therefore $cl_{\theta}(A) \subseteq G$ and hence A is $\theta \ddot{g}$ -closed set.

The converse of Proposition 3.2 need not be true as seen from the following example.

Example: 3.3 Let X = {a, b, c} with $\tau = \{\phi, \{a\}, X\}$. Then $\theta \ddot{G} C(X) = \{\phi, \{b, c\}, X\}$ and $\theta C(X) = \{\phi, X\}$. Here, A = {b, c} is $\theta \ddot{g}$ -closed but not θ -closed set in (X, τ).

Proposition: 3.4 Every $\theta \ddot{g}$ -closed set is θg -closed.

Proof: Let A be a $\theta \ddot{g}$ -closed set and G be any open set containing A in (X,τ) . Since every open set is sg-open and A is $\theta \ddot{g}$ -closed, $cl_{\theta}(A) \subseteq G$. Therefore $cl_{\theta}(A) \subseteq G$ and G is open. Hence A is θg -closed.

The converse of Proposition 3.4 need not be true as seen from the following example.

Example: 3.5 Let X and τ be as in the Example 3.3. Then $\theta \ddot{G} C(X) = \{\phi, \{b, c\}, X\}$ and $\theta G C(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Here, $A = \{a, c\}$ is θg -closed but not $\theta \ddot{g}$ -closed set in (X, τ) .

Proposition: 3.6 Every $\theta \ddot{g}$ -closed set is $\theta \omega$ -closed.

Proof: Let A be a $\theta \ddot{g}$ -closed set and G be any semi open set containing A in (X,τ) . Since every semi open set is sg-open and A is $\theta \ddot{g}$ -closed, $cl_{\theta}(A) \subseteq G$. Hence A is $\theta \omega$ -closed.

The converse of Proposition 3.6 need not be true as seen from the following example.

Example: 3.7 Let X = {a, b, c} with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then $\theta \ddot{G} C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and $\theta \omega C(X) = P(X)$. Here, A = {a, b} is $\theta \omega$ -closed but not $\theta \ddot{g}$ -closed set in (X, τ) .

Proposition: 3.8 Every $\theta \ddot{g}$ -closed set is g-closed.

Proof: Let A be a $\theta \ddot{g}$ -closed set and G be any open set containing A in (X,τ) . Since every open set is sg-open and A is $\theta \ddot{g}$ -closed, $cl_{\theta}(A) \subseteq G$. Since $cl(A) \subseteq cl_{\theta}(A) \subseteq G$, $cl(A) \subseteq G$ and hence A is g-closed.

The converse of Proposition 3.8 need not be true as seen from the following example.

Example: 3.9 Let X and τ be as in the Example 3.3. Then $\partial G C(X) = \{\phi, \{b, c\}, X\}$ and $G C(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Here, $A = \{a, b\}$ is g-closed but not ∂g -closed set in (X, τ) .

Proposition: 3.10 Every $\theta \ddot{g}$ -closed set is ω -closed.

Proof: Let A be a $\theta \ddot{g}$ -closed set and G be any semi open set containing A in (X,τ) . Since every semi open set is sgopen and A is $\theta \ddot{g}$ -closed, $cl_{\theta}(A) \subseteq G$. Since $cl(A) \subseteq cl_{\theta}(A) \subseteq G$, $cl(A) \subseteq G$ and hence A is ω -closed.

The converse of Proposition 3.10 need not be true as seen from the following example.

Example: 3.11 Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then $\theta \ddot{G} C(X) = \{\phi, \{b, c\}, X\}$ and $\omega C(X) = \{\phi, \{c\}, \{b, c\}, X\}$. Here, $A = \{c\}$ is ω -closed but not $\theta \ddot{g}$ -closed set in (X, τ) .

Proposition: 3.12 Every $\theta \ddot{g}$ -closed set is \ddot{g} -closed.

Proof: Let A be a $\theta \ddot{g}$ -closed and G be any sg-open set containing A. Since $cl(A) \subseteq cl_{\theta}(A) \subseteq G$ and hence A is \ddot{g} -closed.

The converse of Proposition 3.12 need not be true as seen from the following example.

