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ABSTRACT 

 

This paper deals with g�-compact spaces and their properties by using nets, filter base and g�-complete accumulation 

points. The notion of g�-connectedness in topological spaces is also introduced and their properties are studied. 
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1. Introduction: 
 

The notions of compactness and connectedness are useful and fundamental notions of not only general topology but 

also of other advanced branches of mathematics. Many researchers have investigated the basic properties of 

compactness and connectedness. The productivity and fruitfulness of these notions of compactness and connectedness 

motivated mathematicians to generalize these notions. In the course of these attempts many stronger and weaker forms 

of compactness and connectedness have been introduced and investigated. 

 

In 1970, Levine [6] initiated the study of so called g-closed sets, that is, a subset A of a topological space (X, � ) is said 

to be g-closed if the closure of A is included in every open superset of A and defined a T12 space to be one in which the 

closed sets and g-closed sets coincide. Recently, Dontchev and Noiri [4] introduced the notion of �g-closed sets and 

used this notion to obtain a characterizations and some preservation theorems for quasi normal spaces. 

 

More recently, Park [7] has introduced and studied the notion of �gp-closed sets which is implied by that of gp-closed 

sets. Park and Park [8] continued the study of �gp-closed sets and associated functions and introduced the concepts of 

�GP-compactness and �GPconnectedness. Also Aslim, Guler and Noiri [3] introduced the concept of �gs-closed sets 

and studied it’s basic properties. Moreover they also introduced the notions of �gs-T1/2 spaces and �gs-continuity in 

topological spaces. The aim of this paper is to introduce the concept of g�-compactness and g�-connectedness in 

topological spaces and is to give some characterizations of g�-compact spaces in terms of nets and filter bases. The 

notion of g�-complete accumulation points is introduce and is used to characterize g�-compactness. Further it is proved 

that g�-connectedness is preserved under g�-irresolute surjections. 

 

2 Preliminary Notes: 
 

Throughout this paper (X, �), (Y, �) are topological spaces with no separation axioms assumed unless otherwise stated. 

Let A ��X. The closure of A and the interior of A will be denoted by Cl(A) and Int(A) respectively. 

 

Definition: 2.1 A subset A of a topological space (X, �) is said to be g�-closed [9] if �cl(A) � U whenever A � U and 

U is open in X. 

 

Definition: 2.2 The g�-closure [9] of a set A, denoted by g�Cl(A), is the intersection of all g�-closed sets containing A. 

 

Definition: 2.3 The g�-interior [9] of a set A, denoted by g�Int(A), is the union of all g�-open sets contained in A. 

 

Remark: 2.4 [9] Every �-closed set is g�-closed. 
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3 g� - Compactness: 
 

Definition: 3.1 A collection {Ai: i � �} of g�-open sets in a topological  space X is called a g�-open cover of a subset 

B of X if B ��{Ai: i � �} holds. 

 

Definition 3.2 A topological space X is g�-compact if every g�-open cover of X has a finite sub-cover. 

 

Definition: 3.3 A subset B of a topological space X is said to be g�-compact relative to X if, for every collection  

{Ai : i � �} of g�-open subsets of X such that B ��{Ai : i � �} there exists a finite subset ��0 of � such that  

B ��{Ai : i � �}. 

 

Definition: 3.4 A subset B of a topological space X is said to be g�-compact if B is g�-compact as a subspace of X. 

 

Theorem: 3.5 Every g�-closed subset of a g�-compact space is g�-compact relative to X. 

 

Proof: Let A be g�-closed subset of g�-compact space X. Then AC is g�-open in X.  

 

Let �����������������be a cover of A by g�-open sets in X. Then M* = M ��Ac is a g�-open cover of X. Since X is  

g�-compact M* is reducible to a finite subcover of X, say  

 

	�����
�������������������, G�k � M. But A and AC are disjoint hence  

 

������
���������������������, which implies that any g�-open cover M of A contains a finite sub-cover. Therefore 

A is g�-compact relative to X. Thus every g�-closed subset of a g�-compact space X is g�-compact. 

