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ABSTRACT 

 

A mathematical model of   multi-phase microchannel bioreactor is presented. Further, the effect of oxygen diffusion on 

the concentration profile and effectiveness response was examined. Analytical expression pertaining to the oxygen 

concentration profile and effectiveness responses was reported for all possible values of reaction diffusion parameter 
2

ccφ and the saturation parameter β . These analytical results were found to be in good agreement with numerical 

simulations. Moreover, herein we employ Adomian decomposition method (ADM) to solve the non-linear 

reaction/diffusion equation.  
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1. INTRODUCTION: 

 

G. oxydans was chosen as a model for investigating the effects of latex coating microstructure, thickness, and drying 

properties on the preservation of cell viability at ambient temperature and oxidation reactivity. The oxidation of D-

sorbitol to L-sorbose by bilayer coatings was studied in a non-growth sorbitol, phosphate, pyruvate medium. Intrinsic 

kinetic parameters of suspended cells ( catkK ,0 ) and catalytic parameters of the matrix ( catTCeffcceff X  D  ,D ,,, ) were 

estimated from independent experiments and used with a diffusion-reaction model to predict the effectiveness factor 

and the effective reaction rate as a function of cellcoat thickness ( ccL ), topcoat thickness ( TCL ), and dissolved oxygen 

concentration in the liquid medium (CB) (Fidaleo and Flinckinger, 2011). Simulation of there activity of a multi-phase 

microchannel bioreactor for the oxidation of  D-sorbitol to L-sorbose by viable Gluconobacter oxydans entrapped in an 

adhesive, bilayer, nano-porous latex coating indicates that very high reaction rates may be achieved. These high 

reaction rates are strongly dependent on the reactivity of the biocatalytic coating which is affected by the nano-porous 

sealant topcoat thickness and the cellcoat active G. oxydans concentration (Fidaleo and Flinckinger, 2011). Thin, 

adhesive, nanoporous bilayer diffusive latex coating are significantly more reactive and more stable for whole-cell 

oxidations than any previously reported viable microbial immobilization method (Flinckinger et al., 2006). Cryogenic 

scanning electron microscopy has been shown to be a powerful and versatile tool for studying film formation and 

microstructure in yet another type of latex coating biocatalytic coatings containing E. coli cells (Flinckinger et al., 

1999). The monolith loop reactor eliminates the disadvantages of other configurations, such as separation of solvent 

and/or catalyst, deactivation due to catalyst separation outside the reactor and side reactions with solvents. The main 

advantages of using a monolith for this process are  Low pressure drop, which is especially beneficial because of the 

high recycle ratio,  high mass transfer, which reduces reactor volume and deactivation  and Plug flow. Although the 

reaction runs to completion, the reaction can be carried out in a small reactor because of the limited extent of back 

mixing in monolith reactors (Kreutzer, Kapteijn and Moulijn, 2005).   

 

However, to the best of our knowledge, there were no analytical results available till date that corresponds to the 

steady-state substrate concentration and effectiveness factor for all possible values of diffusion parameter 
2

ccφ  and the 

saturation parameter β . Therefore, herein, we employ Adomian decomposition method to evaluate the steady-state 

substrate concentration and effectiveness factor for all values of diffusion parameter
2

ccφ  and the saturation 

parameter β . 
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2. MATHEMATICAL FORMULATION OF THE PROBLEM AND ANALYSIS: 

 

In a multi-phase microchannel bioreactor, the oxidizing D-sorbitol reacts with oxygen producing L-sorbose. A general 

scheme that represents the reaction occurring at a multi-phase microchannel bioreactor is shown below (Fidaleo and 

Flinckinger, 2011): 

  

oHsorboseLOsorbitolD 22))2/1( +−→+−                              (1) 

 

Resting cells of G. oxydans are capable of oxidizing D-sorbitol to L-sorbose. In a non-growth medium, if oxygen is the 

only rate liming substrate, the kinetics of oxidation can be described by the following Michaelis–Menten equation: The 

steady state elemental balance for oxygen in the nanoporous latex cellcoat can be written as  

 

cat
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r
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=                         (2) 

where pr  is the L-sorbose formation rate, catk  is the rate constant for L-sorbose, oc  and catX  are the dissolved 

oxygen and active G. oxydans concentrations, respectively and 0K  is the saturation constant for oxygen. The mass 

balance equation for oxygen in cellcoat can be written as follows: 
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where oc  is the dissolved oxygen concentration at depth x  in the cellcoat, cceffD . is the effective diffusivity of oxygen 

in the cellcoat, OPY /  is the yield of L-sorbose on oxygen and catX is the concentration of viable cells in the cellcoat. 