Example: 3.13 Let X and τ be as in the Example 3.11. Then $\theta \ddot{G} C(X) = \{\phi, \{b, c\}, X\}$ and $\ddot{G} C(X) = \{\phi, \{c\}, \{b, c\}, X\}$. Here, $A = \{c\}$ is \ddot{g} -closed but not $\theta \ddot{g}$ -closed set in (X, τ) .

Proposition: 3.14 Every $\theta \ddot{g}$ -closed set is sg-closed.

Proof: Let A be a $\theta \ddot{g}$ -closed and G be any semi open set containing A in (X, τ). Since every semi open set is sg-open, $cl_{\theta}(A) \subseteq G$. Since $scl(A) \subseteq cl_{\theta}(A) \subseteq G$, $scl(A) \subseteq G$ and hence A is sg-closed.

The converse of Proposition 3.14 need not be true as seen from the following example.

Example: 3.15 Let X and τ be as in the Example 3.7. Then $\theta \ddot{G} C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and SG C(X) = P(X). Here, $A = \{a, b\}$ is sg-closed but not $\theta \ddot{g}$ -closed set in (X, τ) .

Proposition: 3.16 Every $\theta \ddot{g}$ -closed set is ψ -closed.

Proof: It is true that $scl(A) \subseteq cl_{\theta}(A)$ for every subset A of (X, τ) .

The converse of Proposition 3.16 need not be true as seen from the following example.

Example: 3.17 Let X and τ be as in the Example 3.3. Then $\partial \ddot{G} C(X) = \{\phi, \{b, c\}, X\}$ and $\psi C(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Here, $A = \{b\}$ is ψ -closed but not $\partial \ddot{g}$ -closed set in (X, τ) .

Remark: 3.18 The following examples show that $\theta \ddot{g}$ -closedness is independent of closedness, semi-closedness and α -closedness.

Example: 3.19 Let X and τ be as in the Example 3.3. Then $\theta \ddot{G} C(X) = \{\phi, \{b, c\}, X\}$ and $\alpha C(X) = S C(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Here, A = {b} is α -closed as well as semi-closed in (X, τ) but it is not $\theta \ddot{g}$ -closed set in (X, τ).

Example: 3.20 Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$. Then $\partial G C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $\alpha C(X) = S C(X) = \{\phi, \{c\}, X\}$. Here, $A = \{a, c\}$ is ∂g -closed but it is neither α -closed set nor semi-closed set in (X, τ) .

Example: 3.21 In Example 3.11, {c} is closed but not $\theta \ddot{g}$ -closed set.

In Example 3.20, {b, c} is $\theta \ddot{g}$ -closed but not closed set.

Remark: 3.22 $\theta \omega$ -closed sets and \ddot{g} -closed sets are independent.

Example: 3.23 In Example 3.7, {a, b} is $\theta \omega$ -closed but not \ddot{g} -closed set.

In Example 3.11, {c} is \ddot{g} -closed but not $\theta\omega$ -closed set.

Remark: 3.24 From the above discussions and known results in [10, 12, 13, 23, 25, 28, 29], we obtain the following diagram, where $A \rightarrow B$ (resp. $A \iff B$) represents A implies B but not conversely (resp. A and B are independent of each other).

4. PROPERTIES OF $\theta \ddot{g}$ -CLOSED SETS:

Definition: 4.1 [23] The intersection of all sg-open subsets of (X,τ) containing A is called the sg-kernel of A and is denoted by sg-ker(A).

Lemma: 4.2 A subset A of (X, τ) is $\theta \ddot{g}$ -closed if and only if $cl_{\theta}(A) \subseteq sg\text{-ker}(A)$.

Proof: Suppose that A is $\theta \ddot{g}$ -closed. Then $cl_{\theta}(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open. Let $x \in cl_{\theta}(A)$. If $x \notin$ sg-ker(A), then there is a sg-open set U containing A such that $x \notin U$. Since U is a sg-open set containing A, we have $x \notin cl_{\theta}(A)$ and this is a contradiction.

