International Journal of Mathematical Archive-2(11), 2011, Page: 2135-2141 Available online through <u>www.ijma.info</u> ISSN 2229 – 5046

\tilde{g}_{α} -WEAKLY GENERALIZED CONTINUOUS FUNCTIONS

¹M. Maria Singam and ²G. Anitha*

¹Department of Mathematics, V. O. Chidambaram College, Tuticorin, Tamil Nadu, India

²Research Scholar, V. O. Chidambaram College, Tuticorin, Tamil Nadu, India *E-mail: anitha_ganesan@yahoo.com

(Received on: 21-10-11; Accepted on: 07-11-11)

ABSTRACT

In this paper we introduce and study of \tilde{g}_{α} - weakly generalized continuous functions and \tilde{g}_{α} - weakly generalized irresolute functions also obtain some properties of such functions.

Mathematics Subject Classification: 54A05, 54H05, 54C08.

Keywords: \tilde{g}_{α} wg-continuity, \tilde{g}_{α} wg-irresolute function.

1. INTRODUCTION:

S. Jafari, M. lellis Thivagar and N. Rebecca Paul [19] introduced and studied \tilde{g}_{α} -closed sets. M. Maria Singam, G.

Anitha [13] introduced the class \tilde{g}_{α} -Weakly generalized closed sets. By using such sets we introduce new forms of functions called \tilde{g}_{α} -Weakly generalized continuous functions and \tilde{g}_{α} -Weakly generalized irresolute functions. We obtain properties of such functions.

2. PRELIMINARIES:

Throughout this paper (X, τ), (Y, σ) and (Z, η) represent non empty topological space on which no separation axiom is defined unless otherwise mentioned. For a subset A of a space Cl(A) and Int(A) denote the closure and interior of A respectively.

Definition.1.1: A subset A of a space X is called

1 .a semi-open set [10] if $A \subseteq cl(int(A))$

- 2. a pre-open set [15] if $A \subseteq int(cl(A))$
- 3. an α -open set [17] if A \subseteq int(cl(int(A)))
- 4. a regular open[20] if A = int(cl(A))
- 5. a semi-preopen set [1] if $A \subseteq cl(int(cl(A)))$

The complement of a semi-open (pre open, α -open, regular open, semi-preopen) set is called a semi-closed (resp. preclosed, α -closed, regular closed, semi-preclosed) set.

Definition 1.2: A subset A of a space X is called

1. a generalized closed set(g-closed)[9] if $cl(A) \subseteq U$ whenever $A \subseteq U, U$ is open in (X, τ) .

- 2. a weakly generalized closed set(wg-closed)[16] if Cl(Int(A)) \subseteq U whenever A \subseteq U,U is open in (X, τ).
- 3. semi generalized closed set(sg-closed)[4] if scl(A) \subseteq U, whenever A \subseteq U,U is semi open in (X, τ).
- 4. a generalized semi-pre-closed set(gsp-closed)[7] if spcl(A) \subseteq U whenever A \subseteq U,U is open in (X, τ).
- 5 .a w-closed set [18] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open in (X, τ) .

6. a generalized α -closed set (g α -closed) [11] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ).

7. an α - generalized closed set (α g-closed) [12] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).

8. a * g-closed set[22]if cl(A) \subseteq U, whenever A \subseteq U and U is w-open in (X, τ).

9. a # g-semi closed set(# gs-closed)[23] if scl(A) \subseteq U, whenever A \subseteq U and U is * g -open in (X, τ).

Corresponding author: ²G. Anitha, *E-mail: anitha_ganesan@yahoo.com

10. a \tilde{g}_{α} -closed[19] if α cl(A) \subseteq U, whenever A \subseteq U and U is # gs-open in (X, τ).

11. a \tilde{g}_{α} -Weakly generalized closed set(\tilde{g}_{α} wg-closed) [13] if Cl(Int(A)) \subseteq U, whenever A \subseteq U,U is \tilde{g}_{α} -open in (X, τ).

The complements of the above sets are called their respective open sets.

