International Journal of Mathematical Archive-2(11), 2011, Page: 2135-2141 WWW.ijma.info ISSN 2229 - 5046 ### \tilde{g}_{α} -WEAKLY GENERALIZED CONTINUOUS FUNCTIONS ¹M. Maria Singam and ²G. Anitha* ¹Department of Mathematics, V. O. Chidambaram College, Tuticorin, Tamil Nadu, India ²Research Scholar, V. O. Chidambaram College, Tuticorin, Tamil Nadu, India *E-mail: anitha_ganesan@yahoo.com (Received on: 21-10-11; Accepted on: 07-11-11) #### **ABSTRACT** In this paper we introduce and study of \tilde{g}_{α} - weakly generalized continuous functions and \tilde{g}_{α} - weakly generalized irresolute functions also obtain some properties of such functions. Mathematics Subject Classification: 54A05, 54H05, 54C08. **Keywords:** \tilde{g}_{α} wg-continuity, \tilde{g}_{α} wg-irresolute function. #### 1. INTRODUCTION: S. Jafari, M. Iellis Thivagar and N. Rebecca Paul [19] introduced and studied \tilde{g}_{α} -closed sets. M. Maria Singam, G. Anitha [13] introduced the class \tilde{g}_{α} -Weakly generalized closed sets. By using such sets we introduce new forms of functions called \tilde{g}_{α} -Weakly generalized continuous functions and \tilde{g}_{α} -Weakly generalized irresolute functions. We obtain properties of such functions. #### 2. PRELIMINARIES: Throughout this paper (X, τ) , (Y, σ) and (Z, η) represent non empty topological space on which no separation axiom is defined unless otherwise mentioned. For a subset A of a space Cl(A) and Int(A) denote the closure and interior of A respectively. ### **Definition.1.1:** A subset A of a space X is called - 1 .a semi-open set [10] if $A \subseteq cl(int(A))$ - 2. a pre-open set [15] if $A \subseteq int(cl(A))$ - 3. an α -open set [17] if $A \subseteq int(cl(int(A)))$ - 4. a regular open[20] if A = int(cl(A)) - 5. a semi-preopen set [1] if $A \subseteq cl(int(cl(A)))$ The complement of a semi-open (pre open, α -open, regular open, semi-preopen) set is called a semi-closed (resp. pre-closed, α -closed, regular closed, semi-preclosed) set. #### **Definition 1.2:** A subset A of a space X is called - 1. a generalized closed set(g-closed)[9] if $cl(A) \subseteq U$ whenever $A \subseteq U, U$ is open in (X, τ) . - 2. a weakly generalized closed set(wg-closed)[16] if $Cl(Int(A)) \subseteq U$ whenever $A \subseteq U, U$ is open in (X, τ) . - 3. semi generalized closed set(sg-closed)[4] if scl(A) \subset U, whenever A \subset U,U is semi open in (X, τ). - 4. a generalized semi-pre-closed set(gsp-closed)[7] if $spcl(A) \subset U$ whenever $A \subset U$, U is open in (X, τ) . - 5 .a w-closed set [18]if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open in (X, τ) . - 6. a generalized α -closed set (g α -closed) [11] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ). - 7. an α generalized closed set (α g-closed) [12] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ). - 8. a * g-closed set[22]if cl(A) \subseteq U, whenever A \subseteq U and U is w-open in (X, τ). - 9. a # g-semi closed set(# gs-closed)[23] if $scl(A) \subseteq U$, whenever $A \subseteq U$ and U is * g -open in (X, τ) . 10. a $\,\tilde{g}_{\alpha}\,$ -closed[19] if $\,\alpha$ cl(A) \subseteq U, whenever A \subseteq U and U is $\,\#\,$ gs-open in (X, τ). 