Conversely, let $cl_{\theta}(A) \subseteq sg\text{-ker}(A)$. If U is any sg-open set containing A, then $cl_{\theta}(A) \subseteq sg\text{-ker}(A) \subseteq U$. Therefore, A is $\theta \ddot{g}$ -closed.

Remark: 4.3 The collection of all $\theta \ddot{g}$ -closed sets of a topological space forms a topology and is denoted by $\tau \theta \ddot{g}$.

Remark: 4.4 If A is a $\theta \ddot{g}$ -closed set and F is a θ -closed set, then A \cap F is a $\theta \ddot{g}$ -closed set.

Proof: Since F is θ -closed, it is $\theta \ddot{g}$ -closed. Therefore by Remark 4.3, A \cap F is also a $\theta \ddot{g}$ -closed set.

Proposition: 4.5 If a set A is $\theta \ddot{g}$ -closed in (X, τ), then $cl_{\theta}(A) - A$ contains no nonempty sg-closed set in (X, τ).

Proof: Suppose that A is $\theta \ddot{g}$ -closed. Let F be a sg-closed subset of $cl_{\theta}(A) - A$. Then $A \subseteq F^{c}$. Therefore $cl_{\theta}(A) \subseteq F^{c}$. Consequently, $F \subseteq (cl_{\theta}(A))^{c}$. We already have $F \subseteq cl_{\theta}(A)$. Thus $F \subseteq cl_{\theta}(A) \cap (cl_{\theta}(A))^{c}$ and F is empty.

The converse of Proposition 4.5 need not be true as seen from the following example.

Example: 4.6 Let X and τ be as in the Example 3.20. Then $\theta \ddot{G} C(X) = SG C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$. If A = {c}, then $cl_{\theta}(A) - A = \{a, b\}$ does not contain any nonempty sg-closed set. But A is not $\theta \ddot{g}$ -closed in (X, τ) .

Proposition: 4.7 Let $A \subseteq Y \subseteq X$ where Y is open and suppose that A is $\theta \ddot{g}$ -closed in (X, τ) . Then A is $\theta \ddot{g}$ -closed relative to Y.

Proof: Let $A \subseteq Y \cap G$, where G is sg-open in (X, τ) . Then $A \subseteq G$ and hence $cl_{\theta}(A) \subseteq G$. This implies that $Y \cap cl_{\theta}(A) \subseteq Y \cap G$. Thus A is $\theta \ddot{g}$ -closed relative to Y.

Proposition: 4.8 If A is a sg-open and $\theta \ddot{g}$ -closed in (X, τ) , then A is θ -closed in (X, τ) .

Proof: Since A is sg-open and $\theta \ddot{g}$ -closed, $cl_{\theta}(A) \subseteq A$ and hence A is θ -closed in (X, τ) .

Theorem: 4.9 Let A be a subset of a regular space (X, τ) . Then,

(i) A is $\theta \ddot{g}$ -closed if and only if A is \ddot{g} -closed.

(ii) if (X, τ) is $\tau \ddot{g}$, then A is $\theta \ddot{g}$ -closed if and only if A is closed.

Proof:

- (i) It follows from Remark 2.8.
- (ii) It follows from Remark 2.9.

Theorem: 4.10 Let A be a preopen subset of a topological space (X, τ) . Then the following conditions are equivalent.

- (i) A is $\theta \ddot{g}$ -closed.
- (ii) A is $\theta \omega$ -closed (or \ddot{g} -closed).
- (iii) A is θg -closed (or ω -closed).
- (iv) A is g-closed.
- (v) A is α g-closed.

Proof:

(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v). It is obvious from Remark 3.24. (v) \Rightarrow (i). It follows from Propositions 2.11 and 2.12.

Recall that a partition space [12] is a topological space where every open set is closed.

Corollary: 4.11 Let A be a subset of the partition space (X, τ) . Then the following conditions are equivalent. (i) A is $\partial \ddot{g}$ -closed.

(ii) A is $\theta \omega$ -closed (or \ddot{g} -closed).

(iii) A is θg -closed (or ω -closed).

(iv) A is g-closed.

(v) A is α g-closed.

