BEST SIMULTANEOUS APPROXIMATION IN FUZZY *n*-NORMED LINEAR SPACES

B. Surender Reddy*

Department of Mathematics, PGCS, Saifabad, Osmania University, Hyderabad-500004, AP, INDIA E-mail: bsrmathou@yahoo.com

(Received on: 07-10-11; Accepted on: 20-10-11)

ABSTRACT

The main aim of this paper is to consider the t-best simultaneous approximation in fuzzy n-normed linear spaces. We develop the theory of t-best simultaneous approximation in its quotient spaces. Then we discuss the relationship in t-proximinality and t-Chebyshevity of a given space and its quotient space.

Key Words: t-best simultaneous approximation, t-proximinality, t-Chebyshevity, Quotient spaces.

2000 AMS Subject Classification No: 46A30, 46S40, 46A70, 54A40.

1. INTRODUCTION:

Fuzzy set theory is a useful tool to describe situations in which the data are imprecise or vague. Fuzzy sets handle such situation by attributing a degree to which a certain object belongs to a set. Theory of Fuzzy sets was introduced by Zadeh [20] in 1965. The idea of fuzzy norm was initiated by Katsaras in [11]. Felbin [5] defined a fuzzy norm on a linear space whose associated fuzzy metric is of Kaleva and Seikkala type [10]. Cheng and Mordeson [4] introduced an idea of a fuzzy norm on a linear space whose associated metric is Kramosil and Michalek type [12].

Bag and Samanta in [1] gave a definition of a fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [12]. They also studied some properties of the fuzzy norm in [2] and [3]. Bag and Samanta discussed the notion of convergent sequence and Cauchy sequence in fuzzy normed linear space in [1]. They also made in [3] a comparative study of the fuzzy norms defined by Katsaras [11], Felbin [5], and Bag and Samanta [1]. The concept of 2-norm and n-norm on a linear space has been introduced and developed by Gahler in [6,7]. Following Misiak [14], Malceski [13] and Gunawan [9] developed the theory of n-normed linear space. Narayana and Vijayabalaji [15] introduced the concept of fuzzy n-normed linear space. Vijayabalaji and Thillaigovindan [19] introduced the notion of convergent sequence and Cauchy sequences in fuzzy n-normed linear space and studied the completeness of the fuzzy n-normed linear space. Vaezpour and Karimi [18] introduced the concept of t-best approximation in fuzzy normed linear spaces. Surender Reddy [16] introduced the concept of t-best approximation in fuzzy 2-normed linear spaces. Recently Goudarzi and Vaezpour [8] considered the set of all t-best simultaneous approximation in fuzzy normed linear spaces and used the concept of simultaneous t-proximinality and simultaneous t-Chebyshevity to introduce the theory of t-best simultaneous approximation in quotient spaces. Surender Reddy [17] considered the set of all t-best simultaneous approximation in fuzzy 2-normed linear spaces and used the concept of simultaneous tproximinality and simultaneous t-Chebyshevity to introduce the theory of t-best simultaneous approximation in quotient spaces.

In this paper, we consider the set of all t-best simultaneous approximation in fuzzy n-normed linear spaces and we use the concept of simultaneous t-proximinality and simultaneous t-Chebyshevity to introduce the theory of t-best simultaneous approximation in quotient spaces.

2. PRELIMINARIES:

Definition 2.1: Let $n \in N$ and let X be a real linear space of dimension $\geq n$. A real valued function $\| \bullet, \bullet, ..., \bullet \|$ on $\underbrace{X \times X \times ... \times X}_n = X^n$ satisfying the following conditions $nN_1: \|x_1, x_2, ..., x_n\| = 0$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent,

 nN_2 : $\|x_1, x_2, ..., x_n\|$ is invariant under any permutation of $x_1, x_2, ..., x_n$,

 $nN_3: ||x_1, x_2, ..., x_{n-1}, \alpha x_n|| = |\alpha| ||x_1, x_2, ..., x_{n-1}, x_n||, \text{ for every } \alpha \in R,$

$$nN_4: \|x_1, x_2, ..., x_{n-1}, y+z\| \leq \|x_1, x_2, ..., x_{n-1}, y\| + \|x_1, x_2, ..., x_{n-1}, z\| \text{ for all } y, z, x_1, x_2, ..., x_{n-1} \in X,$$

then the function $\|\bullet,\bullet,...,\bullet\|$ is called an *n*-norm on *X* and the pair $(X,\|\bullet,\bullet,...,\bullet\|)$ is called *n*-normed linear space.

Example 2.2: A trivial example of an n-normed linear space is $X = \mathbb{R}^n$ equipped with the following Euclidean n-norm.

$$||x_1, x_2, \dots, x_n||_E = |\det(x_{ij})| = abs \begin{pmatrix} |x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix},$$

where $x_i = (x_{i1}, x_{i2}, ..., x_{in}) \in \mathbb{R}^n$ for each i = 1, 2, ..., n.

