International Journal of Mathematical Archive-2(11), 2011, Page: 2135-2141 (ᄌᄌ) NMA Available online through www.ijma.info ISSN 2229-5046

\tilde{g}_{α}-WEAKLY GENERALIZED CONTINUOUS FUNCTIONS

${ }^{1}$ M. Maria Singam and ${ }^{2}$ G. Anitha*
${ }^{1}$ Department of Mathematics, V. O. Chidambaram College, Tuticorin, Tamil Nadu, India
${ }^{2}$ Research Scholar, V. O. Chidambaram College, Tuticorin, Tamil Nadu, India
*E-mail: anitha_ganesan@yahoo.com

(Received on: 21-10-11; Accepted on: 07-11-11)

Abstract

In this paper we introduce and study of \tilde{g}_{α}-weakly generalized continuous functions and \tilde{g}_{α}-weakly generalized irresolute functions also obtain some properties of such functions.

Mathematics Subject Classification: 54A05, 54H05, 54C08.

Keywords: \tilde{g}_{α} wg-continuity, \tilde{g}_{α} wg-irresolute function.

1. INTRODUCTION:

S. Jafari, M. lellis Thivagar and N. Rebecca Paul [19] introduced and studied \tilde{g}_{α}-closed sets. M. Maria Singam, G. Anitha [13] introduced the class \tilde{g}_{α}-Weakly generalized closed sets. By using such sets we introduce new forms of functions called \tilde{g}_{α}-Weakly generalized continuous functions and \tilde{g}_{α}-Weakly generalized irresolute functions. We obtain properties of such functions.

2. PRELIMINARIES:

Throughout this paper $(\mathrm{X}, \tau),(\mathrm{Y}, \sigma)$ and (Z, η) represent non empty topological space on which no separation axiom is defined unless otherwise mentioned. For a subset A of a space $\mathrm{Cl}(\mathrm{A})$ and $\operatorname{Int}(\mathrm{A})$ denote the closure and interior of A respectively.

Definition.1.1: A subset A of a space X is called
1 .a semi-open set [10] if $\mathrm{A} \subseteq \mathrm{cl}(\operatorname{int}(\mathrm{A}))$
2. a pre-open set [15] if $\mathrm{A} \subseteq \operatorname{int}(\mathrm{cl}(\mathrm{A}))$
3. an α-open set [17] if $\mathrm{A} \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A})))$
4. a regular open[20] if $\mathrm{A}=\operatorname{int}(\operatorname{cl}(\mathrm{A}))$
5. a semi-preopen set [1] if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\operatorname{cl}(\mathrm{A})))$

The complement of a semi-open (pre open, α-open, regular open, semi-preopen) set is called a semi-closed (resp. preclosed, α-closed, regular closed, semi-preclosed) set.

Definition 1.2: A subset A of a space X is called

1. a generalized closed set $(\mathrm{g}$-closed)[9] if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}, \mathrm{U}$ is open in (X, τ).
2. a weakly generalized closed set(wg-closed)[16] if $\mathrm{Cl}(\operatorname{Int}(\mathrm{A})) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}, \mathrm{U}$ is open in (X, τ).
3. semi generalized closed set(sg-closed)[4] if $\operatorname{scl}(A) \subseteq U$, whenever $A \subseteq U, U$ is semi open in (X, τ).
4. a generalized semi-pre-closed set(gsp-closed)[7] if $\operatorname{spcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}, \mathrm{U}$ is open in (X, τ).

5 .a w-closed set $[18]$ if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is semi-open in (X, τ).
6. a generalized α-closed set (g α-closed) [11] if $\alpha \operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is α-open in (X, τ).
7. an α - generalized closed set (α g-closed) [12] if $\alpha \operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in (X, τ).
8. a * g-closed set[22]if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is w-open in (X, τ).
9. a \# g-semi closed set(\# gs-closed)[23] if $\operatorname{scl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $* \mathrm{~g}$-open in (X, τ).