Proof: A topological space is a partition space if and only if every subset is preopen. Then the claim follows straight from Theorem 4.10.

Theorem: 4.12 For a singleton subset A of an R_1 topological space (X,τ) , the following conditions are equivalent.

- (i) A is $\theta \ddot{g}$ -closed.
- (ii) A is \ddot{g} -closed.

Proof: (i) \Rightarrow (ii) is clear.

(ii) \Rightarrow (i). Note that in R₁-spaces, the concepts of closure and θ -closure coincide for singleton sets: see Proposition 2.11.

© 2011, IJMA. All Rights Reserved

Theorem: 4.13 For a subset A of a topological space (X,τ) , the following conditions are equivalent.

- (i) A is clopen.
- (ii) A is $\theta \ddot{g}$ -closed, preopen and semi-closed.
- (iii) A is $\theta \dot{g}$ -closed and (regular) open.
- (iv) A is α g-closed and (regular) open.

Proof: (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) are obvious.

(iv) \Rightarrow (i). It follows from Theorem 3.13 [12].

Definition: 4.14 A space (X, τ) is called locally sg- θ -indiscrete space if every sg-open set is θ -closed.

Theorem: 4.15 For a topological space (X,τ) , the following conditions are equivalent.

- (i) X is locally sg- θ -indiscrete.
- (ii) Every subset of X is $\theta \ddot{g}$ -closed.

Proof: (i) \Rightarrow (ii). Let $A \subseteq U$, where U is sg-open and A is an arbitrary subset of X. Since X is locally sg- θ -indiscrete, then U is θ -closed. We have $cl_{\theta}(A) \subseteq cl_{\theta}(U) = U$. Thus A is $\theta \ddot{g}$ -closed.

(ii) \Rightarrow (i). If U \subseteq X is sg-open, then by (ii) $cl_{\theta}(U) \subseteq U$ or equivalently U is θ -closed. Hence X is locally sg- θ -indiscrete.

5. DECOMPOSITION OF θ -CONTINUITY:

In this section, we obtain a decomposition of continuity called θ -continuity in topological spaces.

To obtain a decomposition of θ -continuity, we first introduce the notion of $\theta \ddot{g}$ lc*-continuous functions in topological spaces and by using $\theta \ddot{g}$ -continuity, prove that a function is θ -continuous if and only if it is both $\theta \ddot{g}$ -continuous and $\theta \ddot{g}$ lc*-continuous.

We introduce the following definition.

Definition: 5.1 A subset A of a space (X, τ) is called $\theta \ddot{g}$ lc*-set if A = M \cap N, where M is sg-open and N is θ -closed in (X, τ) .

Example: 5.2 Let X and τ be as in the Example 3.3. Then {a, b} is $\theta \ddot{g}$ lc*-set in (X, τ).

Remark: 5.3 Every θ -closed set is $\theta \ddot{g}$ lc*-set but not conversely.

Example: 5.4 Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{b\}, X\}$. Then $\{b, c\}$ is $\theta \ddot{g}$ lc*-set but not θ -closed in (X, τ) .

Remark: 5.5 $\theta \ddot{g}$ -closed sets and $\theta \ddot{g}$ lc*-sets are independent of each other.

Example: 5.6 Let X and τ be as in the Example 3.20. Then {a, c} is an $\theta \ddot{g}$ -closed set but not $\theta \ddot{g}$ lc*-set in (X, τ).

Example: 5.7 Let X and τ be as in the Example 5.4. Then {a, b} is an $\theta \ddot{g}$ lc*-set but not $\theta \ddot{g}$ -closed set in (X, τ).

Proposition: 5.8 Let (X,τ) be a topological space. Then a subset A of (X,τ) is θ -closed if and only if it is both $\theta \ddot{g}$ - closed and $\theta \ddot{g}$ lc*-set.

Proof: Necessity is trivial. To prove the sufficiency, assume that A is both $\theta \ddot{g}$ -closed and $\theta \ddot{g}$ lc*-set. Then A = M \cap N, where M is sg-open and N is θ -closed in (X, τ). Therefore, A \subseteq M and A \subseteq N and so by hypothesis, $cl_{\theta}(A) \subseteq M$ and $cl_{\theta}(A) \subseteq N$. Thus $cl_{\theta}(A) \subseteq M \cap N = A$ and hence $cl_{\theta}(A) = A$ i.e., A is θ -closed in (X, τ).