Definition 2.3: Let *X* be a linear space over a real field *F*. A fuzzy subset *N* of $\underbrace{X \times X \times ... \times X}_{n} \times R$ is called a fuzzy

n-norm on *X* if the following conditions are satisfied for all $x_1, x_2, ..., x_n, y \in X$.

 $(n-N_1)$ For all $t \in R$ with $t \le 0$, $N(x_1, x_2, ..., x_n, t) = 0$,

 $(n-N_2)$: For all $t \in R$ with t > 0, $N(x_1, x_2, ..., x_n, t) = 1$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent,

 $(n-N_3)$: $N(x_1,x_2,...,x_n,t)$ is invariant under any permutation of $x_1,x_2,...,x_n$,

$$(n-N_4) \colon \text{For all } t \in R \text{ with } t > 0 \,, \ \ N(x_1, x_2, ..., x_{n-1}, cx_n, t) = N(x_1, x_2, ..., x_{n-1}, x_n, \frac{t}{|c|}) \,, \text{ if } c \neq 0 \,, \ c \in F \,,$$

$$(n-N_5)$$
: For all $s,t \in R$, $N(x_1,x_2,...,x_{n-1},x_n+y,s+t) \ge$

$$\min\{N(x_1, x_2, ..., x_{n-1}, x_n, s), N(x_1, x_2, ..., x_{n-1}, y, t)\},\$$

 $(n-N_6)$: $N(x_1,x_2,...,x_n,t)$ is a non-decreasing function of $t \in R$ and $\lim_{t \to \infty} N(x_1,x_2,...,x_n,t) = 1$.

Then the pair (X, N) is called a fuzzy *n*-normed linear space (briefly F-*n*-NLS).

Remark 2.4: From $(n - N_3)$, it follows that in F-*n*-NLS,

$$(n-N_4) \colon \text{For all } t \in R \text{ with } t > 0 \,, \quad N(x_1, x_2, ..., cx_i, ..., x_n, t) = N(x_1, x_2, ..., x_i, ..., x_n, \frac{t}{|c|}) \,, \quad \text{if } c \neq 0 \,,$$

$$c \in F \,,$$

$$\begin{split} (n-N_5) \colon &\text{For all } s,t \in R \;, \;\; N(x_1,x_2,...,x_i+x_i',...,x_n,s+t) \geq \\ & & \min \big\{ N(x_1,x_2,...,x_i,...,x_n,s), N(x_1,x_2,...,x_i',...,x_n,t) \big\}. \end{split}$$

Example 2.5: Let $(X, || \bullet, \bullet, ..., \bullet ||)$ be a *n*-normed linear space. Define

$$\begin{split} N(x_1, x_2, ..., x_n, t) &= \frac{kt^n}{kt^n + m \|x_1, x_2, ..., x_n\|}, \text{ if } t > 0, t \in R, k, m, n \in R^+, x_1, x_2, ..., x_n \in X \\ &= 0, \text{ if } t \le 0, t \in R, x_1, x_2, ..., x_n \in X. \end{split}$$

Then (X, N) is a fuzzy *n*-normed linear space. In particular if k = m = n = 1 we have

$$\begin{split} N(x_1, x_2, ..., x_n, t) &= \frac{t}{t + \left\| x_1, x_2, ..., x_n \right\|}, \text{ if } t > 0, t \in R, x_1, x_2, ..., x_n \in X \\ &= 0, \text{ if } t \leq 0, t \in R, x_1, x_2, ..., x_n \in X. \end{split}$$

which is called the standard fuzzy *n*-norm induced by the *n*-norm $\| \bullet, \bullet, ..., \bullet \|$.

Definition 2.6: A sequence $\{x_k\}$ in a fuzzy n-normed linear space (X, N) is said to be converges to $x \in X$ if given t > 0, 0 < r < 1, there exists an integer $n_0 \in N$ such that

$$N(x_1, x_2, ..., x_{n-1}, x_k - x, t) > 1 - r, \ \forall \ k \ge n_0.$$

Theorem 2.7: In a fuzzy *n*-normed linear space (X, N), a sequence $\{x_k\}$ converges to $x \in X$ if and only $\lim_{k \to \infty} N(x_1, x_2, ..., x_{n-1}, x_k - x, t) = 1, \forall t > 0$.

Definition 2.8: Let (X, N) be a fuzzy *n*-normed linear space. Let $\{x_k\}$ be a sequence in X then $\{x_k\}$ is said to be a Cauchy sequence if $\lim_{k\to\infty} N(x_1, x_2, ..., x_{n-1}, x_{k+p} - x_k, t) = 1$, $\forall t > 0$ and p = 1, 2, 3, ...