[^0]
${ }^{1}$ M. Maria Singam and ${ }^{2}$ G. Anitha*/ \tilde{g}_{α}-WEAKLY GENERALIZED CONTINUOUS FUNCTIONS/IJMA- 2(11),
 Nov.-2011, Page: 2135-2141

10. a \tilde{g}_{α}-closed[19] if $\alpha \operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\#$ gs-open in (X, τ).
11. a \tilde{g}_{α}-Weakly generalized closed set $\left(\tilde{g}_{\alpha}\right.$ wg-closed) [13] if $\mathrm{Cl}(\operatorname{Int}(\mathrm{A})) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}, \mathrm{U}$ is \tilde{g}_{α}-open in (X, τ).

The complements of the above sets are called their respective open sets.
Definition 1.3: A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is called

1. α-continuous [14] if $\mathrm{f}^{-1}(\mathrm{v})$ is α-closed in (X, τ) for every closed set V in (Y, σ).
2. semi continuous [10] if $\mathrm{f}^{-1}(\mathrm{v})$ is semi closed in (X, τ) for every closed set V in (Y, σ).
3. g-continuous [3] if $f^{-1}(\mathrm{v})$ is g-closed in (X, τ) for every closed set V in (Y, σ).
4. sg-continuous [21] if $\mathrm{f}^{-1}(\mathrm{v})$ is sg-closed in (X, τ) for every closed set V in (Y, σ).
5. α g-continuous [5] if $\mathrm{f}^{-1}(\mathrm{v})$ is α g-closed in (X, $\left.\tau\right)$ for every closed set V in (Y, σ).
6. $\mathrm{g} \alpha$-continuous [5] if $\mathrm{f}^{-1}(\mathrm{v})$ is $\mathrm{g} \boldsymbol{\alpha}$-closed in (X, τ) for every closed set V in (Y, σ).
7. gs-continuous [6] if $\mathrm{f}^{-1}(\mathrm{v})$ is gs-closed in (X, τ) for every closed set V in (Y, σ).
8. gsp-continuous [7] if $\mathrm{f}^{-1}(\mathrm{v})$ is gsp-closed in (X, τ) for every closed set V in (Y, σ).
9. completely-continuous [2] if $\mathrm{f}^{-1}(\mathrm{v})$ is regular closed in (X, τ) for every closed set V in (Y, σ).
10. \tilde{g}_{α} - continuous [8] if $\mathrm{f}^{-1}(\mathrm{v})$ is \tilde{g}_{α}-closed in (X, τ) for every closed set V in (Y, σ).
11. \tilde{g}_{α}-irresolute [8] if $\mathrm{f}^{-1}(\mathrm{v})$ is \tilde{g}_{α}-closed in (X, $\left.\tau\right)$ for every \tilde{g}_{α}-closed set V in (Y, σ).

Proposition 1.4: If a subset A of a topological space (X, τ) is a regular closed, then it is $\tilde{g}_{\alpha} \mathrm{wg}$-closed but not conversely.

Proof: Suppose a subset A of a topological space X is regular closed. Let G be a \tilde{g}_{α}-open set containing A. Then $\mathrm{G} \supseteq \mathrm{A}=\operatorname{cl}(\operatorname{int}(\mathrm{A}))$, since A is regular closed. Hence A is \tilde{g}_{α} wg-closed in (X, τ).

Converse of the above theorem need not be true as seen in the following example.
Example 1.5: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c})$ and $\tau=\{\boldsymbol{\phi},\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$. In this topological space the subset $\{\mathrm{b}\}$ is \tilde{g}_{α} wg-closed but it is not regular closed.

Proposition 1.6: If a subset A of a topological space (X, τ) is a $\mathrm{g} \alpha$-closed, then it is \tilde{g}_{α} wg-closed but not conversely.