We introduce the following definition

Definition: 5.9 A function $f: (X, \tau) \to (Y, \sigma)$ is said to be $\theta \ddot{g}$ lc*-continuous if for each closed set V of (Y, σ) , $f^{-1}(V)$ is a $\theta \ddot{g}$ lc*-set in (X, τ) .

Example: 5.10 Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, Y\}$. Let $f: (X,\tau) \to (Y,\sigma)$ be the identity function. Then f is $\partial \ddot{g}$ lc*-continuous function.

Definition: 5.11 A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called

- (i) θ -continuous [3] if for each closed set V of Y, $f^{-1}(V)$ is θ -closed in X.
- (ii) $\theta \ddot{g}$ -continuous if for each closed set V of Y, $f^{1}(V)$ is $\theta \ddot{g}$ -closed in X.

Proposition: 5.12 Every θ -continuous function is $\theta \ddot{g}$ -continuous but not conversely.

Proof: It follows from Proposition 3.2.

Example: 5.13 Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{b\}, Y\}$. We have $\theta C(X) = \{\phi, X\}$ and $\theta \ddot{G} C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$. Define f: $(X, \tau) \to (Y, \sigma)$ be the identity function. Then f is $\theta \ddot{g}$ -continuous but not θ -continuous, since f¹($\{a, c\}$) = $\{a, c\}$ is not θ -closed in (X, τ) .

Remark: 5.14 Every θ -continuous function is $\theta \ddot{g}$ lc*-continuous but not conversely.

Example: 5.15 Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, c\}, Y\}$. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be the identity function. Then f is $\theta \ddot{g}$ lc*-continuous function but not θ -continuous since for the closed set $\{b\}$ in (Y,σ) , f¹($\{b\}$) = $\{b\}$, which is not θ -closed in (X, τ) .

Remark: 5.16 $\theta \ddot{g}$ -continuity and $\theta \ddot{g}$ lc*-continuity are independent of each other.

Example: 5.17 Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{b\}, Y\}$. Let $f: (X,\tau) \to (Y,\sigma)$ be the identity function. Then f is $\theta \ddot{g}$ -continuous function but not $\theta \ddot{g}$ lc*-continuous.

Example: 5.18 Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{b, c\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is $\theta \ddot{g}$ lc*-continuous function but not $\theta \ddot{g}$ -continuous.

We have the following decomposition for continuity.

Theorem: 5.19 A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is θ -continuous if and only if it is both $\theta \ddot{g}$ -continuous and $\theta \ddot{g}$ lc*-continuous.

Proof: Assume that f is θ -continuous. Then by Proposition 5.12 and Remark 5.14, f is both $\theta \ddot{g}$ -continuous and $\theta \ddot{g}$ lc*-continuous.

Conversely, assume that f is both $\theta \ddot{g}$ -continuous and $\theta \ddot{g}$ lc*-continuous. Let V be a closed subset of (Y,σ) . Then $f^{1}(V)$ is both $\theta \ddot{g}$ -closed and $\theta \ddot{g}$ lc*-set. By Proposition 5.8, $f^{1}(V)$ is a θ -closed set in (X,τ) and so f is θ -continuous.

6. DECOMPOSITION OF T_{1/2}-SPACES:

We introduce the following definition:

Definition: 6.1 A space (X, τ) is called a T $\theta \ddot{g}$ -space if every $\theta \ddot{g}$ -closed set in it is closed.

Example: 6.2 Let X and τ be as in the Example 3.3. Then $\partial \hat{G} C(X) = \{\phi, \{b, c\}, X\}$ and the sets in $\{\phi, \{b, c\}, X\}$ are closed. Thus (X,τ) is a T $\partial \hat{g}$ -space.

Example: 6.3 Let X and τ be as in the Example 3.20. Then $\theta \ddot{G} C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and the sets in $\{\phi, \{c\}, X\}$ are closed. Thus (X, τ) is not a T $\theta \ddot{g}$ -space.

