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ABSTRACT
The boundary value problem in basic enzyme reactions is formulated and approximate closed analytical expression of
concentrations of substrate, enzyme and substrate-enzyme complex are presented. He’s Homotopy perturbation method
(HPM) is used to give approximate and analytical solutions of non-linear reaction equations containing a non-linear
term related to enzymatic reaction. The pertinent analytical solutions for the substrate, substrate-enzyme complex and

free enzyme are discussed in terms of dimensionless parameters a,,a,,a,,a, and ds .

Keywords: Enzyme catalyzed reaction;, Non-linear boundary value problems; Homotopy Perturbation Method;
Michaelis-Menten kinetics.

1. INTRODUCTION:

The vast majority of chemical transformations inside cells are carried out by proteins called enzymes. Enzymes
accelerate the rate of chemical reactions (both forward and backward) without being consumed in the process and tend
to be very selective, with a particular enzyme accelerating only a specific reaction. Enzymes are important in regulating
biological processes, for example, as activators or inhibitors in a reaction. To understand the role of enzyme kinetics,
the researcher has to study the rates of reactions, the temporal behaviors of the various reactants and the conditions
which influence the enzyme kinetics. Introduction with a mathematical bent is given in the books by Rubinow [1],
Murray [2], Segel [3] and Roberts [4].

In the model mechanism one enzyme molecule combines with one substrate molecule; that is, the enzyme has the one
binding site. There are many enzymes which have more than one binding site for substrate molecules. For example
haemoglobin (Hb), the oxygen-carrying protein in red blood cells, has 4 binding sites for oxygen (O, ) molecules. A

reaction between an enzyme and a substrate is described as cooperative if a single enzyme molecule, after binding a
substrate molecule at one site can then bind another site. Such phenomenons are common.

Another important cooperative behavior is when an enzyme with several binding sites is such that the binding of one
substrate molecule at one site can affect of binding other substrate molecule at another site. This indirect iteration
between distinct and specific binding sites is called allostery, or an allosteric effect, and an enzyme exhibiting it, an
allosteric enzyme. If a substrate that binds at one site increases the binding activity at another site then the substrate is
an activator; if it decreases the activity it is an inhibitor. The detailed mathematical analysis for the kinetics of such
allosteric reactions is given briefly in the book by Murray (1997)

Moreover, herein we employ “Homotopy Perturbation Method” (HPM) to solve the non-linear reaction equation. The
purpose of this communication is to derive asymptotic approximate expressions for the substrate, enzyme and enzyme-
substrate concentrations using Homotopy Perturbation Method for all values of dimensionless reaction diffusion

parameters d,,d,,d,,d, and ds .

2. MATHEMATICAL FORMULATION OF THE PROBLEM AND ANALYSIS:

As an example of cooperative phenomenon we consider the case where an enzyme has two binding sites and calculate
an equivalent quasi-steady state approximation and the substrate abstract function. A model for this consists of an

enzyme molecule E which binds a substrate molecule S to form a single bond substrate —enzyme complex C, . This

complex C , not only breaks down to form a product P and the enzyme E again; it can also combine with another
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substrate molecule to form a dual bound substrate-enzyme complex C, . This C, complex breaks down to form the

product and the single bound complex C,. A reaction mechanism for this model is then

ky ky
S+EsC —>E+P, (1)
k-1
ks ky
S+C1::§C2%C1+P, 2

where the k’s are the rate constants. The system of nonlinear equations can be represented in dimensionless form as
follows [2]:

du

E:_u+(u—a3u+al)v+(a4+M)W ®
dv

ggzu—(u+a3u+al+a2)v+(a4+a5—u)w “4)
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The boundary conditions are
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where u, v and w represent the dimensional concentrations for the substrate u, enzyme-substrate complex v and product

w and a,,a,,d,,a, and a, are the reaction diffusion parameters .

3. ANALYTICAL SOLUTIONS OF CONCENTRATIONS OF THE SUBSTRATE, SUBSTRATE-ENZYME
COMPLEX AND PRODUCT:

Recently, many authors have applied the HPM to various problems and demonstrated the efficiency of the HPM for
handling non-linear structures and solving various physics and engineering problems [5-8]. This method is a
combination in topology and classic perturbation techniques. Ji Huan He used the HPM to solve the Lighthill equation
[9], the Duffing equation [10] and the Blasius equation [11]. The idea has been used to solve non-linear boundary value
problems,integral equations and many other problems[11-17]. The HPM is unique in its applicability, accuracy and
efficiency. The HPM uses the imbedding parameter p as a small parameter and only a few iterations are needed to
search for an asymptotic solution. Using this method (see Appendix A), we can obtain the following solution to Eqs.(3)
to (5) for the given boundary conditions ( Eq.(6)).

