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ABSTRACT 

A Hamiltonian Path is a spanning path in a graph, i.e., the path passing through every vertex of the graph. In this 

paper we study and giving a sufficient condition for a complete graph to posses a Hamiltonian path and given some 

related examples. 
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1. INTRODUCTION: 

 

The origin of graph theory started with the problem of Koinsber bridge, in 1735. This problem lead to the concept of 

Eulerian Graph. Euler studied the problem of Koinsberg bridge and constructed a structure to solve the problem called 

Eulerian graph. In 1840, A.F Mobius gave the idea of complete graph and bipartite graph and Kuratowski proved that 

they are planar by means of recreational problems. The concept of tree, (a connected graph without cycles was 

implemented by Gustav Kirchhoff in 1845, and he employed graph theoretical ideas in the calculation of currents in 

electrical networks or circuits. In 1852, Thomas Gutherie found the famous four color problem. Then in 1856, Thomas. 

P. Kirkman and William R. Hamilton studied cycles on polyhydra and invented the concept called Hamiltonian graph 

by studying trips that visited certain sites exactly once. In 1913, H.Dudeney mentioned a puzzle problem. Eventhough 

the four color problem was invented it was solved only after a century by Kenneth Appel and Wolfgang Haken. This 

time is considered as the birth of Graph Theory. Caley studied particular analytical forms from differential calculus to 

study the trees. This had many implications in theoretical chemistry. This lead to the invention of enumerative graph 

theory. Any how the term “Graph” was introduced by Sylvester in 1878 where he drew an analogy between “Quantic 

invariants” and covariants of algebra and molecular diagrams. In 1941, Ramsey worked on colorations which lead to 

the identification of another branch of graph theory called extremel graph theory. In 1969, the four color problem was 

solved using computers by Heinrich. The study of asymptotic graph connectivity gave rise to random graph theory. 

 

In this paper we study the Hamiltonian graphs, Hamiltonian paths and given a sufficient condition of Hamiltonian path 

to complete graphs. 

 

1.1 Definition:  A graph – usually denoted G (V, E) or G = (V, E) – consists of set of vertices V together with a set of 

edges E. The number of vertices in a graph is usually denoted n while the number of edges is usually denoted m. 

 

1.2 Definition: Vertices are also known as nodes, points and (in social networks) as actors, agents or players.   
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1.3 Definition:  Edges are also known as lines and (in social networks) as ties or links. An edge e = (u, v) is defined by 

the unordered pair of vertices that serve as its end points.  

 

1.4 Example: The graph depicted in Figure 1 has vertex set V= {a, b, c, d, e. f} and edge set E = {(a, b), (b, c), (c, d), 

(c, e), (d, e), (e, f)}. 

a b

c

d

e f
a b

c

d

e f
a b

c

d

e f

 
 

Figure: 1 

 

1. 5 Definition: Two vertices u and v are adjacent if there exists an edge (u,v) that connects them.  

 

1.6 Definition: An edge (u, v) is said to be incident upon nodes u and v.  

 

1.7 Definition: An edge e = (u, u) that links a vertex to itself is known as a self-loop or reflexive tie.   

 

1.8 Definition: Every graph has associated with it an adjacency matrix, which is a binary n×n matrix A in which aij = 1 

and aji = 1 if vertex vi is adjacent to vertex vj, and aij = 0 and aji = 0 otherwise. The natural graphical representation of 

an adjacency matrix is a table, such as shown below.  

 

 a b c d e f 

a 0 1 0 0 0 0 

b 1 0 1 0 0 0 

c 0 1 0 1 1 0 

d 0 0 1 0 1 0 

e 0 0 1 1 0 1 

f 0 0 0 0 1 0 

 

Adjacency matrix for graph in Figure 1. 

 

1.9 Definition:  Examining either Figure 1 or given adjacency Matrix, we can see that not every vertex is adjacent to 

every other. A graph in which all vertices are adjacent to all others is said to be complete.  

 

1.10 Definition:  A subgraph of a graph G is a graph whose points and lines are contained in G. A complete subgraph 

of G is a section of G that is complete 

 

1.11 Definition: While not every vertex in the graph in Figure 1 is adjacent, one can construct a sequence of adjacent 

vertices from any vertex to any other. Graphs with this property are called connected.  