The boundary conditions are: 

 

00 =
dx

dc
 at 0=x ;                             (4) 

 

0c = 1c  at ccLx = ;                            (5) 

 

where ccL is the thickness of the cellcoat and 1c  is the dissolved oxygen concentration at the interface of cellcoat and 

topcoat. Solution of the above equations requires that the value of 1c  is known. An additional condition can be 

obtained by imposing the continuity of oxygen flux at the interface between the cellcoat and the topcoat: 
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The oxygen volumetric consumption rate of the coating can be reported in terms of the effectiveness factor, which in 

the case under study can be expressed as: 
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where ccφ  is the Thiele modulus: 

 

ccφ = ccL
cceffP

catcat

DKY

Xk

.00/

                            (8) 

 

2.1 Normalised form: 

 

By introducing the following  dimensionless variables  

 

1c

c
U =  and 

ccL

x
X =                         (9) 
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 the non-linear equation (3) becomes as follows: 
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where  
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The boundary conditions are: 

 

0=
dX

dU
 at 0=X                                           (12) 

 

1=U at 1=X                          (13) 

 

The dimensionless effectiveness factor is  
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3. ANALYTICAL SOLUTION OF THE CONCENTRATION USING ADOMIAN DECOMPOSITION 

METHOD: 

 

In the recent years, much attention is devoted to the application of the Adomian decomposition method to the solution 

of various scientific models (Adomian, 1984; Mohamed, 2010; Jaradat, 2008; Sergio and Serrano, 2011; Ghori et al., 

2010).  The ADM yields, without linearization, perturbation, transformation or discretisation, an analytical solution in 

terms of a rapidly convergent infinite power series with easily computable terms. In this paper, Adomian 

decomposition method (see Appendix A) is used to solve non-linear differential equation. The analytical expression of 

concentration (see Appendix B) is as follows: 
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The effectiveness factor is: 
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4. NUMERICAL SIMULATION: 

 

The diffusion equation (9) for the boundary conditions (Eqs. (11) and (12)) are also solved numerically. We have used 

the function pdex4 in SCILAB software to solve numerically the initial-boundary value problems for parabolic-elliptic 

partial differential equations. This numerical solution is compared with our analytical result in Figs. (1) and (2). Upon 

comparison, it gives a satisfactory agreement for all values of the reaction/diffusion parameter 
2

ccφ and the saturation 

parameter β . 

 

5. DISCUSSION: 

 

5.1 Concentration profile: 

 

The kinetic response of a multi-phase microchannel bioreactor depends on the concentrations of oxygen. The 

concentrations of oxygen depends on the following two factors βφ   cc ,
2

.  Thiele modulus 2φ , represents the ratio of the 

characteristic time of the enzymatic reaction to that of substrate diffusion. The variation in the Thiele modulus 
2

ccφ  

can be achieved by varying either the thickness of the enzyme layer or the amount of enzyme immobilized in the multi-

phase microchannel bioreactor. The Thiele modulus 
2

ccφ  is indicative of the competition between the diffusion and 



T. Praveen, L.  Rajendran*/ Mathematical model for multi-phase microchannel bioreactors / IJMA- 2(11),  

Nov.-2011, Page: 2270-2280 

© 2011, IJMA. All Rights Reserved                                                                                                                                                   2273   

reaction in the enzyme layer. When 
2

ccφ  is small, the kinetics dominate and the uptake of oxygen in the multi-phase 

microchannel bioreactor is kinetically controlled. Under these conditions, the substrate concentration profile across the 

membrane is essentially uniform. The overall kinetics are governed by the total amount of active enzyme.  Diffusion 

limitations are the principal determining factor when Thiele modulus is large.  

 

Figs. 1(a)-(d) and 2(a)-(d) represent the normalized steady state substrate dissolved oxygen concentration U  in the 

nono-porus cellcoat. The concentration of substrates were calculated for the various values of saturation parameter 

values β  and reaction diffusion parameter 
2

ccφ  respectively using the (Eq 10).  From the figures 1(a)-(d), it is evident 

that when the value concentration decreases when 
2

ccφ increases. The concentration of oxygen U equal to 1 when  

01.0
2 ≤ccφ and U becomes zero when 

2
ccφ >180 for all values of parameters. From the figure 2(a)-(d), it is observed 

that the oxygen concentration U increases when the saturation parameter value β  increases. We can conclude that the 

results are in satisfactory agreement with simulation results for all possible values of   β and 
2

ccφ .   