Proof: Suppose A is g α - closed subset X and let G be a α-open set containing A. Since every α-open set is \tilde{g}_{α} open. Hence G is \tilde{g}_{α}-open set containing A.
$\mathrm{G} \supseteq \alpha \operatorname{cl}(\mathrm{A})=\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))) \supseteq \operatorname{cl}(\operatorname{int}(\mathrm{A}))$. Thus A is $\tilde{g}_{\alpha} \mathrm{wg}-\operatorname{closed}$ in (X, τ).
Converse of the above theorem need not be true as seen in the following example.
Example 1.7: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c})$ and $\tau=\{\boldsymbol{\phi},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$. In this topological space the subset $\{\mathrm{a}\}$ is \tilde{g}_{α} wg-closed but it is not $\mathrm{g} \alpha$ closed.

Proposition 1.8: If a subset A of a topological space (X, τ) is a \tilde{g}_{α} wg-closed, then it is gsp- closed but not conversely.

Proof: Let A be \tilde{g}_{α} wg-closed subset X and G be an open set containing A in (X, τ). Then
$\mathrm{G} \supseteq \operatorname{cl}(\mathrm{A}) \supseteq \operatorname{cl}(\operatorname{int}(\mathrm{A}))$.Since every open set is \tilde{g}_{α}-open. Hence G is \tilde{g}_{α}-open set containing A.G $\supseteq(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))$ which implies $A \cup G \supseteq A \cup \operatorname{int}(c l(\operatorname{int}(A))$. That is $G \supseteq \operatorname{spcl}(A)$. Thus A is gsp-closed in (X, τ).

Converse of the above theorem need not be true as seen in the following example.

${ }^{1}$ M. Maria Singam and ${ }^{2}$ G. Anitha*/ \tilde{g}_{α}-WEAKLY GENERALIZED CONTINUOUS FUNCTIONS/IJMA- 2(11), Nov.-2011, Page: 2135-2141

Example.1.9: Let $X=\{a, b, c)$ and $\tau=\{\phi,\{a\},\{c\},\{a, c\}, X\}$. In this topological space the subset $\{a\}$ is g sp closed but not \tilde{g}_{α} wg-closed.

2. $\tilde{g}_{\alpha} \mathbf{w g}-$ CONTINUOUS FUNCTIONS:

We have introduced the following definition
Definition 2.1: A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is said to be $\tilde{g}_{\alpha}{ }^{\mathrm{wg}}$-continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-closed in (X, $\left.\tau\right)$ for every closed set V of (Y, σ).

Example 2.2 : Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\}, \mathrm{Y}\}$. Define a function f : $(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$. Then f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous since inverse image of closed set $\{\mathrm{b}, \mathrm{c}\}$ in (Y, σ) is $\{\mathrm{a}, \mathrm{b}\}$ which is in \tilde{g}_{α} wg-closed in (X, $\left.\tau\right)$.

Theorem 2.3: Every continuous map is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous but not conversely.
Proof: Let V be a closed set in (Y, σ).Since f is continuous, then $\mathrm{f}^{-1}(\mathrm{~V})$ is closed in (X, τ). By theorem 3.2 of [13], every closed set is \tilde{g}_{α} wg-closed. Then $\mathrm{f}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-closed in (X, $\left.\tau\right)$.

Hence f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous.
Example 2.4: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\}, \mathrm{Y}\}$.Define a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{c}$. Then f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous but not continuous.

Theorem 2.5: Every \tilde{g}_{α}-continuous function is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous but not conversely.
Proof: Let V be a closed set in $\left(\mathrm{Y}, \sigma\right.$).Since f is \tilde{g}_{α}-continuous, then $\mathrm{f}^{-1}(\mathrm{~V})$ is \tilde{g}_{α}-closed in (X, τ).By theorem 3.7 of [13], every \tilde{g}_{α}-closed set is $\tilde{g}_{\alpha} \mathrm{wg}$-closed. Then $\mathrm{f}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-closed in (X, τ).Hence f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous.