 

1.12 Note: Reachability. Similarly, any pair of vertices in which one vertex can reach the other via a sequence of 

adjacent vertices is called reachable. If we determine reachability for every pair of vertices, we can construct a 

reachability matrix R such as depicted in Figure 2. The matrix R can be thought of as the result of applying transitive 

closure to the adjacency matrix A. 
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Figure:  2 
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1.13 Definition: A component of a graph is defined as a maximal subgraph in which a path exists from every node to 

every other (i.e., they are mutually reachable). The size of a component is defined as the number of nodes it contains. A 

connected graph has only one component. 

 

1.14 Definition:  A sequence of adjacent vertices v0, v1,…,vn is known as a walk. In Figure 3, the sequence a, b, c, b, c, 

g is a walk. A walk can also be seen as a sequence of incident edges, where two edges are said to be incident if they 

share exactly one vertex.  

 

1.15 Definition:  A walk is closed if vo = vn. 

 

1.16 Definition:  A walk in which no vertex occurs more than once is known as a path. In Figure 3, the sequence a, b, 

c, d, e, f  is a path.  

 

1.17 Definition: A walk in which no edge occurs more than once is known as a trail. In Figure 3, the sequence a, b, c, 

e, d, c, g is a trail but not a path. Every path is a trail, and every trail is a walk.  

 

1.18 Definition: A cycle can be defined as a closed path in which n >= 3. The sequence c, e, d in Figure 3 is a cycle.  

 

1.19 Definition: A tree is a connected graph that contains no cycles. In a tree, every pair of points is connected by a 

unique path. That is, there is only one way to get from A to B. 

  

 
 

Figure 3: A labeled tree  

with 6 vertices and 5 edges 

1.20 Definition: A spanning tree for a graph G is a sub-graph of G which is a tree that includes every vertex of G. 

 

1.21 Definition:  The length of a walk (and therefore a path or trail) is defined as the number of edges it contains. For 

example, in Figure 3, the path a,b,c,d,e has length 4.  

 

1.22 Definition: The number of vertices adjacent to a given vertex is called the degree of the vertex and is denoted 

d(v). 

 

1.23 Definition : In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices 

can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V; that is, U and V 

are independent sets. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles. 

 

 
Figure 4:   Example of a bipartite graph. 

 

1.24 Definition: An Eulerian circuit in a graph G is circuit which includes every vertex and every edge of G. It may 

pass through a vertex more than once, but because it is a circuit it traverse each edge exactly once. A graph which has 

an Eulerian circuit is called an Eulerian graph. An Eulerian path in a graph G is a walk which passes through every 

vertex of G and which traverses each edge of G exactly once 
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1.25 Example:  Königsberg bridge problem: The city of Königsberg (now Kaliningrad) had seven bridges on the 

Pregel River. People were wondering whether it would be possible to take a walk through the city passing exactly once 

on each bridge. Euler built the representative graph, observed that it had vertices of odd degree, and proved that this 

made such a walk impossible. Does there exist a walk crossing each of the seven bridges of Königsberg exactly once? 

 
Figure 5: K¨onigsberg problem 

 

2. HAMILTONIAN PATH AND HAMILTONIAN CIRCUIT: 

  

In this section we proved main result related to the sufficient condition of Hamiltonian path to complete graph. 

 

2.1 Definition: Another closely related problem is finding a Hamilton path in the graph (named after an Irish 

mathematician, Sir William Rowan Hamilton). Whereas an Euler path is a path that visits every edge exactly once, a 

Hamilton path is a path that visits every vertex in the graph 4 exactly once.  

 

A Hamilton circuit is a path that visits every vertex in the graph exactly once and return to the starting vertex. 

Determining whether such paths or circuits exist is an NP-complete problem. In the diagram below, an example  

Hamilton Circuit would be 

 

2.2 Example: 

 
 

Figure 6: Hamilton Circuit would be AEFGCDBA. 

 

2.3 Theorem (Dirac [2]). If G is a simple graph with n vertices where n � 3 and � (G) � n/2, then G is Hamiltonian.  

 

2.4 Theorem (Ore [4]). Let G be a simple graph with n vertices and u, v be distinct nonadjacent vertices of G with d(u) 

+ d(v) � n. Then G is Hamiltonian if and only if G + (u, v) is Hamiltonian.  