 

5.2 Effectiveness factor: 

 

The variation in effectiveness factor η  is obtained for various values of β  is shown in Figs. 3 and 4. From these 

figures, it is evident that the effectiveness factor decreases when the saturation parameter   β increases. 

 

5.3 Volumetric formation rate: 

 

Figs. 5 and 6, represents the L-sorbose volumetric formation rate pr . These figures are computed using the Equation 2. 

The formation rate pr  increases when the active G.oxydans concentration catX  increases for all the values of rate 

constant. In fig.  6 volumetric formation rate pr  decreases as Michaelis-Menten constant for oxygen 0K  increases. 

 

6. CONCLUSIONS: 

 

We have presented a theoretical model describing the process of reaction and diffusion of steady state elemental 

balance for oxygen concentration in the nano-porous latex cellcoat. We have derived the transport and kinetics in terms 

of the reaction/diffusion parameter 
2

ccφ  and the saturation parameter β . An approximate analytical expressions of 

substrate concentration profile for all possible values of the reaction/diffusion parameter 
2

ccφ   and the saturation 

parameter β  are derived using Adomian decomposition method. Our approximate analytical results offer more 

advantages over traditional methods for an efficient operation on multiphase microchannel bioreactor. Information 

gained from this theoretical model is providing basis for engineering of channel geometry, channel coating, reactive 

density, coating stability and nano-porosity, multi-phase channel properties and thickness for monolithic microchannel 

bioreactors. Further based on the outcome of this work. It is possible to extend the procedure to improve the 

vitrification of the carbohydrates in the pore space to a uniform glassy state which stabilizes the viability of the 

entrapped G.oxydans at ambient temperature during drying. Moreover, we have also presented an analytical expression 

for the steady-state effectiveness factor.  
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APPENDIX A:    

 

Basic concept of the Adomian decomposition metho (ADM) 

 

Adomian decomposition method depends on decomposing the non-linear differential equation  

 

 F(x, y(x)) = 0     

                                                               (A.1) 

into the two components 

 

L(y(x)) + N(y(x))    = 0,                                                                                                  (A.2) 
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where L and N are the linear and the non-linear parts of   F  respectively. The operator  L is assumed to be an invertible 

operator. Solving for L(y) leads to 

 

L(y) = - N(y)                                                                                                                                 (A.3) 

 

Applying the inverse operator L on both sides of Eq.  (A. 3) yields 

 

                                                                              ),x(   ))y(N(  L -  y ϕ+=                                            (A.4)   

where )( xϕ  is the constant of integration which  satisfies the condition 0)( =ϕL . Now assuming that the solution y 

can be represented as infinite series of the form 
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Furthermore, suppose that the non-linear term N(y) can be written as infinite series in terms of the Adomian 

polynomials  nA  of the form 
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where the Adomian polymomials  nA  of  N(y) are evaluated using the formula: 
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Then substituting Eqs. (A.5) and (A.6) in Eq. (A. 4) gives 
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Then equating the terms in the linear system of Eq. (A. 8) gives the recurrent relation 

 

)()( 1
10 nn ALyxy

−
+ −== ϕ ; 0≥n                                                                                      (A.9) 

 

However, in practice all the terms of series in Eq. (A. 7) cannot be determined, and the solution is approximated by the 

truncated series
=

N

n

ny

0

. This method has been proven to be very efficient in solving various types of non-linear 

boundary and initial value problems. 