Definition 1.3: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

- 1. α -continuous [14] if f⁻¹(v) is α -closed in (X, τ) for every closed set V in (Y, σ).
- 2. semi continuous [10] if $f^{-1}(v)$ is semi closed in (X, τ) for every closed set V in (Y, σ).
- 3. g-continuous [3] if $f^{-1}(v)$ is g-closed in (X, τ) for every closed set V in (Y, σ).
- 4. sg-continuous [21] if $f^{-1}(v)$ is sg-closed in (X, τ) for every closed set V in (Y, σ) .
- 5. α g-continuous [5] if f⁻¹(v) is α g-closed in (X, τ) for every closed set V in (Y, σ).
- 6. g α -continuous [5] if f⁻¹(v) is g α -closed in (X, τ) for every closed set V in (Y, σ).
- 7. gs-continuous [6] if $f^{-1}(v)$ is gs-closed in (X, τ) for every closed set V in (Y, σ).
- 8. gsp-continuous [7] if $f^{-1}(v)$ is gsp-closed in (X, τ) for every closed set V in (Y, σ).
- 9. completely-continuous [2] if $f^{-1}(v)$ is regular closed in (X, τ) for every closed set V in (Y, σ) .
- 10. \tilde{g}_{α} continuous [8] if f⁻¹(v) is \tilde{g}_{α} -closed in (X, τ) for every closed set V in (Y, σ).
- 11. \tilde{g}_{α} -irresolute [8] if f⁻¹(v) is \tilde{g}_{α} -closed in (X, τ) for every \tilde{g}_{α} -closed set V in (Y, σ).

Proposition 1.4: If a subset A of a topological space (X, τ) is a regular closed, then it is \tilde{g}_{α} wg-closed but not conversely.

Proof: Suppose a subset A of a topological space X is regular closed. Let G be a \tilde{g}_{α} -open set containing A. Then $G \supseteq A = cl(int(A))$,since A is regular closed. Hence A is \tilde{g}_{α} wg-closed in (X, τ) .

Converse of the above theorem need not be true as seen in the following example.

Example 1.5: Let X = {a, b, c} and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. In this topological space the subset {b} is \tilde{g}_{α} wg-closed but it is not regular closed.

Proposition 1.6: If a subset A of a topological space (X, τ) is a $g\alpha$ - closed, then it is \tilde{g}_{α} wg-closed but not conversely.

Proof: Suppose A is $g\alpha$ - closed subset X and let G be a α -open set containing A. Since every α -open set is \tilde{g}_{α} -open. Hence G is \tilde{g}_{α} -open set containing A.

 $G \supseteq \alpha \operatorname{cl}(A) = \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))) \supseteq \operatorname{cl}(\operatorname{int}(A))$. Thus A is \widetilde{g}_{α} wg-closed in (X, τ) .

Converse of the above theorem need not be true as seen in the following example.

Example 1.7: Let X = {a, b, c) and $\tau = \{\phi, \{a, c\}, X\}$. In this topological space the subset {a} is \tilde{g}_{α} wg-closed but it is not g α closed.

Proposition 1.8: If a subset A of a topological space (X, τ) is a \tilde{g}_{α} wg-closed, then it is gsp-closed but not conversely.

Proof: Let A be \tilde{g}_{α} wg-closed subset X and G be an open set containing A in (X, τ). Then

 $G \supseteq cl(A) \supseteq cl(int(A))$. Since every open set is \tilde{g}_{α} -open. Hence G is \tilde{g}_{α} -open set containing A.G \supseteq (int(cl(int(A))) which implies $A \cup G \supseteq A \cup int(cl(int(A)))$. That is $G \supseteq spcl(A)$. Thus A is gsp-closed in (X, τ) .

Converse of the above theorem need not be true as seen in the following example.

Example.1.9: Let X = {a,b,c) and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. In this topological space the subset {a} is gsp closed but not \tilde{g}_{α} wg-closed.

2. \tilde{g}_{α} wg - CONTINUOUS FUNCTIONS:

We have introduced the following definition

Definition 2.1: A function $f: (X, \tau) \to (Y, \sigma)$ is said to be \tilde{g}_{α} wg-continuous if $f^{-1}(V)$ is \tilde{g}_{α} wg-closed in (X, τ) for every closed set V of (Y, σ) .

Example 2.2 : Let X = {a, b, c} = Y, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Define a function f : $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Then f is \tilde{g}_{α} wg -continuous since inverse image of closed set {b, c} in (Y, σ) is {a, b}which is in \tilde{g}_{α} wg-closed in (X, τ) .

Theorem 2.3: Every continuous map is \tilde{g}_{α} wg –continuous but not conversely.

Proof: Let V be a closed set in (Y, σ) . Since f is continuous, then $f^{-1}(V)$ is closed in (X, τ) . By theorem 3.2 of [13], every closed set is \tilde{g}_{α} wg-closed. Then $f^{-1}(V)$ is \tilde{g}_{α} wg-closed in (X, τ) .