Example 2.6: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$.Define a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{a}$. Then f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous but not \tilde{g}_{α}-continuous.

Theorem 2.7: Every α-continuous function is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous but not conversely.
Proof: Let V be a closed set in (Y, σ).Since f is α-continuous, then $\mathrm{f}^{-1}(\mathrm{~V})$ is α-closed in (X, τ).By theorem 3.11 of [13], every α-closed set is $\tilde{g}_{\alpha} \mathrm{wg}$-closed. Then $\mathrm{f}^{-1}(\mathrm{~V})$ is $\tilde{g}_{\alpha} \mathrm{wg}$-closed in (X, τ).Hence f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous.

Example 2.8: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$.Define a function f: $(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$. Then f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous but not α-continuous.

Theorem 2.9: Every g α-continuous function is \tilde{g}_{α} wg -continuous but not conversely.
Proof: Let V be a closed set in $\left(\mathrm{Y}, \sigma\right.$).Since f is $\mathrm{g} \alpha$-continuous, then $\mathrm{f}^{-1}(\mathrm{~V})$ is α-closed in (X, τ).By Proposition 1.6, every $\mathrm{g} \alpha$-closed set is $\tilde{g}_{\alpha} \mathrm{wg}$-closed. Then $\mathrm{f}^{-1}(\mathrm{~V})$ is $\tilde{g}_{\alpha} \mathrm{wg}$-closed in (X, τ).Hence f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous.

Example 2.10: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\boldsymbol{\phi},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$.Define a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$. Then f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous but not $\mathrm{g} \alpha$-continuous.

${ }^{1}$ M. Maria Singam and ${ }^{2}$ G. Anitha $* / \tilde{g}_{\alpha}$-WEAKLY GENERALIZED CONTINUOUS FUNCTIONS/ IJMA- 2(11), Nov.-2011, Page: 2135-2141

Theorem 2.11: Every completely continuous function is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous but not conversely.
Proof: Let V be a closed set in (Y, σ). Since f is completely continuous function, then $\mathrm{f}^{-1}(\mathrm{~V})$ is regular closed in (X, τ).By Proposition 1.4, every regular closed set is \tilde{g}_{α} wg-closed. Then $\mathrm{f}^{-1}(\mathrm{~V})$ is $\tilde{g}_{\alpha} \mathrm{wg}$-closed in (X, τ).Hence f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous.

Example 2.12: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\}, \mathrm{Y}\}$.Define a function f : $(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{c}$. Then f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous but not regular continuous function.

Theorem 2.13: Every \tilde{g}_{α} wg -continuous is gsp-continuous but not conversely.
Proof: Let V be a closed set in (Y, σ).Since f is $\tilde{g}_{\alpha}{ }^{\mathrm{wg}}$ - continuous function, then $\mathrm{f}^{-1}(\mathrm{~V})$ is $\tilde{g}_{\alpha}{ }^{\mathrm{wg}}$-closed in (X, τ). By Proposition 1.8, every \tilde{g}_{α} wg-closed set is gsp closed. Then $\mathrm{f}^{-1}(\mathrm{~V})$ is gsp closed in (X, τ).Hence f is gsp continuous.

Example 2.14: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}$. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ be identity function. Then f is gsp continuous but not $\tilde{g}_{\alpha} \mathrm{wg}$-continuous.

Theorem 2.15: Every $\tilde{g}_{\alpha} \mathrm{wg}$-continuous is wg-continuous but not conversely.
Proof: Let V be a closed set in (Y, σ).Since f is $\tilde{g}_{\alpha} \mathrm{wg}$ - continuous function, then $\mathrm{f}^{-1}(\mathrm{~V})$ is $\tilde{g}_{\alpha} \mathrm{wg}$-closed in (X, τ).By theorem 3.9 of [13], every \tilde{g}_{α} wg-closed set is wg closed. Then $\mathrm{f}^{-1}(\mathrm{~V})$ is wg closed in (X, τ).Hence f is wg continuous.