Definition 2.9: A fuzzy n-normed linear space (X, N) is said to be complete if every Cauchy sequence in X is convergent.

Definition 2.10: A complete fuzzy n-normed linear space (X, N) is called a fuzzy n-Banach space.

Definition 2.11: Let (X, N) be a fuzzy *n*-normed linear space. The open ball

B(x,r,t) and the closed ball B[x,r,t] with the center $x \in X$ and radius 0 < r < 1, t > 0 are defined as follows:

$$B(x,r,t) = \{ y \in X : N(x_1, x_2, ..., x_{n-1}, x - y, t) > 1 - r \}$$

$$B[x, r, t] = \{ y \in X : N(x_1, x_2, ..., x_{n-1}, x - y, t) \ge 1 - r \}$$

Definition 2.12: Let (X, N) be a fuzzy *n*-normed linear space. A subset A of X is said to be open if there exists $r \in (0,1)$ such that $B(x,r,t) \subset A$ for all $x \in A$ and t > 0.

Definition 2.13: Let (X, N) be a fuzzy *n*-normed linear space. A subset A of X is said to be closed if for any sequence $\{x_k\}$ in A converges to $x \in A$.

i.e.,
$$\lim_{k \to \infty} N(x_1, x_2, ..., x_{n-1}, x_k - x, t) = 1$$
, for all $t > 0$ implies that $x \in A$.

Corollary 2.14: Let (X, N) be a fuzzy *n*-normed linear space. Then N is a continuous function on $\underbrace{X \times X \times ... \times X}_{n} \times R$.

3. t-BEST SIMULTANEOUS APPROXIMATION:

Definition 3.1: Let (X, N) be a fuzzy n-normed linear space. A subset A of X is called F-bounded if there exists t > 0 and 0 < r < 1 such that $N(x_1, x_2, ..., x_{n-1}, x, t) > 1 - r$, for all $x \in A$.

Definition 3.2: Let (X, N) be a fuzzy *n*-normed linear space, W be a subset of X and M be a F-bounded subset in X. For t > 0, we define

$$d(M, W, t) = \sup_{w \in W} \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, m - w, t).$$

An element $w_0 \in W$ is called a t-best simultaneous approximation to M from W if for t > 0,

$$d(M, W, t) = \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, m - w_0, t).$$

The set of all t-best simultaneous approximations to M from W will be denoted by $S_W^t(M)$ and we have

$$S_W^t(M) = \{ w \in W : \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, m-w, t) = d(M, W, t) \}$$

Definition 3.3: Let W be a subset of a fuzzy n-normed linear space (X, N) then W is called a simultaneous t-proximinal subset of X if for each F-bounded set M in X, there exists at least one t-best simultaneous approximation © 2011, IJMA. All Rights Reserved

from W to M. Also W is called a simultaneous t-Chebyshev subset of X if for each F-bounded set M in X, there exists a unique t-best simultaneous approximation from W to M.

Definition 3.4: Let (X, N) be a fuzzy *n*-normed linear space. A subset E of X is said to be convex if $(1-\lambda)x + \lambda y \in E$ whenever $x, y \in E$ and $0 < \lambda < 1$.

Lemma 3.5: Every open ball in a fuzzy *n*-normed linear space (X, N) is convex.

Theorem 3.6: Suppose that W is a subset of a fuzzy n-normed linear space (X, N) and M is F-bounded in X. Then $S_W^t(M)$ is a F-bounded subset of X and if W is convex and is a closed subset of X then $S_W^t(M)$ is closed and is convex for each F-bounded subspace M of X.

Proof: Since M is F-bounded, there exists t > 0 and 0 < r < 1 such that $N(x_1, x_2, ..., x_{n-1}, x, t) > 1 - r$, for all $x \in M$. If $w \in S_w^t(M)$, then

$$\inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, m-w, t) = d(M, W, t).$$

Now, for all $m \in M$ and $w \in S_W^t(M)$,

$$\begin{split} N(x_1, x_2, ..., x_{n-1}, w, 2t) &= N(x_1, x_2, ..., x_{n-1}, w - m + m, 2t) \\ &\geq \min\{N(x_1, x_2, ..., x_{n-1}, w - m, t), N(x_1, x_2, ..., x_{n-1}, m, t)\} \\ &\geq \inf_{m \in M} \min\{N(x_1, x_2, ..., x_{n-1}, w - m, t), N(x_1, x_2, ..., x_{n-1}, m, t)\} \\ &\geq \min\{\inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, w - m, t), \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, m, t)\} \\ &\geq \min\{d(M, W, t), (1 - r)\} \geq (1 - r_0), \text{ for some } 0 < r_0 < 1. \end{split}$$