Hence f is \tilde{g}_{α} wg –continuous.

Example 2.4: Let X = {a, b, c} = Y, $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Define a function f: (X, τ) \rightarrow (Y, σ) by f(a) = b, f(b) = a, f(c) = c. Then f is \tilde{g}_{α} wg –continuous but not continuous.

Theorem 2.5: Every \tilde{g}_{α} -continuous function is \tilde{g}_{α} wg –continuous but not conversely.

Proof: Let V be a closed set in (Y, σ) . Since f is \tilde{g}_{α} -continuous, then $f^{-1}(V)$ is \tilde{g}_{α} -closed in (X, τ) . By theorem 3.7 of [13], every \tilde{g}_{α} -closed set is \tilde{g}_{α} wg-closed. Then $f^{-1}(V)$ is \tilde{g}_{α} wg-closed in (X, τ) . Hence f is \tilde{g}_{α} wg-continuous.

Example 2.6: Let X = {a, b, c} = Y, $\tau = {\phi, {a}, X}$ and $\sigma = {\phi, {a, c}, Y}$. Define a function f: (X, τ) \rightarrow (Y, σ) by f(a) = c, f(b) = b, f(c) = a. Then f is \tilde{g}_{α} wg –continuous but not \tilde{g}_{α} -continuous.

Theorem 2.7: Every α -continuous function is \widetilde{g}_{α} wg –continuous but not conversely.

Proof: Let V be a closed set in (Y, σ) . Since f is α -continuous, then f⁻¹(V) is α -closed in (X, τ) . By theorem 3.11 of [13], every α -closed set is \tilde{g}_{α} wg-closed. Then f⁻¹(V) is \tilde{g}_{α} wg-closed in (X, τ) . Hence f is \tilde{g}_{α} wg –continuous.

Example 2.8: Let X = {a,b, c} = Y, $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, c\}, Y\}$. Define a function f: (X, τ) \rightarrow (Y, σ) by f(a) = b, f(b) = c, f(c) = a. Then f is \tilde{g}_{α} wg -continuous but not α -continuous.

Theorem 2.9: Every ga-continuous function is \tilde{g}_{α} wg –continuous but not conversely.

Proof: Let V be a closed set in (Y, σ) . Since f is $g\alpha$ -continuous, then $f^{-1}(V)$ is α -closed in (X, τ) . By Proposition 1.6, every $g\alpha$ -closed set is \tilde{g}_{α} wg-closed. Then $f^{-1}(V)$ is \tilde{g}_{α} wg-closed in (X, τ) . Hence f is \tilde{g}_{α} wg –continuous.

Example 2.10: Let X = {a, b, c} = Y, $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, c\}, Y\}$. Define a function f: (X, τ) \rightarrow (Y, σ) by f(a) = b, f(b) = c, f(c) = a. Then f is \tilde{g}_{α} wg –continuous but not g α -continuous.

Theorem 2.11: Every completely continuous function is \tilde{g}_{α} wg –continuous but not conversely.

Proof: Let V be a closed set in (Y, σ) . Since f is completely continuous function, then f⁻¹(V) is regular closed in (X, τ) . By Proposition 1.4, every regular closed set is \tilde{g}_{α} wg-closed. Then f⁻¹(V) is \tilde{g}_{α} wg-closed in (X, τ) . Hence f is \tilde{g}_{α} wg –continuous.

Example 2.12: Let X = {a, b, c} = Y, $\tau = {\phi, {a}, {b, c}, X}$ and $\sigma = {\phi, {a}, Y}$. Define a function f : $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Then f is \tilde{g}_{α} wg -continuous but not regular continuous function.

Theorem 2.13: Every \tilde{g}_{α} wg –continuous is gsp-continuous but not conversely.

Proof: Let V be a closed set in (Y, σ) . Since f is \tilde{g}_{α} wg- continuous function, then $f^{-1}(V)$ is \tilde{g}_{α} wg-closed in (X, τ) . By Proposition 1.8, every \tilde{g}_{α} wg-closed set is gsp closed. Then $f^{-1}(V)$ is gsp closed in (X, τ) . Hence f is gsp continuous.

Example 2.14: Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{b, c\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be identity function. Then f is gsp continuous but not \tilde{g}_{α} wg –continuous.

Theorem 2.15: Every \tilde{g}_{α} wg –continuous is wg-continuous but not conversely.