Theorem: 6.4 For a topological space (X, τ) , the following properties are equivalent:

- (i) (X,τ) is a T $\theta \ddot{g}$ -space.
- (ii) Every singleton of (X,τ) is either open or sg-closed.

Proof: (i) \rightarrow (ii). If {x} is not sg-closed, then X – {x} is not sg-open. Hence X is only sg-open set containing X – {x}. Therefore $cl_{\theta}(X - \{x\}) \subseteq X$. Thus X – {x} is $\theta \ddot{g}$ -closed. By (i) X – {x} is closed, i.e. {x} is open.

(ii) \rightarrow (i). Let A \subseteq X be a $\theta \ddot{g}$ -closed. Let x $\in cl_{\theta}$ (A). We consider the following two cases:

Case: (a) Let $\{x\}$ be open. Since x belongs to the closure of A, then $\{x\} \cap A \neq \phi$. This shows that $x \in A$.

Case: (b) Let {x} be sg-closed. If we assume that $x \notin A$, then we would have $x \in cl_{\theta}(A) - A$ which cannot happen according to Proposition 4.5. Hence $x \in A$.

So in both cases we have $cl_{\theta}(A) \subseteq A$. Since the reverse inclusion is trivial, then $A = cl_{\theta}(A)$ or equivalently A is θ -closed. It implies that A is closed.

Definition: 6.5 A space (X, τ) is called ${}_{g}T \theta \ddot{g}$ -space if every g-closed set is $\theta \ddot{g}$ -closed.

Example: 6.6 Let X and τ be as in the Example 3.20. Then $G C(X) = \theta \ddot{G} C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$. Thus (X,τ) is a ${}_{g}T \theta \ddot{g}$ -space.

Example: 6.7 Let X and τ be as in the Example 3.3. Then $G C(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ and $\theta \ddot{G} C(X) = \{\phi, \{b, c\}, X\}$. Thus (X, τ) is not a ${}_{g}T \theta \ddot{g}$ -space.

Proposition: 6.8 Every $T_{1/2}$ -space is $T \theta \ddot{g}$ -space but not conversely.

Proof: Follows from Proposition 3.8.

The converse of Proposition 6.8 need not be true as seen from the following example.

Example: 6.9 Let X and τ be as in the Example 3.3, Then $G C(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ and $\partial \ddot{G} C(X) = \{\phi, \{b, c\}, X\}$. Thus (X,τ) is T $\partial \ddot{g}$ -space but it is not a T_{1/2}-space.

Proposition: 6.10 Every regular $T_{1/2}$ -space is ${}_{g}T \theta \ddot{g}$ -space but not conversely.

Proof: Obvious.

The converse of Proposition 6.10 need not be true as seen from the following example.

Example: 6.11 Let X and τ be as in the Example 3.20. Then $G C(X) = \partial G C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$. Thus (X,τ) is a ${}_{g}T \partial g$ -space but not a $T_{1/2}$ -space.

Remark: 6.12 T $\theta \ddot{g}$ -spaces and ${}_{g}T \theta \ddot{g}$ -spaces are independent.

Example: 6.13 Let X and τ be as in the Example 3.20. Thus (X,τ) is a ${}_{g}T \theta \ddot{g}$ -space but it is not a $T \theta \ddot{g}$ -space.

Example: 6.14 Let X and τ be as in the Example 3.3. Thus (X,τ) is a T $\theta \ddot{g}$ -space but it is not a ${}_{g}T \theta \ddot{g}$ -space.

Theorem: 6.15 A regular space (X, τ) is $T_{1/2}$ if and only if it is both $T \theta \dot{g}$ and ${}_{g}T \theta \dot{g}$.

Proof: Necessity. Follows from Propositions 6.8 and 6.10.

Sufficiency. Assume that (X, τ) is both T $\theta \ddot{g}$ and $_{g}T \theta \ddot{g}$. Let A be a g-closed set of (X, τ) . Then A is $\theta \ddot{g}$ -closed, since (X, τ) is $_{g}T \theta \ddot{g}$. Again since (X, τ) is a T $\theta \ddot{g}$, A is closed set in (X, τ) and so (X, τ) is $T_{1/2}$.