Then $S_W^t(M)$ is F-bounded. Suppose that W is convex and is a closed subset of X. We show that $S_W^t(M)$ is convex and closed. Let $x, y \in S_W^t(M)$ and $0 < \lambda < 1$. Since W is convex, there exists $z_\lambda \in W$ such that $z_\lambda = \lambda x + (1 - \lambda)y$, for each $0 < \lambda < 1$. Now for t > 0 we have,

$$\inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, (\lambda x + (1-\lambda)y) - m, t) = \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, z_{\lambda} - m, t)$$

$$\leq d(M, W, t).$$

On the other hand, for a given t > 0, take the natural number n such that $t > \frac{1}{n}$, we have

$$\begin{split} \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, (\lambda x + (1-\lambda)y) - m, t) &= \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, \lambda(x-y) + y - m, t) \\ &\geq \inf_{m \in M} \min\{N(x_1, x_2, ..., x_{n-1}, x-y, \frac{1}{\lambda n}), N(x_1, x_2, ..., x_{n-1}, y-m, t-\frac{1}{n})\} \\ &= \min\{N(x_1, x_2, ..., x_{n-1}, x-y, \frac{1}{\lambda n}), \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, y-m, t-\frac{1}{n})\} \\ &\geq \lim_{n \to \infty} \left(\inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, y-m, t-\frac{1}{n})\right) = d(M, W, t) \,. \end{split}$$

So $S_W^t(M)$ is convex. Finally let $\{w_n\} \subset S_W^t(M)$ and suppose $\{w_n\}$ converges to some w in X. Since $\{w_n\} \subset W$ and W is closed so $w \in W$. Therefore by Corollary 2.14, for t > 0 we have

$$\begin{split} \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, m-w, t) &= \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, \lim_{n \to \infty} w_n - m, t) \\ &= \lim_{n \to \infty} \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, w_n - m, t) = d(M, W, t) \,. \end{split}$$

Theorem 3.7: The following assertions are hold for t > 0,

(i)
$$d(M+x,W+x,t) = d(M,W,t), \forall x \in X$$
,

$$\text{(ii)} \ d(\lambda M, \lambda W, t) = d(M, W, \frac{t}{|\lambda|}) \,, \ \forall \quad \lambda \in C \,,$$

(iii)
$$S_{W+x}^{t}(M+x) = S_{W}^{t}(M) + x, \ \forall \ x \in X,$$

(iv)
$$S_{2W}^{|\lambda|t}(\lambda M) = \lambda S_W^t(M) + x, \forall \lambda \in C$$
,

Proof: (i)
$$d(M + x, W + x, t) = \sup_{w \in W} \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, (m + x) - (w + x), t)$$

= $\sup_{w \in W} \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, m - w, t) = d(M, W, t)$

(ii) Clearly equality holds for $\lambda = 0$, so suppose that $\lambda \neq 0$. Then,

$$\begin{split} d(\lambda M, \lambda W, t) &= \sup_{w \in W} \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, \lambda(m-w), t) \\ &= \sup_{w \in W} \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, m-w, \frac{t}{|\lambda|}) = d(M, W, \frac{t}{|\lambda|}) \end{split}$$

(iii)
$$x+W \in S_{W+x}^t(M+x)$$
 if and only if,

$$\inf_{m+x\in M+x} N(x_1, x_2, ..., x_{n-1}, m+x-w-x, t) = d(M+x, W+x, t)$$

and by (i), the above equality holds if and only if,

$$\inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, m-w, t) = d(M, W, t)$$

for all $w \in W$ and this shows that $w \in S_W^t(M)$. So $x + w \in S_W^t(M) + x$.

(iv)
$$y_0 \in S_{\lambda W}^{|\lambda|t}(\lambda M)$$
 if and only if $y_0 \in \lambda W$ and,

$$\begin{split} d(\lambda W, \lambda M, |\lambda|t) &= \inf_{\lambda m \in \lambda M} N(x_1, x_2, ..., x_{n-1}, y_0 - \lambda m, |\lambda|t) \\ &= \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, \frac{y_0}{\lambda} - m, t) \end{split}$$

But by (ii), we have $d(\lambda M, \lambda W, |\lambda|t) = d(W, M, t)$. So we have $\frac{y_0}{\lambda} \in W$ and

$$d(M,W,t) = \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, \frac{y_0}{\lambda} - m, t) \text{ or equivalently } \frac{y_0}{\lambda} \in S_W^t(M) \text{ and the proof is completed.}$$

Corollary 3.8: Let A be a nonempty subset of a fuzzy n-normed linear space (X, N) then the following statements are hold.

- (i) A is simultaneous t-proximinal (respectively simultaneous t-Chebyshev) if and only if A+y is simultaneous t-proximinal (respectively simultaneous t-Chebyshev), for each $y \in X$,
- (ii) A is simultaneous t-proximinal (respectively simultaneous t-Chebyshev) if and only if αA is simultaneous $|\alpha|t$ -proximinal (respectively simultaneous $|\alpha|t$ -Chebyshev), for each $\alpha \in C$.