Example 2.16: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{b}, \mathrm{c}\},\{\mathrm{c}\}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{b}\}, \mathrm{Y}\}$. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ be identity function. Then f is wg continuous but not $\tilde{g}_{\alpha} \mathrm{wg}$-continuous.

Remark 2.17: The following examples show that semi continuous and $\tilde{g}_{\alpha} \mathrm{wg}$-continuous functions are independent.

Example 2.18: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\}, \mathrm{Y}\}$ defined $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{b}$. Then f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous but not semi continuous.

Example 2.19: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}$ defined $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ be the identity function. Then f is semi continuous but not $\tilde{g}_{\alpha} \mathrm{wg}$-continuous

Remark 2.20: The following examples show that g-continuous and $\tilde{g}_{\alpha} \mathrm{wg}$-continuous functions are independent.

Example 2.21: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}, \mathrm{b}\}, \mathrm{Y}\}$ defined $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ be the identity function. Then f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous but not g -continuous.

Example 2.22: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{b}, \mathrm{c}\},\{\mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{b}\}, \mathrm{Y}\}$ defined $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ be the identity function. Then f is g -continuous but not $\tilde{g}_{\alpha} \mathrm{wg}$-continuous

Remark 2.23: The following examples show that sg-continuous and $\widetilde{g}_{\alpha} \mathrm{wg}$-continuous functions are independent.
Example 2.24: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}$ defined $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{a}$. Then f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous but not sg-continuous.

${ }^{1}$ M. Maria Singam and ${ }^{2}$ G. Anitha $* / \widetilde{g}_{\alpha}$-WEAKLY GENERALIZED CONTINUOUS FUNCTIONS/ IJMA- 2(11), Nov.-2011, Page: 2135-2141

Example 2.25: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\boldsymbol{\phi},\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}, \mathrm{b}\}, \mathrm{Y}\}$ defined f: $(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{c}$. Then f is sg-continuous but not $\tilde{g}_{\alpha} \mathrm{wg}$-continuous

Remark 2.26: The following examples show that $\alpha \mathrm{g}$-continuous and $\tilde{g}_{\alpha} \mathrm{wg}$-continuous functions are independent.

Example 2.27: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{b}\}, \mathrm{Y}\}$ define $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ be the identity function. Then f is $\alpha \mathrm{g}$-continuous function but not $\tilde{g}_{\alpha} \mathrm{wg}$-continuous function;

Example 2.28: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}=\mathrm{Y}, \tau=\{\boldsymbol{\phi},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}, \mathrm{X}\}$ and $\sigma=\{\boldsymbol{\phi},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{Y}\}$ defined $\mathrm{f}:$ $(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ be the identity function. Then f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous but not $\alpha \mathrm{g}$-continuous.

Remark 2.29: The following examples show that gs-continuous and $\tilde{g}_{\alpha} \mathrm{wg}$-continuous functions are independent.

Example 2.30: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}$ defined f : $(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{b}$. Then f is gs -continuous but not $\tilde{g}_{\alpha} \mathrm{wg}$-continuous.

Example 2.31: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}=\mathrm{Y}, \tau=\{\boldsymbol{\phi},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}, \mathrm{X}\}$ and $\sigma=\{\boldsymbol{\phi},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{Y}\}$ defined f : $(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ be the identity function. Then f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous but not gs-continuous.

Remark 2.32: The composition of two $\tilde{g}_{\alpha} \mathrm{wg}$-continuous map need not be $\tilde{g}_{\alpha} \mathrm{wg}$-continuous.