REFERENCES:

[1] Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud, R. A.: β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.

[2] Andrijevic, D.: Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.

[3] Arockiarani, I., Balachandran, K. and Ganster, M.: Regular generalized locally closed sets and RGL-continuous functions, Indian J. Pure Appl. Math., 28(5) (1997), 661-669.

[4] Arya, S. P. and Nour, T. M.: Characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21(8) (1990), 717-719.

[5] Bhattacharya, P. and Lahiri, B. K.: Semi-generalized closed sets in topology, Indian J. Math., 29(3) (1987), 375-382.

[6] Caldas, M., Jafari, S. and Navalagi, G. B.: Weak forms of open and closed functions via semi- θ -open sets, Carpathian J. Math., 22 (1-2) (2006), 21-31.

[7] Cao, J., Ganster, M., Reilly, I. and Steiner, M.: δ -closure, θ -closure and generalized closed sets, Applied General Topology, Universidad Politecnica de Valencia, 6(1) (2005), 79-86.

[8] Crossley, S. G. and Hildebrand, S. K.: Semi-closure, Texas J. Sci., 22(1971), 99-112.

[9] Di Maio, G. and Noiri, T.: On s-closed spaces, Indian J. Pure Appl. Math., 18(3) (1987), 226-233.

[10] Dontchev, J.: On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16(1995), 35-48.

[11] Dontchev, J. and Maki, H.: On θ -generalized closed sets, Internat. J. Math. and Math. Sci., 22(1999), 239-249.

[12] Dontchev, J. and Ganster, M.: On δ -generalized closed sets and T_{3/4}-spaces, Mem. Fac. Sci. Kochi Univ. (Math), 17(1996), 15-31.

[13] Ganesan, S., Ravi, O. and Latha, R.: $\theta\omega$ -closed sets in topological spaces, International Journal of Mathematical Archive, 2(8) (2011), 1381-1390.

[14] Jankovic, D. S.: A note on mapping of extremally disconnected spaces, Acta Math. Hungar., 46 (1985), 83-92.

[15] Jankovic, D. S. and Reilly, I. L.: On semi separation properties, Indian J. Pure Appl. Math., 16(9) (1985), 957-964.

[16] Levine, N.: Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.

[17] Levine, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
© 2011, IJMA. All Rights Reserved

[18] Maki, H., Devi, R. and Balachandran, K.: Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 15(1994), 51-63.

[19] Mashhour, A. S., Abd El-Monsef, M. E. and El-Deeb, S. N.: On precontinuous and weak pre continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.

[20] Njastad, O.: On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.

[21] Noiri, T., Maki, H. and Umehara, J.: Generalized preclosed functions, Mem. Fac. Sci. Kochi Univ. Math., 19(1998), 13-20.

[22] Park, J. H., Lee, Y. and Son, M. J.: On δ -semi-open sets in topological spaces, J. Indian Acad. Math., 19 (1997), 59-67.

[23] Ravi, O. and Ganesan, S.: \ddot{g} -closed sets in topology, International Journal of Computer Science and Emerging Technologies, 2(3) (2011), 330-337.

[24] Ravi, O. and Ganesan, S.: On T \ddot{g} -spaces, Journal of Advanced Studies in Topology, 2(2) (2011), 1-6.

[25] Sheik John, M.: A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September 2002.

[26] Stone, M. H: Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-381.

[27] Veera Kumar, M. K. R. S.: \hat{g} -closed sets in Topological spaces, Bull. Allahabad Math. Soc., 18(2003), 99-112.

[28] Veera Kumar, M. K. R. S.: Between closed sets and g-closed sets, Men. Fac. Sci. Kochi Univ (Math)., 21 (2000), 1-19.

[29] Veera Kumar, M. K. R. S.: Between semi-closed sets and semi pre-closed sets, Rend Istit Mat. Univ. Trieste Vol XXXII, (2000), 25-41.

[30] Velicko, N. V.: H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103-118.