 

2.5 Theorem (Bondy-Chvátal [1]). If G is a simple graph with n vertices, then G is Hamiltonian if and only if its 

closure is Hamiltonian..  

 

2.6 Remark: The (Hamiltonian) closure of a graph G, denoted C(G), is the supergraph of G on V(G) obtained by 

iteratively adding edges between pairs of nonadjacent vertices whose degree sum is at least n, until no such pair 

remains. Fortunately, the closure does not depend on the order in which we choose to add edges when more than one is 

available i.e. the closure of G is well-defined (For a proof of this statement see [5]) 

 

2.7 Theorem (Ore [4]). If d(u) + d(v) � n for every pair of distinct nonadjacent vertices u and v of G, then G is 

Hamiltonian.  

 

2.8 Theorem: 1.5. Let G = (V, E) be a Complete graph with n vertices. If for all pair wise non- adjacent vertex-triples u, 

v, and w it holds that  

 

 d (u)�� + d (v)�� + d (w)� ≥ ½  (3n�− 5) then G has  a Hamiltonian path.  

 

To prove this theorem, we first state and prove the following useful Lemma. 
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2.9 Lemma:  Let G = (V, E) be a connected graph with n vertices and P be a longest path in G. If P is contained in a 

cycle then P is a Hamiltonian path. 

 

Proof: Suppose P � (u = u0, u1, u2… uk = v ) of length k and P is contained in a cycle C �  ( u = u0, u1, u2, …, uk = v, 

u0 = u ). Note that V(C) = V (P), since otherwise P would be a part of a longer path, a contradiction. Assume for the 

sake of contradiction that k < n – 1, i.e. P is not Hamiltonian path. Since G is connected, there must be an edge of the 

form (x, y) such that x ε V(P) = V(C) and y ε V(G) – V(C).  Let x = ui. Then there is a path P� � (y, x = ui, ui+1, …, uk, 

u0, u1, u2, …, ui-1 ) with length k +1, which is a contradiction, since P is a longest path in G.  

 

Now we are ready to prove the main result of our paper i.e. Theorem 1.5 which is restated below for the sake of 

convenience. 

 

Proof of Main Theorem 2.8: Let P =�( u0, u1,…, up-1
  )  be a longest path in G. And assume for the sake of contradiction that 

P is not a Hamiltonian path. Now since P is a longest path but not a Hamiltonian path, by the contra positive of Lemma 

2.2, P cannot be contained in a cycle.  And since P cannot be contained in a cycle, there cannot be any crossover edge 

involving  u0  and  up-1. This essentially means that  

d(u0) + d(up-1)� ≤  p - 1. So we must have:  

 

d(u0) + d(up-1)� + d(w)  ≥ ½ (3n – 5) 

 

=> d (w)    ≥ ½ (3n-5) – (d(u0) + d(up-1)�) 

 

   =>d(w)    ≥  ½ (3n – 5) – (p – 1) 

 

  =>d(w)    ≥  3/2 n – p -3/2 

 

Now we consider dP(w). We calculate the upper limit of dP(w) as follows. It is clear that (w, u0), (w, up–1) � E since 

otherwise P would not be a longest path in G. Again, Note that w cannot be connected to ui and ui+1, since in that case 

we can easily get a path              P�= (u0, u1, …,ui, w, ui+1, …, up – 1  ) which is longer than P, leading to a 

contradiction. So  

we can   

 

Completes the proof. 
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Now we will give an example for the above theorem: 

 

2.10 Example:  Let V = {u1, u2, u3, u4, u5}. 

 
Here u1, u2, u3, u4, u5 are vertices 

 

d(u1) = 4, d(u2) = 4, d(u3) = 4, d(u4) =4 and  d(u5) = 4 

 

Here number of vertices  N = 5 

 

d(u1) + d(u3) + d(u5)  = 12                                                                                                                                                          (1) 

 

1 / 2 (3n – 5) = 1 / 2 (3∗5 − 5) = 5                                                                                                                                             (2) 

 

From (1) and (2) 12 > 5 

 

Theorem is satisfied. 
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