Proof: Let V be a closed set in (Y, σ) . Since f is \tilde{g}_{α} wg- continuous function, then $f^{-1}(V)$ is \tilde{g}_{α} wg-closed in (X, τ) . By theorem 3.9 of [13], every \tilde{g}_{α} wg-closed set is wg closed. Then $f^{-1}(V)$ is wg closed in (X, τ) . Hence f is wg continuous.

Example 2.16: Let X = {a, b, c} = Y, $\tau = \{\phi, \{b, c\}, \{c\}\}, X\}$ and $\sigma = \{\phi, \{b\}, Y\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be identity function. Then f is wg continuous but not \tilde{g}_{α} wg –continuous.

Remark 2.17: The following examples show that semi continuous and \tilde{g}_{α} wg –continuous functions are independent.

Example 2.18: Let X = {a, b, c} = Y, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$ defined f: $(X, \tau) \rightarrow (Y, \sigma)$ by f (a) = c, f (b) = a, f(c) = b. Then f is \tilde{g}_{α} wg –continuous but not semi continuous.

Example 2.19: Let X = {a, b, c} = Y, $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{b, c\}, Y\}$ defined f : (X, τ) \rightarrow (Y, σ) be the identity function. Then f is semi continuous but not \tilde{g}_{α} wg –continuous

Remark 2.20: The following examples show that g-continuous and \tilde{g}_{α} wg –continuous functions are independent.

Example 2.21: Let X = {a, b, c} = Y, $\tau = \{\phi, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$ defined f: $(X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is \tilde{g}_{α} wg –continuous but not g-continuous.

Example 2.22: Let X = {a, b, c} = Y, $\tau = \{\phi, \{b, c\}, \{c\}, X\}$ and $\sigma = \{\phi, \{b\}, Y\}$ defined f: $(X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is g-continuous but not \tilde{g}_{α} wg –continuous

Remark 2.23: The following examples show that sg-continuous and \tilde{g}_{α} wg –continuous functions are independent.

Example 2.24: Let X = {a, b, c} = Y, $\tau = \{\phi, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$ defined f: (X, τ) \rightarrow (Y, σ) by f(a) = c, f(b) = b, f(c) = a. Then f is \tilde{g}_{α} wg –continuous but not sg-continuous.

Example 2.25: Let X = {a, b, c} = Y, $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$ defined f: (X, τ) \rightarrow (Y, σ) by f(a) = b, f(b) = a, f(c) = c. Then f is sg-continuous but not \tilde{g}_{α} wg -continuous

Remark 2.26: The following examples show that αg -continuous and \tilde{g}_{α} wg –continuous functions are independent.

Example 2.27: Let X = {a, b, c} = Y, $\tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{b\}, Y\}$ define f: $(X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is α g-continuous function but not \tilde{g}_{α} wg –continuous function;

Example 2.28: Let X = {a, b, c, d} = Y, $\tau = \{\phi, \{b, c\}, \{b, c, d\}, \{a, b, c\}\}, X\}$ and $\sigma = \{\phi, \{a, c, d\}, Y\}$ defined f : $(X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is \tilde{g}_{α} wg –continuous but not α g-continuous.

Remark 2.29: The following examples show that gs-continuous and \tilde{g}_{α} wg –continuous functions are independent.

Example 2.30: Let X = {a, b, c} = Y, $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$ defined f : $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = c, f(c) = b. Then f is gs-continuous but not \tilde{g}_{α} wg -continuous.

Example 2.31: Let X = {a, b, c, d} = Y, $\tau = \{\phi, \{b, c\}, \{b, c, d\}, \{a, b, c\}\}, X\}$ and $\sigma = \{\phi, \{a, c, d\}, Y\}$ defined f : $(X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is \tilde{g}_{α} wg –continuous but not gs-continuous.

Remark 2.32: The composition of two \tilde{g}_{α} wg –continuous map need not be \tilde{g}_{α} wg –continuous.

Example 2.33: Let X = Y = Z = {a, b, c}, $\tau = {\phi, {a, b}, X}, \sigma = {\phi, {a}, {b, c}, Y}, \eta = {\phi, {a}, Z}$. Define ϕ : (X, τ) \rightarrow (Y, σ) by ϕ (a) = c, ϕ (b) = a, ϕ (c) = b and Define ψ : (Y, σ) \rightarrow (Z, η) by ψ (a) = b, ψ (b) = a, ψ (c) = c. Then ϕ, ψ are \tilde{g}_{α} wg -continuous. But $\phi \circ \psi$: (X, τ) \rightarrow (Z, η) is not \tilde{g}_{α} wg -continuous.