Corollary 3.9: Let *A* be a nonempty subspace of a fuzzy *n*-normed linear space *X* and *M* be a *F*-bounded subset of *X*. Then for t > 0.

(i)
$$d(A, M + y, t) = d(A, M, t), \forall y \in A$$
,

(ii)
$$S_A^t(M+y) = S_A^t(M) + y, \ \forall \ y \in A,$$

- (iii) $d(A, \alpha M, |\alpha|t) = d(A, M, t)$, for $0 \neq \alpha \in C$,
- (iv) $S_A^{|\alpha|t}(\alpha M) = \alpha S_A^t(M)$, for $0 \neq \alpha \in C$.

4. SIMULTANEOUS t-PROXIMINALITY AND SIMULTANEOUS t-CHEBYSHEVITY IN QUOTIENT SPACES:

In this section we give characterization of simultaneous *t*-proximinality and simultaneous *t*-Chebyshevity in quotient spaces.

Definition 4.1: Let (X, N) be a fuzzy *n*-normed linear space, M be a linear manifold in X and let $Q: X \to X/M$ be the natural map Qx = x + M. We define

$$N(x_1, x_2, ..., x_{n-1}, x+M, t) = \sup\{N(x_1, x_2, ..., x_{n-1}, x+y, t) : y \in M\}, t > 0$$

Theorem 4.2: If M is a closed subspace of a fuzzy n-normed linear space (X, N) and $N(x_1, x_2, ..., x_{n-1}, x + M, t)$ is defined as above then

- (a) N is a fuzzy n-norm on X/M.
- (b) $N(x_1, x_2, ..., x_{n-1}, Qx, t) \ge N(x_1, x_2, ..., x_{n-1}, x, t)$.
- (c) If (X, N) is a fuzzy n-Banach space then so is (X/M, N).

Proof: (a) It is clear that $N(x_1, x_2, ..., x_{n-1}, x + M, t) = 0$ for $t \le 0$.

Let $N(x_1, x_2, ..., x_{n-1}, x+M, t) = 1$ for t > 0. By definition there is a sequence $\{x_k\}$ in M such that $N(x_1, x_2, ..., x_{n-1}, x+x_k, t) \to 1$. So $x+x_k \to 0$ or equivalently $x_k \to (-x)$ and since M is closed so $x \in M$ and x+M=M, the zero element of X/M. On the other hand we have,

$$\begin{split} N(x_1, x_2, ..., x_{n-1}, (x+M) + (y+M), t) &= N(x_1, x_2, ..., x_{n-1}, (x+y) + M, t) \\ &\geq N(x_1, x_2, ..., x_{n-1}, (x+m) + (y+n), t) \\ &\geq \min\{N(x_1, x_2, ..., x_{n-1}, x+m, t_1), N(x_1, x_2, ..., x_{n-1}, y+n, t_2)\} \end{split}$$

for $m, n \in M$, $x_1, x_2, ..., x_{n-1}, x, y \in X$ and $t_1 + t_2 = t$. Now if we take supremum on both sides, we have

$$N(x_1, x_2, ..., x_{n-1}, (x+M) + (y+M), t)$$

$$\geq \min\{N(x_1, x_2, ..., x_{n-1}, x+M, t_1), N(x_1, x_2, ..., x_{n-1}, y+M, t_2)\}.$$

Also we have ,
$$\begin{split} N(x_1, x_2, ..., x_{n-1}, \alpha(x+M), t) &= N(x_1, x_2, ..., x_{n-1}, \alpha x + M, t) \\ &= \sup\{N(x_1, x_2, ..., x_{n-1}, \alpha x + \alpha y, t) \colon y \in M\} \\ &= \sup\{N(x_1, x_2, ..., x_{n-1}, x + y, \frac{t}{|\alpha|}) \colon y \in M\} \\ &= N(x_1, x_2, ..., x_{n-1}, x + M, \frac{t}{|\alpha|}) \end{split}$$

and the remaining properties are obviously true. Therefore N is a fuzzy n-norm on X/M .

(b) We have,
$$N(x_1, x_2, ..., x_{n-1}, Qx, t) = N(x_1, x_2, ..., x_{n-1}, x + M, t)$$

$$= \sup\{N(x_1, x_2, ..., x_{n-1}, x + y, t) : y \in M\}$$

$$\geq N(x_1, x_2, ..., x_{n-1}, x, t)$$

(c) Let $\{y_k+M\}$ be a Cauchy sequence in X/M. Then there exists $\mathcal{E}_k > 0$ such that $\mathcal{E}_k \to 0$ and $N(x_1, x_2, ..., x_{n-1}, (y_k+M) - (y_{k+1}+M), t) \ge 1 - \mathcal{E}_k$. Let $z_1 = 0$. We choose $z_2 \in M$ such that,

$$N(x_1, x_2, ..., x_{n-1}, y_1 - (y_2 - z_2), t) \ge \min\{N(x_1, x_2, ..., x_{n-1}, (y_1 - y_2) + M, t), (1 - \varepsilon_1)\}$$