' £ *[MJ' £ ,(m}
uty=e' + ——|at+———| e € -1|+(-a;) —(e € —1) —e +1
(a, +a, —¢€) a,+a,—¢& a, +a,
(M
a,+a, a,+a,+e a,+a,
e | AT, axa) | AT AN
v(t) = e'—e" ¢ + (+a,) eX e ) =2 ¢ (8)
a,+a,—€ (e—a,-a,)
(arayre), e
W(t) = a, ce® _ Ee ( ¢ ] _e e{Tj‘ 1 _ 1 )
(a1+a2—8) a,+a;—2¢ (a,+as—a,—a, —¢€) a,+a;—2¢ a,+ta;—a,—a, —&
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4. DISCUSSION:

Egs. (7) - (9) represent the most general new approximate analytical expressions for the substrate u, enzyme-substrate
complex v and product w for possible values of a,,a,,a;,a, and a. Figure 1-4 show the analytical expressions of
the concentration of substrate u, enzyme-substrate complex v and product w for various values of dimensionless
reaction parameters d,,d,,d,,d, and d . From these figures, it is inferred that the value of the concentration of
substrate decreases gradually from its initial value of the concentration (#(0) =1). The concentration of the product
increases slowly from the initial concentration (w(0) = 0). The concentration of the product reaches the constant value
when 7 is large for all values of reaction parameters. Also when the value of the parameters a,,a,,d,,a, and ds

increases, the value of the product decreases. The concentration of the enzyme-substrate complex v increases and
reaches the maximum value.

6. CONCLUSION:

Approximate analytical solutions to the non-linear reaction equations are presented using Homotopy Perturbation
method. A simple, straight forward and a new method of estimating the concentrations of substrate, enzyme-substrate
complex and enzyme are derived. This solution procedure can be easily extended to all kinds of system of coupled non-
linear equations with various complex boundary conditions in enzyme-substrate reaction diffusion processes.
APPENDIX (A):

SOLUTION OF THE NONLINEAR THE EQUATIONS USING HOMOTOPY PERTURBATION METHOD

In this appendix, we indicate how Eqgs. (3) to (5) may be solved using HPM . To illustrate the basic concepts of this
method (HPM), we consider the following non-linear differential equation L(u)+ N(u)— f(r)=0  where Lisa

linear operator, N is a nonlinear operator, and f{r) is a given continuous function. We construct a Homotopy
Qx[0,1] > R which satisfies

(l—p){%+u}+p[%+u—(u—a3u+al)v—(a4+u)}=0 (AD)

(l—p){g§+(a1 +a2)v}+p{€§—u+(1+a3)uv+(a1 +a2)v—(a4 +a5)w+uw}=0
t t

(A2)
(1- p){ed—w +(a, + as)w} + p{é‘@ +(a, +as)w— awv} =0 (A3)
dt dt
The initial approximations are as follows:
u(0)=1,v(0)=0,w(0)=0 (A4)
The approximate solutions of (A1), (A2) and (A3) are given by
U=u,+ pu, + p’u, + puy +....... (AS)
V=V py PPV, + PV (A6)
w=w, + pw, + p°w, + pPwy + ... (A7)

Substituting Equation. (AS5), (A6) and (A7) into Equations (A1), (A2) and (A3) and comparing the coefficients of like
powers of p we obtain the following differential equations.

p i—tu, = (AB)
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du
p1:7t1+u1—(a1+u0—a3u0)v0—(a4+u0)w020 (A9)
,  du,
p :?+u2 —(a, tuy —asuy)v, +(asu, —u,)vy —uw, —(a, +uy,)w, =0 (A10)
and
d
p’ :g%ﬂal +a,)v, =0 (Al1)
1 dv,
p €E+(al +a,)v, —(A+auyw, +wu, —a, —as)w,-u, =0 (A12)

dv
)4 :¢€'7t2+(a1 +a,)v, +(A+a;)uyv, +uwv,) —uw, —(a, +as —uy)w, —u, =0

(A13)
and
dw,
p’: e—"+(a, +a)w,=0 (Al4)
dt
dw
p': 871+ (a, +as)w, —auywv, =0 (A15)
” 3
dw
p’: € d2 +(a, +as)w, —a;(u,v, +u,v,)=0 (A16)
t
Upon solving the equations (A8)-(A16) and using the boundary conditions (A4), we get
p g q g ry g
u,=e’’ (A17)
u, =0 (A18)
a;+a,—&
e’ £ B Gl | £ [(atay _
u, = at+ e[ € ] -1|+(1-a;) —(e[ P ][—1) —e' +1[(A19)
(a1+a2—8) a, +a,—¢€ " \a, t+a,
v, =0 (A20)
a +a,
e | oA
v, = e’ —e (A21)
a+a,—&
l+a [ @ta,te ; (atay ;
v, = ( 3) 6_2[+€( £ j_ze[ £ j (A22)
(g_al _az)
and
w, =0 (A23)
w, =0 (A24)
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7[a,+az+£]t
- az+a
a, ce™ e °© *[%J' 1 1
W, = - —Ee -
(a, +a,—€)| a, +as—2¢ (a,+a;—a,—a,—¢€) a,+as—-2¢ a,+a;—a,—a, —&

Hence we obtain

u=u,+u +u,

V=v,+v, +v,

w=w,+w, +w,
Substituting the equations (A17) to (A25) in the above equations we obtain the Eqs. (7) to (9) in the text.
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Figure 1-4: Normalised concentration profiles of u,v

and was a function of dimensionless time f.The
concentrations are computed using Egs. (7)-(9) for
various values of the £ .
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