3. \tilde{g}_{α} WG –IRRESOLUTE FUNCTIONS

Definition 3.1: A function $f: (X, \tau) \to (Y, \sigma)$ is said to be \tilde{g}_{α} wg- irresolute if $f^{-1}(V)$ is \tilde{g}_{α} wg-closed in (X, τ) for every \tilde{g}_{α} wg-closed set V of (Y, σ) .

Theorem 3.2: Every \tilde{g}_{α} wg - irresolute map is \tilde{g}_{α} wg - continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a \tilde{g}_{α} wg- irresolute map and V be a closed set of (Y, σ) .

Since every closed set is \tilde{g}_{α} wg-closed set by theorem 3.2 of [13], V is \tilde{g}_{α} wg-closed. Since f is a \tilde{g}_{α} wg-irresolute, f⁻¹(V) is a \tilde{g}_{α} wg-closed set of (X, τ). Hence f is \tilde{g}_{α} wg-continuous.

Remark 3.3: \tilde{g}_{α} wg-continuous map need not be \tilde{g}_{α} wg-irresolute map.

Example 3.4: Let X = {a, b, c} = Y, $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}\}, X\}$ and $\sigma = \{\phi, \{a, c\}, Y\}$ defined f : (X, τ) \rightarrow (Y, σ) be the identity function. Then f is \tilde{g}_{α} wg –continuous but not \tilde{g}_{α} wg-irresolute map.

Theorem 3.5: Let $f: (X, \tau) \to (Y, \sigma)$ be an \tilde{g}_{α} - irresolute and closed map. Then f(A) is \tilde{g}_{α} wg-closed of (Y, σ) for every \tilde{g}_{α} wg-closed set A of (X, τ) .

Proof: Let A be a \tilde{g}_{α} wg-closed in (X, τ) . Let U be any \tilde{g}_{α} -open set of (Y, σ) such that $f(A) \subseteq U$ then $A \subseteq f^{-1}(U)$. Since f is \tilde{g}_{α} - irresolute then $f^{-1}(U)$ is \tilde{g}_{α} -open set of (X, τ) . © 2011, IJMA. All Rights Reserved

By hypothesis, A is \tilde{g}_{α} wg-closed and f⁻¹(U) is \tilde{g}_{α} -open set containing A,

then $cl(int(A)) \subseteq f^{-1}(U)$ which implies $f(cl(int(A))) \subseteq U$.

Now, $cl(int(f(A))) \subseteq cl(int(f(cl(int(A))))) \subseteq f(cl(int(A))) \subseteq U$

Hence $cl(int(f(A))) \subseteq U$. Hence f(A) is \tilde{g}_{α} wg-closed in (Y, σ) .

Theorem 3.6: If a function f: $(X, \tau) \to (Y, \sigma)$ is \tilde{g}_{α} -irresolute and \tilde{g}_{α} wg-closed and A is a \tilde{g}_{α} wg-closed set of (X, τ) , then $f_A : A \to Y$ is \tilde{g}_{α} wg-closed.

Proof: Let F be closed subset of A. Then F is \tilde{g}_{α} wg-closed. By theorem 3.5 $f_A(F) = f(F)$ is \tilde{g}_{α} wg-closed in (Y, σ) . Hence $f_A: A \to Y$ is \tilde{g}_{α} wg-closed function.

Theorem 3.7: Let f: $(X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (z, \eta) (Y, \sigma) \to (z, \eta)$ be such that $g \circ f: (X, \tau) \to (z, \eta)$ is \tilde{g}_{α} wg-closed function.

- (i) If f is continuous and injective then g is \tilde{g}_{α} wg-closed.
- (ii) If g is \tilde{g}_{α} wg-irresolute and injective then f is \tilde{g}_{α} wg-closed.

Proof: Let F be closed set of (Y, σ) . Since f is continuous, f⁻¹(F) is closed in X. $g \circ f$ (f⁻¹(F)) is \tilde{g}_{α} wg-closed in (z, η) . Hence g(F) is \tilde{g}_{α} wg-closed in (z, η) . Thus g is \tilde{g}_{α} wg-closed.

Proof of (ii) is similar to proof (i).

Theorem 3.8: Let f: $(X, \tau) \to (Y, \sigma)$ be a bijection function such that the image of every \tilde{g}_{α} -open in (X, τ) is \tilde{g}_{α} open in (Y, σ) and \tilde{g}_{α} wg-continuous then f is \tilde{g}_{α} wg-irresolute.