But
$$N(x_1, x_2, ..., x_{n-1}, (y_1 - y_2) + M, t) \ge (1 - \mathcal{E}_1)$$
. Therefore,

$$N(x_1, x_2, ..., x_{n-1}, y_1 - (y_2 - z_2), t) \ge \min\{(1 - \mathcal{E}_1), (1 - \mathcal{E}_1)\} = (1 - \mathcal{E}_1).$$

Now suppose z_{k-1} has been chosen, $z_k \in M$ can be chosen such that

$$N(x_1, x_2, ..., x_{n-1}, (y_{k-1} + z_{k-1}) - (y_k + z_k), t) \ge \min\{N(x_1, x_2, ..., x_{n-1}, (y_{k-1} - y_k) + M, t), (1 - \varepsilon_{k-1})\}$$

and therefore,

$$N(x_1, x_2, ..., x_{n-1}, (y_{k-1} + z_{k-1}) - (y_k + z_k), t) \ge \min\{(1 - \varepsilon_{k-1}), (1 - \varepsilon_{k-1})\} = (1 - \varepsilon_{k-1}).$$

Thus, $\{y_k + z_k\}$ is Cauchy sequence in X. Since X is complete, there is an y_0 in X such that $y_k + z_k \to y_0$ in X. On the other hand $y_k + M = Q(y_k + z_k) \to Q(y_0) = y_0 + M$. Therefore every Cauchy sequence $\{y_k + M\}$ is convergent in X/M and so X/M is complete and (X/M, N) is a fuzzy n-Banach space.

Definition 4.3: Let A be a nonempty set in a fuzzy n-normed linear space (X, N). For $x \in X$ and t > 0, we shall denote the set of all elements of t-best approximation to x from A by $P_A^t(x)$;

i.e.,
$$P_A^t(x) = \{ y \in A : d(A,x,t) = N(x_1,x_2,...,x_{n-1},y-x,t) \}.$$
 where,
$$d(A,x,t) = \sup\{ N(x_1,x_2,...,x_{n-1},y-x,t) : y \in A \} = \sup_{y \in A} N(x_1,x_2,...,x_{n-1},y-x,t) \,.$$

If each $x \in X$ has at least (respectively exactly) one *t*-best approximation in *A* then *A* is called a *t*-proximinal (respectively *t*-Chebyshev) set.

Lemma 4.4: Let (X, N) be a fuzzy *n*-normed linear space and M be a *t*-proximinal subspace of X. For each nonempty F-bounded set S in X and t > 0,

$$d(S, M, t) = \inf_{s \in S} \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, s - m, t)$$

Proof: Since M is t-proximinal it follows that for each $s \in S$ there exists $m_s \in P_M^t(S)$ such that for t > 0,

$$\begin{split} N(x_1, x_2, ..., x_{n-1}, s - m_s, t) &= \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, s - m, t) \,. \\ \text{So,} \qquad d(S, M, t) &= \sup_{m \in M} \inf_{s \in S} N(x_1, x_2, ..., x_{n-1}, s - m, t) \\ &\geq \inf_{s \in S} N(x_1, x_2, ..., x_{n-1}, s - m_s, t) \\ &= \inf_{s \in S} \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, s - m, t) \\ &\geq \sup_{m \in M} \inf_{s \in S} N(x_1, x_2, ..., x_{n-1}, s - m, t) = d(S, M, t) \end{split}$$

This implies that, $d(S, M, t) = \inf_{s \in S} \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, s - m, t)$.

Example 4.5: Let $(X = R^n, \| \bullet, \bullet, ..., \bullet \|)$ be *n*-normed linear space and consider (X, N) as its standard induced fuzzy *n*-normed linear space (Example 2.5). A nonempty subset *S* of *X* is *F*-bounded if and only if *S* is bounded in $(X, \| \bullet, \bullet, ..., \bullet \|)$. If we take M = R we can easily prove that *M* is proximinal in $(X, \| \bullet, \bullet, ..., \bullet \|)$.

Lemma 4.6: Let (X, N) be a fuzzy *n*-normed linear space, M be a *t*-proximinal subspace of X and S be an arbitrary subset of X then the following assertions are equivalent:

(i) S is a F-bounded subset of X.

(ii) S/M is a F-bounded subset of X/M.