11. a \tilde{g}_{α} -Weakly generalized closed set(\tilde{g}_{α} wg-closed) [13] if Cl(Int(A)) \subseteq U, whenever A \subseteq U,U is \tilde{g}_{α} -open in (X, τ) . The complements of the above sets are called their respective open sets. **Definition 1.3:** A function $f:(X,\tau) \to (Y,\sigma)$ is called - 1. α -continuous [14] if f⁻¹(v) is α -closed in (X, τ) for every closed set V in (Y, σ). - 2. semi continuous [10] if $f^{-1}(v)$ is semi closed in (X, τ) for every closed set V in (Y, σ) . - 3. g-continuous [3] if $f^{-1}(v)$ is g-closed in (X, τ) for every closed set V in (Y, σ) . - 4. sg-continuous [21] if $f^{-1}(v)$ is sg-closed in (X, τ) for every closed set V in (Y, σ) . - 5. α g-continuous [5] if f⁻¹(v) is α g-closed in (X, τ) for every closed set V in (Y, σ). - 6. g α -continuous [5] if f⁻¹(v) is g α -closed in (X, τ) for every closed set V in (Y, σ). - 7. gs-continuous [6] if $f^{-1}(v)$ is gs-closed in (X, τ) for every closed set V in (Y, σ) . - 8. gsp-continuous [7] if $f^{-1}(v)$ is gsp-closed in (X, τ) for every closed set V in (Y, σ) . - 9. completely-continuous [2] if $f^{-1}(v)$ is regular closed in (X, τ) for every closed set V in (Y, σ) . - 10. \tilde{g}_{α} continuous [8] if $f^{-1}(v)$ is \tilde{g}_{α} -closed in (X, τ) for every closed set V in (Y, σ) . - 11. \tilde{g}_{α} -irresolute [8] if $f^{-1}(v)$ is \tilde{g}_{α} -closed in (X, τ) for every \tilde{g}_{α} -closed set V in (Y, σ) . **Proposition 1.4:** If a subset A of a topological space (X, τ) is a regular closed, then it is \tilde{g}_{α} wg-closed but not conversely. **Proof:** Suppose a subset A of a topological space X is regular closed. Let G be a \tilde{g}_{α} -open set containing A. Then $G \supseteq A = cl(int(A))$, since A is regular closed. Hence A is \tilde{g}_{α} wg-closed in (X, τ) . Converse of the above theorem need not be true as seen in the following example. **Example 1.5:** Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. In this topological space the subset $\{b\}$ is \widetilde{g}_{α} wg-closed but it is not regular closed. **Proposition 1.6:** If a subset A of a topological space (X, τ) is a $g\alpha$ -closed, then it is \tilde{g}_{α} wg-closed but not conversely. **Proof:** Suppose A is $g \alpha$ - closed subset X and let G be a α -open set containing A. Since every α -open set is \tilde{g}_{α} -open. Hence G is \tilde{g}_{α} -open set containing A. $G \supseteq \alpha \operatorname{cl}(A) = \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))) \supseteq \operatorname{cl}(\operatorname{int}(A))$. Thus A is \widetilde{g}_{α} wg-closed in (X, τ) . Converse of the above theorem need not be true as seen in the following example. **Example 1.7:** Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a, c\}, X\}$. In this topological space the subset $\{a\}$ is \widetilde{g}_{α} wg-closed but it is not $g\alpha$ closed. **Proposition 1.8:** If a subset A of a topological space (X, τ) is a \tilde{g}_{α} wg-closed, then it is gsp-closed but not conversely. **Proof:** Let A be \tilde{g}_{α} wg-closed subset X and G be an open set containing A in (X, τ) . Then $G \supseteq cl(A) \supseteq cl(int(A))$. Since every open set is \widetilde{g}_{α} -open. Hence G is \widetilde{g}_{α} -open set containing $A.G \supseteq (int(cl(int(A))))$ which implies $A \cup G \supseteq A \cup int(cl(int(A)))$. That is $G \supseteq spcl(A)$. Thus A is gsp-closed in (X, τ) . Converse of the above theorem need not be true as seen in the following example. **Example.1.9:** Let $X = \{a,b,c\}$ and $\tau = \{\phi,\{a\},\{c\},\{a,c\},X\}$. In this topological space the subset $\{a\}$ is gsp closed but not \widetilde{g}_{α} wg-closed. ### 2. \tilde{g}_{α} wg - CONTINUOUS FUNCTIONS: We have introduced the following definition **Definition 2.1:** A function $f:(X,\tau) \to (Y,\sigma)$ is said to be \widetilde{g}_{α} wg-continuous if $f^{-1}(V)$ is \widetilde{g}_{α} wg-closed in (X,τ) for every closed set V of (Y,σ) . **Example 2.2 :** Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Define a function $f: (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Then f is \widetilde{g}_{α} wg –continuous since inverse image of closed set $\{b, c\}$ in (Y, σ) is $\{a, b\}$ which is in \widetilde{g}_{α} wg-closed