Example 2.33: Let $\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\boldsymbol{\phi},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}, \sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}, \eta=\{\phi,\{\mathrm{a}\}, \mathrm{Z}\}$. Define $\phi:($ $\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\phi(\mathrm{a})=\mathrm{c}, \phi(\mathrm{b})=\mathrm{a}, \phi(\mathrm{c})=\mathrm{b}$ and Define $\psi:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \eta)$ by $\psi(\mathrm{a})=\mathrm{b}, \psi(\mathrm{b})=\mathrm{a}, \psi(\mathrm{c})=$ c. Then ϕ, ψ are $\tilde{g}_{\alpha} \mathrm{wg}$-continuous. But $\phi \circ \psi:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \eta)$ is not $\tilde{g}_{\alpha} \mathrm{wg}$-continuous.

3. $\tilde{g}_{\alpha} \mathbf{W G}$-IRRESOLUTE FUNCTIONS

Definition 3.1: A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is said to be $\tilde{g}_{\alpha} \mathrm{wg}$ - irresolute if $\mathrm{f}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-closed in (X, $\left.\tau\right)$ for every \tilde{g}_{α} wg-closed set V of (Y, σ).

Theorem 3.2: Every $\tilde{g}_{\alpha} \mathrm{wg}$ - irresolute map is $\tilde{g}_{\alpha} \mathrm{wg}$ - continuous.
Proof: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ be a \tilde{g}_{α} wg-irresolute map and V be a closed set of (Y, σ).

Since every closed set is \tilde{g}_{α} wg-closed set by theorem 3.2 of [13], V is \tilde{g}_{α} wg-closed. Since f is a \tilde{g}_{α} wg-irresolute, $\mathrm{f}^{-1}(\mathrm{~V})$ is a \tilde{g}_{α} wg-closed set of (X, τ). Hence f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous.

Remark 3.3: \tilde{g}_{α} wg-continuous map need not be \tilde{g}_{α} wg-irresolute map.

Example 3.4: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$ defined $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ be the identity function. Then f is $\tilde{g}_{\alpha} \mathrm{wg}$-continuous but not $\tilde{g}_{\alpha} \mathrm{wg}$-irresolute map.

Theorem 3.5: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ be an \tilde{g}_{α} - irresolute and closed map. Then $\mathrm{f}(\mathrm{A})$ is \tilde{g}_{α} wg-closed of (Y, σ) for every \tilde{g}_{α} wg-closed set A of (X, $\left.\tau\right)$.

Proof: Let A be a \tilde{g}_{α} wg-closed in (X, $\left.\tau\right)$.Let U be any \tilde{g}_{α}-open set of (Y, σ) such that $\mathrm{f}(\mathrm{A}) \subseteq \mathrm{U}$ then $\mathrm{A} \subseteq \mathrm{f}^{-1}(\mathrm{U})$. Since f is \tilde{g}_{α} - irresolute then $\mathrm{f}^{-1}(\mathrm{U})$ is \tilde{g}_{α}-open set of (X, τ).

${ }^{1}$ M. Maria Singam and ${ }^{2}$ G. Anitha*/ \tilde{g}_{α}-WEAKLY GENERALIZED CONTINUOUS FUNCTIONS/IJMA- 2(11), Nov.-2011, Page: 2135-2141

By hypothesis, A is \tilde{g}_{α} wg-closed and $\mathrm{f}^{-1}(\mathrm{U})$ is \tilde{g}_{α}-open set containing A,
then $\operatorname{cl}(\operatorname{int}(A)) \subseteq \mathrm{f}^{-1}(\mathrm{U})$ which implies $\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))) \subseteq \mathrm{U}$.
Now, $\mathrm{cl}(\operatorname{int}(\mathrm{f}(\mathrm{A}))) \subseteq \mathrm{cl}(\operatorname{int}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))))) \subseteq \mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))) \subseteq \mathrm{U}$

Hence $\operatorname{cl}(\operatorname{int}(\mathrm{f}(\mathrm{A}))) \subseteq \mathrm{U}$. Hence $\mathrm{f}(\mathrm{A})$ is $\tilde{g}_{\alpha} \mathrm{wg}$-closed in (Y, σ).
Theorem 3.6: If a function f: $(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is \tilde{g}_{α}-irresolute and \tilde{g}_{α} wg-closed and A is a \tilde{g}_{α} wg-closed set of (X, τ), then $f_{A}: A \rightarrow Y$ is \tilde{g}_{α} wg-closed.