Proof: Suppose that S be a F-bounded subset of X. Then there exist t > 0, 0 < r < 1 such that,

$$N(x_1, x_2, ..., x_{n-1}, x, t) > 1 - r$$
, for all $x \in S$. But,

$$N(x_1,x_2,...,x_{n-1},x+M,t) = \sup_{y \in M} N(x_1,x_2,...,x_{n-1},x+y,t) \geq N(x_1,x_2,...,x_{n-1},x,t) \geq 1-r \,.$$

So, $(i) \Rightarrow (ii)$ is proved. Now to prove that $(ii) \Rightarrow (i)$. Let S/M be a F-bounded subset of X/M. Since M is t-proximinal, then for each $s \in S$ there exists $m_s \in M$ such that $m_s \in P_M^t(S)$. So for each $s \in S$,

$$N(x_1, x_2, ..., x_{n-1}, s - m_s, t) = \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, s - m, t)$$
(1)

Now from Lemma 4.4, we conclude that for t > 0,

$$\inf_{s \in S} N(x_1, x_2, ..., x_{n-1}, s - m_s, t) = \inf_{s \in S} \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, s - m, t)$$

$$= \sup_{m \in M} \inf_{s \in S} N(x_1, x_2, ..., x_{n-1}, s - m, t).$$

Then for 0 < r < 1 such that $\inf_{s \in S} N(x_1, x_2, ..., x_{n-1}, s - m_s, t) \ge r$ and t > 0 there exists $m_r \in M$ such that

$$\inf_{s \in S} N(x_1, x_2, ..., x_{n-1}, s - m_r, t) \ge \inf_{s \in S} N(x_1, x_2, ..., x_{n-1}, s - m_s, t) - r \ge 0.$$

So by (1), for all $s \in S$ we have

$$\begin{split} N(x_{1},x_{2},...,x_{n-1},s,t) &= N(x_{1},x_{2},...,x_{n-1},s-m_{r}+m_{r},t) \\ &\geq \min\{N(x_{1},x_{2},...,x_{n-1},s-m_{r},\frac{t}{2}),N(x_{1},x_{2},...,x_{n-1},m_{r},\frac{t}{2})\} \\ &\geq \inf\min\{N(x_{1},x_{2},...,x_{n-1},s-m_{r},\frac{t}{2}),N(x_{1},x_{2},...,x_{n-1},m_{r},\frac{t}{2})\} \\ &\geq \min\{(\inf_{s\in S}N(x_{1},x_{2},...,x_{n-1},s-m_{s},\frac{t}{2})-r),N(x_{1},x_{2},...,x_{n-1},m_{r},\frac{t}{2})\} \\ &= \min\{(\inf_{s\in S}\sup_{m\in M}N(x_{1},x_{2},...,x_{n-1},s-m,\frac{t}{2})-r),N(x_{1},x_{2},...,x_{n-1},m_{r},\frac{t}{2})\} \\ &\geq \min\{(\inf_{s\in S}N(x_{1},x_{2},...,x_{n-1},s+M,\frac{t}{2})-r),N(x_{1},x_{2},...,x_{n-1},m_{r},\frac{t}{2})\}. \end{split}$$

Since S/M is F-bounded, by its definition we can find $0 < r_0 < 1$ such that in the right hand side of (2) be greater than or equal to $(1 - r_0)$ and this completes the proof.

Lemma 4.7: Let M be a t-proximinal subspace of a fuzzy n-normed linear space (X,N) and $W\supseteq M$ a subspace of X. Let K be F-bounded in X. If $w_0\in S_W^t(K)$, then $w_0+M\in S_{W/M}^t(K/M).$

Proof: Since K is F-bounded by Lemma 4.6, K/M is F-bounded in X/M. Assume that $w_0 \in S_W^t(K)$ and $w_0 + M \notin S_{W/M}^t(K/M)$. Thus there exists $w' \in M$ such that for t > 0,

$$\inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w' + M), t) > \inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w_0 + M), t)$$

$$\geq \inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - w_0, t) = d(K, W, t)$$
(3)

On the other hand for each $k \in K$ and for t > 0,

$$N(x_1, x_2, ..., x_{n-1}, k - (w' + M), t) = \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, k - (w' + m), t)$$

Then for each $0 < \varepsilon < 1$ and $k \in K$ there exists $m_k \in M$ such that for t > 0,

$$N(x_1, x_2, ..., x_{n-1}, k - (w' + m_k), t) \ge N(x_1, x_2, ..., x_{n-1}, k - (w' + M), t) - \varepsilon$$
.

Since $w' + m_k \in M$ we conclude that

$$d(K, W, t) \ge \inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w' + m_k), t)$$

$$\ge \inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w' + M), t) - \varepsilon$$

Thus,

$$d(K, W, t) \ge \inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w' + M), t)$$
(4)

By (3) and (4) we get,

$$d(K, W, t) \ge \inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w' + M), t) > d(K, W, t),$$

and this is a contradiction. Therefore $w_0 + M \in S^t_{W/M}(K/M)$ and the proof is completed.