in (X, τ) . **Theorem 2.3:** Every continuous map is \tilde{g}_{α} wg –continuous but not conversely. **Proof:** Let V be a closed set in (Y, σ) . Since f is continuous, then $f^{-1}(V)$ is closed in (X, τ) . By theorem 3.2 of [13], every closed set is \widetilde{g}_{α} wg-closed. Then $f^{-1}(V)$ is \widetilde{g}_{α} wg-closed in (X, τ) . Hence f is \tilde{g}_{α} wg –continuous. **Example 2.4:** Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Define a function $f: (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Then f is \widetilde{g}_{α} wg –continuous but not continuous. **Theorem 2.5:** Every \tilde{g}_{α} -continuous function is \tilde{g}_{α} wg –continuous but not conversely. **Proof:** Let V be a closed set in (Y, σ) . Since f is \tilde{g}_{α} -continuous, then $f^{-1}(V)$ is \tilde{g}_{α} -closed in (X, τ) . By theorem 3.7 of [13], every \tilde{g}_{α} -closed set is \tilde{g}_{α} wg-closed. Then $f^{-1}(V)$ is \tilde{g}_{α} wg-closed in (X, τ) . Hence f is \tilde{g}_{α} wg -continuous. **Example 2.6:** Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{a, c\}, Y\}$. Define a function $f: (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = b, f(c) = a. Then f is \widetilde{g}_{α} wg –continuous but not \widetilde{g}_{α} -continuous. **Theorem 2.7:** Every α -continuous function is \tilde{g}_{α} wg –continuous but not conversely. **Proof:** Let V be a closed set in (Y, σ) . Since f is α -continuous, then $f^{-1}(V)$ is α -closed in (X, τ) . By theorem 3.11 of [13], every α -closed set is \widetilde{g}_{α} wg-closed. Then $f^{-1}(V)$ is \widetilde{g}_{α} wg-closed in (X, τ) . Hence f is \widetilde{g}_{α} wg -continuous. **Example 2.8:** Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, c\}, Y\}$. Define a function $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Then f is \widetilde{g}_{α} wg –continuous but not α -continuous. **Theorem 2.9:** Every $g\alpha$ -continuous function is \tilde{g}_{α} wg –continuous but not conversely. **Proof:** Let V be a closed set in (Y, σ) . Since f is $g\alpha$ -continuous, then $f^{-1}(V)$ is α -closed in (X, τ) . By Proposition 1.6, every $g\alpha$ -closed set is \widetilde{g}_{α} wg-closed. Then $f^{-1}(V)$ is \widetilde{g}_{α} wg-closed in (X, τ) . Hence f is \widetilde{g}_{α} wg -continuous. **Example 2.10:** Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, c\}, Y\}$. Define a function $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Then f is \widetilde{g}_{α} wg –continuous but not $g\alpha$ -continuous. **Theorem 2.11:** Every completely continuous function is \tilde{g}_{α} wg –continuous but not conversely. **Proof:** Let V be a closed set in (Y, σ) . Since f is completely continuous function, then $f^{-1}(V)$ is regular closed in (X, τ) . By Proposition 1.4, every regular closed set is \widetilde{g}_{α} wg-closed. Then $f^{-1}(V)$ is \widetilde{g}_{α} wg-closed in (X, τ) . Hence f is \widetilde{g}_{α} wg -continuous. **Example 2.12:** Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Define a function $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Then f is \widetilde{g}_{α} wg –continuous but not regular continuous function. **Theorem 2.13:** Every \tilde{g}_{α} wg –continuous is gsp-continuous but not conversely. **Proof:** Let V be a closed set in (Y, σ) . Since f is \widetilde{g}_{α} wg-continuous function, then $f^{-1}(V)$ is \widetilde{g}_{α} wg-closed in (X, τ) . By Proposition 1.8, every \widetilde{g}_{α} wg-closed set is gsp closed. Then $f^{-1}(V)$ is gsp closed in (X, τ) . Hence f is gsp continuous. **Example 2.14:** Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{b, c\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be identity function. Then f is gsp