 

Definition: 3.6 A function f: X � Y is said to be g�-continuous [5] if f−1 (V) is g�-closed in X for every closed set V 

of Y. 

 

Definition: 3.7 A function f: X � Y is said to be g�-irresolute [5] if f−1 (V) is g�-closed in X for every g�-closed set V 

of Y. 

 

Theorem: 3.8 A g�-continuous image of a g�-compact space is compact. 

 

Proof: Let f: X � Y be a g�-continuous map from a g�-compact space X onto a topological space Y. Let {Ai: i � �} 

be an open cover of Y. Then {f−1(Ai) : i � �} is a g�-open cover of X. Since X is g�-compact it has a finite sub-cover 

say {f−1 (A1), f
−1(A2), · ·  , f

−1(An)}. Since f is onto {A1, ·  · , An} is a cover of Y, which is finite. Therefore Y is compact. 

 

Theorem: 3.9 If a map f: X � Y is g�-irresolute and a subset B of X is g�-compact relative to X, then the image f (B) 

is g�-compact relative to Y. 

 

Proof: Let {A� : � � �} be any collection of g�-open subsets of Y such that f(B) � U {A� : � � �}. Then  

B � {f−1 (A�) : � � �} holds. Since by hypothesis B is g�-compact relative to X there exists a finite subset �0 of � such 

that B � U {f−1 (A�) : � � �0}. 

 

Therefore we have f (B) � U {A� : � ��0}, which shows that f(B) is g�-compact relative to Y. 

 

Definition: 3.10 Let ��be a directed set. A net � = {x� : � ��} g� accumulates at a point x � X if the net is frequently 

in every U � g�O(X, x), i.e., for each U � g�O(X, x) and for each �0��, there is some � � �0 such that x� � U. The net 

� g�-converges to a point x of X if it is eventually in every U � g�O(X, x). 

 

Definition: 3.11 We say that a filter base� = {F� : � � 	} g�-accumulates at a point x � X if x � D ∩  ��	 g�Cl (F�). A 

filter base � = {F� : � � 	} g�-converges to a point x in X if for each U � g�O(X, x), there exists an F� in � such that 

F� ��U. 

 

Definition: 3.12 A point x in a space X is said to be g�-complete accumulation point of a subset S of X if Card(S 
 U) 

= Card(S) for each U � g�O(X, x), where Card(S) denotes the cardinality of S. 

 

Definition: 3.13 In a topological space X, a point x is said to be a g�-adherent point of a filter base � on X if it lies in 

the g�-closure of all sets of �. 
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Theorem: 3.14 A space X is g�-compact if and only if each infinite subset of X has a g�-complete accumulation point. 

 

Proof: Let the space X be g�-compact and let S be an infinite subset of X. Let K be the set of points x in X which are 

not g�-complete accumulation points of S. Now it is obvious that for each x in K, we are able to find U(x) � g�O(X, x) 

such that Card(S 
 U(x)) ≠  Card(S). If K is the whole space X, then � = {U(x): x � X} is a g�-cover of X. By the 

hypothesis X is g�-compact, so there exists a finite sub-cover � = {U (xi)}, where i = 1, 2, · · · , n such that S � {U (xi) 


 S : i = 1, 2, ·  ·  · , n}. Then Card(S) = max {Card (U (xi) 
 S)}, where i = 1, 2, · ·, n which does not agree with what 

we assumed. This implies that S has g�-complete accumulation point. 

 

Conversely, suppose that X is not g�-compact and that every infinite subset S ��X has a g�-complete accumulation 

point in X. It follows that there exists a g�-cover E with no finite sub-cover. Set � = min {Card() :  � E}, where  is 

a g�-cover of X. Fix � � E for which Card(�) = � and  �{U : U � �} =X. Let N denote the set of natural numbers. 