Proof: Let F be closed subset of A. Then F is \tilde{g}_{α} wg-closed. By theorem $3.5 f_{A}(\mathrm{~F})=\mathrm{f}(\mathrm{F})$ is \tilde{g}_{α} wg-closed in (Y, σ). Hence $f_{A}: A \rightarrow Y$ is \tilde{g}_{α} wg-closed function.

Theorem 3.7: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ and $g:(Y, \sigma) \rightarrow(z, \eta)(Y, \sigma) \rightarrow(z, \eta)$ be such that $g \circ f:(\mathrm{X}, \tau)$ $\rightarrow(z, \eta)$ is \tilde{g}_{α} wg-closed function.
(i) If f is continuous and injective then g is $\tilde{g}_{\alpha} \mathrm{wg}$-closed.
(ii) If g is $\tilde{g}_{\alpha} \mathrm{wg}$-irresolute and injective then f is $\tilde{g}_{\alpha} \mathrm{wg}$-closed.

Proof: Let F be closed set of (Y, σ). Since f is continuous, $\mathrm{f}^{-1}(\mathrm{~F})$ is closed in X . $g \circ f\left(\mathrm{f}^{-1}(\mathrm{~F})\right)$ is $\tilde{g}_{\alpha} \mathrm{wg}$-closed in (z, η).Hence $\mathrm{g}(\mathrm{F})$ is $\tilde{g}_{\alpha} \mathrm{wg}$-closed in (z, η).Thus g is $\tilde{g}_{\alpha} \mathrm{wg}$-closed.

Proof of (ii) is similar to proof (i).
Theorem 3.8: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ be a bijection function such that the image of every \tilde{g}_{α}-open in (X, τ) is \tilde{g}_{α} open in (Y, σ) and \tilde{g}_{α} wg-continuous then f is \tilde{g}_{α} wg-irresolute.

Proof: Let F be a \tilde{g}_{α} wg-closed in (Y, σ). Let $\mathrm{f}^{-1}(\mathrm{~F}) \subseteq \mathrm{U}$ where U is \tilde{g}_{α} open set in (X, τ).
$\mathrm{F} \subseteq \mathrm{f}(\mathrm{U})$ and $\mathrm{cl}(\operatorname{int}(\mathrm{F})) \subseteq \mathrm{f}(\mathrm{U})$ which implies $\mathrm{f}^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{F}))) \subseteq \mathrm{U}$. Since f is \tilde{g}_{α} wg-continuous and $\mathrm{cl}(\operatorname{int}(\mathrm{F}))$ is closed in (Y, σ) then $\mathrm{f}^{-1}(\operatorname{cl}(\operatorname{int}(\mathrm{~F})))$ is $\tilde{g}_{\alpha} \mathrm{wg}$ closed in (X, τ). Since
$\mathrm{f}^{-1}(\operatorname{cl}(\operatorname{int}(\mathrm{~F}))) \subseteq \mathrm{U}$ and $\mathrm{f}^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{F})))$ is $\tilde{g}_{\alpha} \mathrm{wg} \operatorname{closed}$. We have $\operatorname{cl}\left(\operatorname{int}\left(\mathrm{f}^{-1}(\operatorname{cl}(\operatorname{int}(\mathrm{~F})))\right)\right) \subseteq \mathrm{U}$ and so $\operatorname{cl}\left(\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{~F})\right)\right) \subseteq \mathrm{U}$. $\mathrm{f}^{-1}(\mathrm{~F})$ is $\tilde{g}_{\alpha} \mathrm{wg}$-closed set in (X, τ) hence f is \tilde{g}_{α} wg-irresolute.