continuous but not \widetilde{g}_{α} wg –continuous. **Theorem 2.15:** Every \tilde{g}_{α} wg –continuous is wg-continuous but not conversely. **Proof:** Let V be a closed set in (Y, σ) . Since f is \tilde{g}_{α} wg- continuous function, then $f^{-1}(V)$ is \tilde{g}_{α} wg-closed in (X, τ) . By theorem 3.9 of [13], every \tilde{g}_{α} wg-closed set is wg closed. Then $f^{-1}(V)$ is wg closed in (X, τ) . Hence f is wg continuous. **Example 2.16:** Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{b, c\}, \{c\}\}, X\}$ and $\sigma = \{\phi, \{b\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be identity function. Then f is wg continuous but not \widetilde{g}_{α} wg –continuous. **Remark 2.17:** The following examples show that semi continuous and \tilde{g}_{α} wg –continuous functions are independent. **Example 2.18:** Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$ defined $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = c, f(b) = a, f(c) = b. Then f is \widetilde{g}_{α} wg –continuous but not semi continuous. **Example 2.19:** Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{b, c\}, Y\}$ defined $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is semi continuous but not \widetilde{g}_{α} wg –continuous **Remark 2.20:** The following examples show that g-continuous and \tilde{g}_{α} wg –continuous functions are independent. **Example 2.21**: Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$ defined $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is \widetilde{g}_{α} wg –continuous but not g-continuous. **Example 2.22:** Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{b, c\}, \{c\}, X\}$ and $\sigma = \{\phi, \{b\}, Y\}$ defined $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is g-continuous but not \widetilde{g}_{α} wg –continuous **Remark 2.23:** The following examples show that sg-continuous and \tilde{g}_{α} wg –continuous functions are independent. **Example 2.24:** Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$ defined $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = c, f(b) = b, f(c) = a. Then f is \widetilde{g}_{α} wg –continuous but not sg-continuous. **Example 2.25:** Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$ defined $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Then f is sg-continuous but not \widetilde{g}_{α} wg –continuous **Remark 2.26:** The following examples show that αg -continuous and \tilde{g}_{α} wg –continuous functions are independent. **Example 2.27:** Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{b\}, Y\}$ define $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is αg -continuous function but not \widetilde{g}_{α} wg –continuous function; **Example 2.28:** Let $X = \{a, b, c, d\} = Y$, $\tau = \{\phi, \{b, c\}, \{b, c, d\}, \{a, b, c\}\}, X\}$ and $\sigma = \{\phi, \{a, c, d\}, Y\}$ defined $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity function . Then f is \widetilde{g}_{α} wg –continuous but not αg -continuous. **Remark 2.29:** The following examples show that gs-continuous and \tilde{g}_{α} wg –continuous functions are independent. **Example 2.30:** Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$ defined $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = c, f(c) = b. Then f is gs-continuous but not \widetilde{g}_{α} wg –continuous. **Example 2.31:** Let $X = \{a, b, c, d\} = Y$, $\tau = \{\phi, \{b, c\}, \{b, c, d\}, \{a, b, c\}\}, X\}$ and $\sigma = \{\phi, \{a, c, d\}, Y\}$ defined $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is \widetilde{g}_{α} wg –continuous but not gs-continuous. **Remark 2.32:** The composition of two \tilde{g}_{α} wg –continuous map need not be \tilde{g}_{α} wg –continuous. **Example 2.33:** Let $X = Y = Z = \{a, b, c\}$, $\tau = \{\phi, \{a, b\}, X\}$, $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$, $\eta = \{\phi, \{a\}, Z\}$. Define $\phi: (X, \tau) \rightarrow (Y, \sigma)$ by $\phi(a) = c$, $\phi(b) = a$, $\phi(c) = b$ and Define $\psi: (Y, \sigma) \rightarrow (Z, \eta)$ by $\psi(a) = b$, $\psi(b) = a$, $\psi(c) = c$. Then ϕ, ψ are \widetilde{g}_{α} wg –continuous. But $\phi \circ \psi: (X, \tau) \rightarrow (Z, \eta)$ is not \widetilde{g}_{α} wg –continuous. ### 3. \tilde{g}_{α} WG –IRRESOLUTE FUNCTIONS **Definition 3.1:** A function $f:(X,\tau) \to (Y,\sigma)$ is said to be \tilde{g}_{α} wg- irresolute if $f^{-1}(V)$ is \tilde{g}_{α} wg-closed in (X,τ) for every \tilde{g}_{α} wg-closed set V of (Y,σ) . **Theorem 3.2:** Every \tilde{g}_{α} wg - irresolute map is \tilde{g}_{α} wg - continuous. **Proof:** Let $f: (X, \tau) \to (Y, \sigma)$ be a \widetilde{g}_{α} wg-irresolute map and V be a closed set of (Y, σ) . Since every closed set is \tilde{g}_{α} wg-closed set by theorem 3.2 of [13], V is \tilde{g}_{α} wg-closed. Since f is a \tilde{g}_{α} wg-irresolute, $f^{-1}(V)$ is a \tilde{g}_{α} wg-closed set of (X, τ) . Hence f is \tilde{g}_{α} wg-continuous. **Remark 3.3:** \tilde{g}_{α} wg-continuous map need not be \tilde{g}_{α} wg-irresolute map. **Example 3.4:** Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}\}, X\}$ and $\sigma = \{\phi, \{a, c\}, Y\}$ defined $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity function . Then f is \widetilde{g}_{α} wg —continuous but not \widetilde{g}_{α} wg-irresolute map. **Theorem 3.5:** Let $f:(X,\tau) \to (Y,\sigma)$ be an \widetilde{g}_{α} -irresolute and closed map. Then f(A) is \widetilde{g}_{α} wg-closed of (Y,σ) for every \widetilde{g}_{α} wg-closed set A of (X,τ) . **Proof:** Let A be a \widetilde{g}_{α} wg-closed in (X, τ) . Let U be any \widetilde{g}_{α} -open set of (Y, σ) such that $f(A) \subseteq U$ then $A \subseteq f^{-1}(U)$. Since f is \widetilde{g}_{α} -irresolute then $f^{-1}(U)$ is \widetilde{g}_{α} -open set of (X, τ) . By hypothesis, A is $\ \widetilde{g}_{\alpha}$ wg-closed and $\ f^{-1}(U)$ is $\ \widetilde{g}_{\alpha}$ -open set containing A, then $cl(int(A)) \subseteq f^{-1}(U)$ which implies $f(cl(int(A))) \subseteq U$. Now, $cl(int(f(A))) \subseteq cl(int(f(cl(int(A))))) \subseteq f(cl(int(A))) \subseteq U$ Hence $cl(int(f(A))) \subseteq U$. Hence f(A) is \tilde{g}_{α} wg-closed in (Y, σ) . **Theorem 3.6:** If a function $f: (X, \tau) \to (Y, \sigma)$ is \widetilde{g}_{α} -irresolute and \widetilde{g}_{α} wg-closed and A is a \widetilde{g}_{α} wg-closed set of (X, τ) , then $f_A: A \to Y$ is \widetilde{g}_{α} wg-closed. **Proof:** Let F be closed subset of A. Then F is \tilde{g}_{α} wg-closed. By theorem 3.5 f_A (F) = f(F) is \tilde{g}_{α} wg-closed in (Y, σ). Hence $f_A:A\to Y$ is \tilde{g}_{α} wg-closed function. **Theorem 3.7:** Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (z, \eta) \ (Y, \sigma) \to (z, \eta)$ be such that $g \circ f: (X, \tau) \to (z, \eta)$ is \widetilde{g}_{α} wg-closed function. - (i) If f is continuous and injective then g is \tilde{g}_{α} wg-closed. - (ii) If g is \tilde{g}_{α} wg-irresolute and injective then f is \tilde{g}_{α} wg-closed. **Proof:** Let F be closed set of (Y, σ) . Since f is continuous, $f^{-1}(F)$ is closed in X. $g \circ f$ ($f^{-1}(F)$) is \widetilde{g}_{α} wg-closed in (z, η) . Hence g(F) is \widetilde{g}_{α} wg-closed in (z, η) . Thus g is \widetilde{g}_{α} wg-closed. Proof of (ii) is similar to proof (i). **Theorem 3.8:** Let $f: (X, \tau) \to (Y, \sigma)$ be a bijection function such that the image of every \widetilde{g}_{α} -open in (X, τ) is \widetilde{g}_{α} open in (Y, σ) and \widetilde{g}_{α} wg-continuous then f