Then by hypothesis � � Card (N). By well ordering of � by some minimal well ordering  suppose that U is any 

member of �. By minimal well ordering  we have Card ({V: V � �, V  U}) < Card ({V: V � �}). Since � can not 

have any sub-cover with cardinality less than �, then for each U � � we have X ≠ �{V: V � �, V   U}. For each 

U � � choose a point x(U) � X − U {V �{x(V )}: V � �, V   U}. We are always able to do this if not one can choose 

a cover of smaller cardinality from �. If  H = {x(U) : U � �}, then to finish the proof we will show that H has no g�-

accumulation points in X. Suppose that z is a point of X. Since � is a g�-cover of X, then z is a point of some set W in 

�. By the fact that U  W, we have x(U) �W. But Card (T) < �. Therefore, Card (H 
 W) < �. But Card (H) = � � Card 

(N), since for two distinct points U and W in �, we have x(U) ≠  x(W). 

 

This means that H has no g�-complete accumulation point in X which contradicts our assumptions. Therefore X is  

g�-compact. 

 

Theorem: 3.15 For a space X the following are equivalent. 

 

(1) X is g�-compact. 

(2) Every net in X with a well ordered directed set as its domain g�-accumulates to some point of X. 

 

Proof: (1) ��(2): 

Suppose that (X, �) is g�-compact and � = {x� : � � �} a net with a well ordered directed set ��as domain. Assume that 

� has no g� adherent point in X. Then for each point x in X, there exist V (x) � g�O(X, x) and an �(x) ���such that V 

(x) 
 {x� : � � �(x)} = �. This implies that {x� : � � �(x)} is a subset of X − V (x). Then the collection C = {V (x): x � 

X} is a g�-cover of X. By hypothesis of theorem, X is g�-compact and so C has a finite subfamily {V (xi)}, where i = 

1, 2, ·  · · , n such that X = �{V (xi)}. Suppose that the corresponding elements of ��are {� (xi)}, where i = 1, 2,.., n. 

Since ��is well ordered and {�(xi)}, where i = 1, 2, ·  · , n is finite, the largest element of {�(xi)} exists. Suppose it is 

{�(xl)}, then for � � {�(xl)}. We have {x�: � � �} � D� 	
 ��
�� V (xi)) = X− � ��

�� (xi) = � which is impossible. 

 

This shows that � has at least one g�-adherent point in X. 

 

(2) �� (1): Now by the last Theorem 3.14, it is enough to prove that each infinite subset has a g�-complete 

accumulation point. Suppose that S ��X is an infinite subset of X. According to Zorn’s lemma, the infinite set S can be 

well ordered. This means that we can assume S to be a net with a domain, which is a well ordered index set. It follows 

that S has a g�-adherent point z. Therefore z is a g�-complete accumulation point of S. This shows that X is g�-

compact. 

 

Theorem: 3.16 A space X is g�-compact if and only if each family of g�-closed subsets of X with the finite 

intersection property has a non-empty intersection. 

 

Proof: Given a collection � of subsets of X, let � = {X − A : A � �} be the collection of their complements. Then the 

following statements hold. 

 

(a) � is a collection of g�-open sets if and only if  � is a collection of g� –closed sets. 

 

(b) The collection � covers X if and only if the intersection 
c��� C of all the elements of � is non-empty. 

 

(c) The finite sub collection {A1 ·  ·  ·An} of A covers X if and only if the intersection of the corresponding elements  

Ci = X − Ai of  � is empty. The statement (a) is trivial, while the (b) and (c) follow from DeMorgan’s law. 
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X − (D� ��J A�) = D
��J (X − A�)  The proof of the theorem now proceeds in two steps, taking the contrapositive of 

the theorem and then the complement. 

 

 

The statement X is g�-compact is equivalent to: Given any collection � of g�-open subsets of X, if � covers X, then 

some finite sub collection of � covers X. This statement is equivalent to its contrapositive, which is the following. 

 

Given any collection � of g�-open sets, if no finite sub-collection of ���covers X, then � does not cover X. Letting � 

be as earlier, the collection {X − A : A � �} and applying (a) to (c), we see that this statement is in turn equivalent to 

the following: 

 

Given any collection � of g�-closed sets, if every finite intersection of elements of � is non-empty, then the intersection 

of all the elements of � is non-empty. This is just the condition of our theorem. 