 

APPENDIX B: 

 

Analytical solutions of concentration of dissolved oxygen in the nano-porous latex cellcoat  

 

The solution of Eq. (10) allows us to predict the concentration profiles of the oxygen. To solve Eq. (10) using the 

Adomian decomposition method, we write the Eq. (10) in the operator form, 

 

)1(

2

U

U
LU cc

β
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+
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2

2

dX

d
L =                  (B. 1) 

Applying the inverse operator 1−
L  on both sides of  Eq.(B.1) yields 
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where A and B are the constants of integration. We let, 
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In view of Eqs. (B. 3), (B. 4) and (B. 5), Eq. (B. 2) gives 
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We identify the zeroth component as 

 

BAXXU +=)(0                    (B. 7) 

and the remaining components as the recurrence relation 

 

nccn ALU
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1
−
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where nA  are the Adomian polynomials of nU     UU ,...,, 10  

 

We can find the first few nA  as follows: 

 

1)(0 =XU                     (B. 9) 

 

[ ]1
)1(2

)( 2
2

1 +
+

= XXU cc

β

φ
                  (B.10) 

 

3

224

3

2

2
)1(24

5

212)1(2
)(

β

φ

β

φ

+
+

�
�
�

	





�

�
−

+
= cccc XX

XU                 (B. 11) 

 

Adding (B. 9) to (B. 11) we get the oxygen concentration in the nano-porous latex cellcoat Eq.(13) in the text. 

 

APPENDIX C: 

 

function pdex1 

m = 0; 

x = linspace(0,1); 

t = linspace(0,10000); 

sol = pdepe (m,@pdex1pde,@pdex1ic,@pdex1bc,x,t); 

% Extract the first solution component as u. 

u = sol (,1); 

figure 

plot(x,u(end,:)) 

xlabel ('Distance x') 

ylabel ('u(x, 2)') 

% -------------------------------------------------------------- 

function [c,f,s] = pdex1pde(x,t,u,DuDx) 

c = 1; 

f = DuDx; 

r=; 

a=; 

s =-(r*u)/((1+(u*a))); 

% -------------------------------------------------------------- 

function u0 = pdex1ic(x) 

u0 = 0; 
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% -------------------------------------------------------------- 

function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) 

pl = 0; 

ql = 1; 

pr = ur-1; 

qr = 0; 

 

APPENDIX D:  

 

Nomenclature  

 

effD  oxygen effective diffusity (
-12 s m ) 

c  dissolved oxygen concentration (
-1l g ) 

catK  reaction rate constant (
-1-1 s CFU mol ) 

catX  G.oxydans cell density in the cellcoat (
-3m CFU ) 

oK  Michaelis-Menten constant for oxygen (
-1l g m ) 

0/PY  yield coefficient of L-sorbose on oxygen (dimensionless) 

ccL  cellcoat thickness ( m ) 

η  effectiveness factor (dimensionless) 

φ  Thiele modulus (dimensionless) 

β  dimensionless oxygen concentration in the coating ( 00 / KC ) (dimensionless) 

TCL  topcoat thickness (m) 

 

 )XU(  

 

Figure: 1(a)–(d): Normalised concentration profile  )XU( as a function of dimensionless parameter ccLxX /= .  The 

concentrations were computed using Eq. (11) for various values of the 
2

ccφ  and for the values (a) 1.0=β (b) 1=β  

(c)

 

10=β  (d)

 

100=β  .( ) denotes  Eq. (11)  and (���) denotes the numerical simulation. 
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Figure: 2(a)–(d): Normalised concentration profile  )U(X as a function of dimensionless parameter ccLxX /= .  The 

concentrations are computed using Eq. (11) for various values of the β and for the values (a) 1.0
2 =ccφ  (b) 1

2 =ccφ  

(c) 10
2 =ccφ

 

(d) 100
2 =ccφ . ( ) denotes  Eq. (11)  and (���) denotes the numerical simulation. 
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Figure: 3 & 4: The effectiveness factor η  as a function of Thiele modulus 
cceffP

catcat
cccc

DYK

Xk
L

.0/0

=φ  . The 

effectiveness factor were computed using Eq.(14) for various values of the β  by fixing 1000
2 −=ccφ  and 

10
2 −=ccφ . 

 

 
 

Figure: 5(a)-(c): The L-sorbose formation rate, pr  plotted as a function of the concentration 0C .  The L-sorbose formation 

rate were computed using Eq. 2 for various values of the rate constant for L-sorbose catk  and for the Michaelis–Menten 

constant 0K  (a) 01.0≥catX , (b) 1.0≥catX , and (c) 1≥catX .   
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Figure: 6(a)-(c): The L-sorbose formation rate, pr  plotted as a function of the concentration 0C .  The L-sorbose 

formation rate were computed using Eq. 2 for various values of the rate constant for L-sorbose catk  and for the active 

G. oxydans concentration catX  (a) 001.00 ≥K , (b) 1.00 ≥K , and (c) 10 ≥K .  
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