is \widetilde{g}_{α} wg-irresolute. **Proof:** Let F be a $\,\widetilde{g}_{\,\alpha}$ wg-closed in $\,(Y,\sigma)$. Let $f^{-1}(F)\subseteq U$ where U is $\,\widetilde{g}_{\,\alpha}$ open set in (X,τ) . $F \subseteq f(U)$ and $cl(int(F)) \subseteq f(U)$ which implies $f^{-1}(cl(int(F))) \subseteq U$. Since f is \tilde{g}_{α} wg-continuous and cl(int(F)) is closed in (Y, σ) then $f^{-1}(cl(int(F)))$ is \tilde{g}_{α} wg closed in (X, τ) . Since $f^{-1}(cl(int(F))) \subseteq U$ and $f^{-1}(cl(int(F)))$ is \widetilde{g}_{α} wg closed. We have $cl(int(f^{-1}(cl(int(F))))) \subseteq U$ and so $cl(int(f^{-1}(F))) \subseteq U$. $f^{-1}(F)$ is \widetilde{g}_{α} wg-closed set in (X, τ) hence f is \widetilde{g}_{α} wg-irresolute. ### **REFERENCES:** - [1] Andrijevic, D., Semi-preopen sets, Mat. Vesnik, 381(1), 24-32(1986). - [2] Arya, S.P. and Gupta, R., On strongly continuous mappings, Kyungpook Math. J., 14, 131-143(1974). - [3] Balachandran, K., Sundaram, P. and Maki, H., On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ.Ser. A. Math, 12, 5-13(1991). - [4] Bhattacharya, P. and Lahiri, B.K., Semi-generalized closed sets in Topology, Indian J. Math, 29(3)(1987), 375-382. - [5] Devi,R., Balachandran, K. and Maki, H., On generalized α -continuous maps and α -generalized continuous maps,Far East J. Math., Sci., Special Volume,Part I,1-15(1997). - [6] Devi,R., Balachandran, K. and Maki, H., Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian J.Math., 26,271-284(1995). - [7] Dontchev, J., On generalizing semi-pre-open sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 16, 35-48(1995). - [8] Lellis Thivagar, M., and Nirmal Rebacca Paul, On Topological \tilde{g}_{α} -Quotient Mappings, Journal of Advanced Studies in Topology.ISSN:2090-388X online Vol.1, 2010, 9-16. - [9] Levine.N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, (2), (19) (1970), 89-96. - [10] Levine.N., Semi-open sets and semi-continuity in topological spaces, Amer.Math.Monthly, 70(1963)36-41. - [11] Maki.H.,Devi.R and Balachandran, K.,Generalized α -closed sets in topology, Bull of Fukuoa, Univer. of Education, Vol. 42, (1993), 13-21. - [12] Maki.H., Devi.R and Balachandran, K., Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 15, (1994)51-63. - [13] Maria Singam, M., Anitha, G., \tilde{g}_{α} -Weakly generalized closed sets in topological spaces, Antartica J. Math, (Accepted) - [14] Mashhour.A. S. Hasanein, I.A and El-Deeb,S. N., α -continuous and α -open mappings, Acta Math.Phys.soc.Egypt.51(1981). - [15] Mukherjee, M. N, Roy. B., On p-cluster sets and their application to p-closedness, Carpathian J. Math., 22(2006), 99-106. - [16] Nagaveni. N., Studies on generalizations of homeomorphisms in topological spaces, Ph.D. Thesis N.G.M college(1999) - [17] Njastad.O:On some classes of nearly open sets, Pacific J.Math., 15(1965), 961-970. - [18] Rajesh.N.,Lellis Thivagar. M., Sundaram.P.,Zbigniew Duszynski., \tilde{g} -semi closed sets in topological spaces,Mathematica Pannonica,18(2007),51-61. - [19] Saeid Jafari, M. Lellis Thivagar and Nirmala Rebecca Paul. Remarks on \tilde{g}_{α} -closed sets in topological spaces, International Mathematical Forum, 5,2010, no. 24,1167-1178. - [20] Stone, M., Application of the theory of Boolean rings to general topology, Trans.Amer. Math. Soc., 41 374-481(1937). - [21] Sundaram, P., Balachandran, k. and Maki, H., Semi-generalized continuous functions and Semi- $T_{1/2}$ spaces, Bull. Fkuoka Univ. Ed., Part III, 40, 33-40(1991). - [22] Veera Kumar M.K.R.S.Between * g closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. App. Math., 21(2000), 1-19 - [23] Veera kumar M.K.R.S. **g -semi closed sets in topological spaces, Antartica J. Math 2(2005), 201-222. ******