Proof: Let F be a \tilde{g}_{α} wg-closed in (Y, σ) . Let $f^{-1}(F) \subseteq U$ where U is \tilde{g}_{α} open set in (X, τ) .

 $F \subseteq f(U)$ and $cl(int(F)) \subseteq f(U)$ which implies $f^{-1}(cl(int(F))) \subseteq U$. Since f is \tilde{g}_{α} wg-continuous and cl(int(F)) is closed in (Y, σ) then $f^{-1}(cl(int(F)))$ is \tilde{g}_{α} wg closed in (X, τ) . Since

 $f^{-1}(cl(int(F))) \subseteq U$ and $f^{-1}(cl(int(F)))$ is \tilde{g}_{α} wg closed. We have $cl(int(f^{-1}(cl(int(F))))) \subseteq U$ and so $cl(int(f^{-1}(F))) \subseteq U$. $f^{-1}(F)$ is \tilde{g}_{α} wg-closed set in (X, τ) hence f is \tilde{g}_{α} wg-irresolute.

REFERENCES:

[1] Andrijevic, D., Semi-preopen sets, Mat. Vesnik, 381(1), 24-32(1986).

[2] Arya, S.P. and Gupta, R., On strongly continuous mappings, Kyungpook Math. J., 14, 131-143(1974).

[3] Balachandran, K., Sundaram, P. and Maki, H., On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ.Ser. A. Math, 12, 5-13(1991).

[4] Bhattacharya, P. and Lahiri, B.K., Semi-generalized closed sets in Topology, Indian J. Math, 29(3)(1987), 375-382.

[5] Devi,R., Balachandran, K. and Maki, H., On generalized α -continuous maps and α -generalized continuous maps, Far East J. Math., Sci., Special Volume, Part I,1-15(1997).

[6] Devi,R., Balachandran, K. and Maki, H., Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian J.Math., 26, 271-284 (1995).

[7] Dontchev, J., On generalizing semi-pre-open sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 16, 35-48(1995).

[8] Lellis Thivagar, M., and Nirmal Rebacca Paul, On Topological \tilde{g}_{α} -Quotient Mappings, Journal of Advanced Studies in Topology.ISSN:2090-388X online Vol.1, 2010, 9-16.

[9] Levine.N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, (2), (19) (1970), 89-96.

[10] Levine.N., Semi-open sets and semi-continuity in topological spaces, Amer.Math.Monthly, 70(1963)36-41.

[11] Maki.H., Devi.R and Balachandran, K., Generalized α -closed sets in topology, Bull of Fukuoa, Univer. of Education, Vol. 42, (1993), 13-21.

[12] Maki.H., Devi.R and Balachandran, K., Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 15, (1994)51-63.

[13] Maria Singam, M., Anitha, G., \tilde{g}_{α} -Weakly generalized closed sets in topological spaces, Antartica J. Math, (Accepted)

[14] Mashhour.A. S. Hasanein, I.A and El-Deeb, S. N., α -continuous and α -open mappings, Acta Math.Phys.soc.Egypt.51(1981).

[15] Mukherjee, M. N, Roy. B., On p-cluster sets and their application to p-closedness, Carpathian J. Math., 22(2006), 99-106.

[16] Nagaveni. N., Studies on generalizations of homeomorphisms in topological spaces, Ph.D. Thesis N.G.M college(1999)

[17] Njastad.O:On some classes of nearly open sets, Pacific J.Math., 15(1965), 961-970.

[18] Rajesh.N.,Lellis Thivagar. M., Sundaram.P.,Zbigniew Duszynski., \tilde{g} -semi closed sets in topological spaces,Mathematica Pannonica,18(2007),51-61.

[19] Saeid Jafari, M. Lellis Thivagar and Nirmala Rebecca Paul. Remarks on \tilde{g}_{α} -closed sets in topological spaces, International Mathematical Forum, 5, 2010, no. 24, 1167-1178.

[20] Stone, M., Application of the theory of Boolean rings to general topology, Trans.Amer. Math. Soc., 41 374-481(1937).

[21] Sundaram, P., Balachandran, k. and Maki, H., Semi-generalized continuous functions and Semi- $T_{1/2}$ spaces, Bull. Fkuoka Univ. Ed., Part III, 40, 33-40(1991).

[22] Veera Kumar M.K.R.S.Between * g closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. App. Math., 21(2000), 1-19

[23] Veera kumar M.K.R.S. #g -semi closed sets in topological spaces, Antartica J. Math 2(2005), 201-222.