 

Theorem: 3.17 A space X is g�-compact if and only if each filter base in X has at least one g�-adherent point. 

 

Proof: Suppose that X is g�-compact and � = {F� : � � 	} a filter base in it. Since all finite intersections of F�’s are 

non-empty, it follows that all finite intersections of g�Cl (F�)’s  are also non-empty. Now it follows from Theorem 3.16 

that D
 ��	 gbCl (F�) is non-empty. This means that � has at least one g�-adherent point. 

 

Conversely, suppose � is any family of g�-closed sets. Let each finite intersection be non-empty. The sets (F�) with 

their finite intersection establish a filter base �. Therefore � g�-accumulates to some point z in X. It follows that 

z � D
��	 (F�). Now by Theorem 3.16, we have that X is g�-compact. 

 

Theorem: 3.18 A space X is g�-compact if and only if each filter base on X with at most one g�-adherent point is  

g�-convergent. 

 

Proof: Suppose that X is g�-compact, x a point of X and a filter base on X. The g�-adherence of � is a subset of {x}. 

Then the g�-adherence of � is equal to {x} by Theorem 3.17. Assume that there exists V � g�O(X, x) such that for all 

F � �, F 
 (X −V) is non-empty. Then  

 

� = {F − V: F � �} is a filter base on X. It follows that the g�-adherence of � is non-empty. However,  

 

D
 F�� g�Cl(F − V ) ��(D
F�� g�Cl(F) 
 (X − V )) = {x} 
 {X − V } = �. 

 

But this is a contradiction. Hence for each V ��g�O(X, x) there exists an F � � with F ��V. This shows that � g�-

converges to x. 

 

To prove the converse, it suffices to show that each filter base in X has at least one g�-accumulation point. Assume that 

� is a filter base on X with no g�-adherent point. By hypothesis, � g�-converges to some point z in X. Suppose F� is an 

arbitrary element of �. Then for each V � g�O(X, z), there exists F� � � such that F� ��V. Since � is a filter base, there 

exists a � such that F� ��F� 
 F� ��F� 
 V, where F� non-empty. This means that F� 
 V is non-empty for every  

V � g�O(X, z) and correspondingly for each �, z is a point of g�Cl (F�) it follows that z ��D
 � g�Cl (F�). Therefore z 

is a g�-adherent point of � which is contradiction. 

 

This shows that X is g�-compact. 

 

4 g� - Connectedness: 
 

Definition: 4.1 A topological space X is said to be g�-connected if X can not be expressed as a disjoint union of two 

non-empty g�-open sets. A subset of X is g�-connected if it is g�-connected as a subspace. 

 

Example: 4.2 Let X = {a, b} and let � = {X, �, {a}}. Then it is g�-connected. 

 

Remark: 4.3 Every g�-connected space is connected but the converse need not be true in general, which follows from 

the following example. 

 

Example: 4.4 Let X = {a, b} and let � = {X, �}. Clearly (X, �) is connected. The g�-open sets of X are  

{X, �, {a}, {b}}. Therefore (X, �) is not a g�-connected space, because X = {a} � {b} where {a} and {b} are non-

empty g�-open sets. 
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Theorem: 4.5 For a topological space X the following are equivalent. 

 

(i) X is g�-connected. 

(ii) X and � are the only subsets of X which are both g�-open and g�-closed. 

(iii) Each g�-continuous map of X into a discrete space Y with at least two points is a constant map. 

 

Proof: (i) ��(ii): 
Let O be any g�-open and g�-closed subset of X. Then OC is both g�-open and g�-closed. Since X is disjoint union of 

the g�-open sets O and OC implies from the hypothesis of (i) that either O = � or O = X. 

 

(ii) ��(i): 
Suppose that X = A �B where A and B are disjoint non-empty g�-open subsets of X. Then A is both g�-open and  

g�-closed. By assumption A = � or X. 

 

Therefore X is g�-connected. 