REFERENCES:

[1] Andrijevic, D., Semi-preopen sets, Mat. Vesnik, 381(1), 24-32(1986).
[2] Arya, S.P. and Gupta, R., On strongly continuous mappings, Kyungpook Math. J., 14, 131-143(1974).
[3] Balachandran, K., Sundaram,P. and Maki, H., On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ.Ser. A. Math, 12, 5-13(1991).
[4] Bhattacharya,P. and Lahiri,B.K., Semi-generalized closed sets in Topology, Indian J. Math, 29(3)(1987), 375-382.
[5] Devi,R., Balachandran, K. and Maki, H., On generalized α-continuous maps and α-generalized continuous maps,Far East J. Math., Sci., Special Volume,Part I,1-15(1997).
[6] Devi,R., Balachandran, K. and Maki, H., Semi-generalized homeomorphisms and generalized semihomeomorphisms in topological spaces, Indian J.Math.,26,271-284(1995).
[7] Dontchev, J., On generalizing semi-pre-open sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 16, 35-48(1995).

${ }^{1}$ M. Maria Singam and ${ }^{2}$ G. Anitha $* / \widetilde{g}_{\alpha}$-WEAKLY GENERALIZED CONTINUOUS FUNCTIONS/ IJMA- 2(11), Nov.-2011, Page: 2135-2141

[8] Lellis Thivagar, M., and Nirmal Rebacca Paul, On Topological \tilde{g}_{α}-Quotient Mappings, Journal of Advanced Studies in Topology.ISSN:2090-388X online Vol.1, 2010, 9-16.
[9] Levine.N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, (2), (19) (1970), 89-96.
[10] Levine.N., Semi-open sets and semi-continuity in topological spaces, Amer.Math.Monthly, 70(1963)36-41.
[11] Maki.H.,Devi.R and Balachandran, K.,Generalized α-closed sets in topology, Bull of Fukuoa, Univer. of Education,Vol.42, (1993),13-21.
[12] Maki.H., Devi.R and Balachandran, K., Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 15, (1994)51-63.
[13] Maria Singam, M., Anitha, G., \tilde{g}_{α}-Weakly generalized closed sets in topological spaces, Antartica J. Math, (Accepted)
[14] Mashhour.A. S. Hasanein, I.A and El-Deeb,S. N., α-continuous and α-open mappings, Acta Math.Phys.soc.Egypt.51(1981).
[15] Mukherjee, M. N, Roy. B., On p-cluster sets and their application to p-closedness, Carpathian J. Math., 22(2006), 99-106.
[16] Nagaveni. N., Studies on generalizations of homeomorphisms in topological spaces, Ph.D. Thesis N.G.M college(1999)
[17] Njastad.O:On some classes of nearly open sets,Pacific J.Math.,15(1965),961-970.
[18] Rajesh.N.,Lellis Thivagar. M., Sundaram.P.,Zbigniew Duszynski., \tilde{g}-semi closed sets in topological spaces,Mathematica Pannonica,18(2007),51-61.
[19] Saeid Jafari, M. Lellis Thivagar and Nirmala Rebecca Paul. Remarks on \tilde{g}_{α}-closed sets in topological spaces, International Mathematical Forum,5,2010,no.24,1167-1178.
[20] Stone, M., Application of the theory of Boolean rings to general topology, Trans.Amer. Math. Soc., 41 374481(1937).
[21] Sundaram,P., Balachandran,k. and Maki,H., Semi-generalized continuous functions and Semi- $T_{1 / 2}$ spaces, Bull. Fkuoka Univ. Ed., Part III,40,33-40(1991).
[22] Veera Kumar M.K.R.S.Between * g closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. App. Math., 21(2000), 1-19
[23] Veera kumar M.K.R.S. ${ }^{\#} g$-semi closed sets in topological spaces, Antartica J. Math 2(2005), 201-222.

[^0]: *Corresponding author: ${ }^{2}$ G. Anitha*,*E-mail: anitha_ganesan@yahoo.com