 

(ii) ��(iii): 
Let f: X � Y be a g�-continuous map. Then X is covered by g�-open and g�-closed covering {f−1(Y): y � (Y)}. By 

assumption f−1(y) = � or X for each y � Y. If f−1(y) = � for all y � Y, then f fails to be a map. Then there exists only one 

point y � Y such that f−1(y) ≠  � and hence f−1(y) = X. This shows that f is a constant map. 

 

(iii) � (ii): 

Let O be both g�-open and g�-closed in X. Suppose O ≠ �. Let f: X � Y be a g�-continuous map defined by f (O) = y 

and f (OC) = {w} for some distinct points y and w in Y. 

 

By assumption f is constant. Therefore we have O = X. 

 

Theorem: 4.6 If f : X � Y is a g�-continuous and X is g�-connected, then Y is connected. 

 

Proof: Suppose that Y is not connected. Let Y = A�B where A and B are disjoint non-empty open set in Y. Since f is 

g�-continuous and onto, X = f−1(A) � f−1(B) where f−1(A) and f−1(B) are disjoint non-empty g�-open sets in X. This 

contradicts the fact that X is g�-connected. Hence Y is connected. 

 

Theorem: 4.7 If f: X � Y is a g�-irresolute surjection and X is g�-connected, then Y is g�-connected. 

 

Proof: Suppose that Y is not g�-connected. Let Y = A � B where A and B are disjoint non-empty g�-open set in Y. 

Since f is g�-irresolute and onto, X = f−1 (A) � f−1(B) where f−1(A) and f−1(B) are disjoint non-empty g�-open sets in X. 

This contradicts the fact that X is g�-connected. Hence Y is g� -connected. 

 

Theorem: 4.8 In a topological space (X, �) with at least two points, if �O(X, �) = �CL(X, �) then X is not  

g�-connected. 

 

Proof: By hypothesis we have �O(X, �) = �CL(X, �) and by Remark 2.4 we have every � closed set is g�-closed, there 

exists some non-empty proper subset of X which is both g�-open and g�-closed in X. So by last Theorem 4.5 we have 

X is not g�-connected. 

 

Definition: 4.9 A topological space X is said to be Tg�-space if every g�-closed subset of X is closed subset of X. 

 

Theorem: 4.10 Suppose that X is a Tg�-space then X is connected if and only if it is g�-connected. 

 

Proof: Suppose that X is connected. Then X can not be expressed as disjoint union of two non-empty proper subsets of 

X. Suppose X is not a g�-connected space. Let A and B be any two g�-open subsets of X such that X = A�B, where  

A 
 B = � and A ��X, B ��X. Since X is Tg�-space and A, B are g�-open, A, B are open subsets of X, which 

contradicts that X is connected. Therefore X is g�-connected. 

 

Conversely, every open set is g�-open. Therefore every g�-connected space is connected. 

 

Theorem: 4.11 If the g�-open sets C and D form a separation of X and if Y is g�-connected subspace of X, then Y lies 

entirely within C or D. 

 

Proof: Since C and D are both g�-open in X the sets C 
 Y and D 
 Y are g�-open in Y these two sets are disjoint and 

their union is Y. If they were both non-empty, they would constitute a separation of Y. Therefore, one of them is 

empty. Hence Y must lie entirely in C or in D. 



S. Saranya* & A. Parvathi 
g� - Compactness and g�-Connectedness Topological Spaces  
�����
������
����������



!�"�#
��������$


%
�����
�����
�		
&�"��'
&�'����(



































































































































































���$�

 

Theorem: 4.12 Let A be a g�-connected subspace of X. If A ��B ��g�Cl(A) then B is also g�-connected. 

 

Proof: Let A be g�-connected and let A ��B ��g�Cl(A). Suppose that B = C�D is a separation of B by g�-open sets. 

Then by Theorem 4.11 above A must lie entirely in C or in D. Suppose that A ��C, then g�Cl(A) ��g�Cl(C). Since  

 

 

g�Cl(C) and D are disjoint, B cannot intersect D. This contradicts the fact that D is non-empty subset of B. So D = � 

which implies B is g�-connected. 
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