Corollary 4.8: Let M be a t-proximinal subspace of a fuzzy n-normed linear space (X, N) and $W \supseteq M$ a subspace X. If W is simultaneous t-proximinal then W/M is a simultaneous t-proximinal subspace of X/M.

Corollary 4.9: Let M be a t-proximinal subspace of a fuzzy n-normed linear space (X, N) and $W \supseteq M$ a subspace X. If W is simultaneous t-proximinal then for each F-bounded set K in X,

$$Q(S_w^t(K)) \subseteq S_{w/M}^t(K/M)$$
.

Theorem 4.10: Let M be a t-proximinal subspace of a fuzzy n-normed linear space (X,N) and $W \supseteq M$ subspace of X. If K is F-bounded set in X such that $w_0 + M \in S^t_{W/M}(K/M)$ and $m_0 \in S^t_M(K - w_0)$, then $w_0 + m_0 \in S^t_W(K)$.

Proof: In view of Lemma 4.4, for t > 0 we have,

$$\begin{split} \inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, (k-w_0) - m_0, t) &= \sup_{m \in M} \inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, (k-w_0) - m, t) \\ &= \inf_{k \in K} \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, k - (w_0 + m), t) \\ &= \inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w_0 + M), t) \\ &\geq \inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w + M), t) \quad \forall \ w \in W \\ &\geq \inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - w, t) \quad \forall \ w \in W \,. \end{split}$$

Hence, $\inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w_0 + m_0), t) \ge \inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - w, t) \quad \forall \ w \in W$

But $w_0 + m_0 \in W$. Then $w_0 + m_0 \in S_W^t(K)$ and so the proof is completed.

Theorem 4.11: Let M be a t-proximinal subspace of a fuzzy n-normed linear space (X, N) and $W \supseteq M$ a simultaneous t-proximinal subspace of X. Then for each F-bounded set X in X,

$$Q(S_W^t(K)) = S_{W/M}^t(K/M)$$

Proof: By Corollary 4.9, we obtain

$$Q(S_w^t(K)) \subseteq S_{w/M}^t(K/M)$$
.

Also by Lemma 4.6, W/M is simultaneous t-proximinal in X/M. Now let, $w_0 + M \in S_{W/M}^t(K/M)$, where $w_0 \in W$. By simultaneous t-proximinality of M there exists $m_0 \in M$ such that $m_0 \in S_M^t(K-w_0)$. Then in view of Theorem 4.10, we conclude that $w_0 + m_0 \in S_W^t(K)$.

Therefore $w_0 + M \in Q(S_w^t(K))$ and the proof is completed.

Corollary 4.12: Let W and M be subspaces of a fuzzy n-normed linear space (X, N). If M is simultaneous t-proximinal then the following assertions are equivalent:

- (i) W/M is simultaneous *t*-proximinal in X/M.
- (ii) W + M is simultaneous t-proximinal in X.

Proof: $(i) \Rightarrow (ii)$. Let K be an arbitrary F-bounded set in X. Then by Lemma 4.6, K/M is a F-bounded set in X/M. Since (W+M)/M = W/M and M are simultaneous t-proximinal it follows that there exists $w_0 + M \in (W+M)/M$ and $m_0 \in M$ such that $w_0 + M \in S^t_{(W+M)/M}(K/M)$ and $m_0 \in S^t_M(K-w_0)$. By Theorem 4.10, we have $w_0 + m_0 \in S^t_{W+M}(K)$. This shows that W+M is simultaneous t-proximinal in X.

 $(ii) \Rightarrow (i)$. Since W + M is simultaneous t-proximinal and $W + M \supseteq M$, by Corollary 4.8, we have (W + M)/M = W/M is simultaneous t-proximinal.

Theorem 4.13: Let W and M be subspaces of a fuzzy n-normed linear space (X, N). If M is simultaneous t-Chebyshev then the following assertions are equivalent:

- (i) W/M is simultaneous t-Chebyshev in X/M.
- (ii) W + M is simultaneous t-Chebyshev in X.

Proof: $(i) \Rightarrow (ii)$, By hypothesis (W+M)/M = W/M is simultaneous *t*-Chebyshev. Assume that (ii) is false. Then some *F*-bounded subset *K* of *X* has two distinct simultaneous *t*-best approximations such as l_0 and l_1 in W+M. Thus we have,

$$l_0, l_1 \in S_{W+M}^t(K).$$
 (5)

Since $W+M\supseteq M$ by lemma 4.6, l_0+M , $l_1+M\in S^t_{(W+M)/M}(K/M)=S^t_{W/M}(K/M)$.

Since W/M is simultaneous t-Chebyshev, $l_0 + M = l_1 + M$. So there exists $0 \neq m_0 \in M$ such that $l_1 = l_0 + m_0$.

By (5) for all t > 0,

$$\begin{split} \inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, (k-l_0) - m_0, t) &= \inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, k-l_1, t) \\ &= \inf_{k \in K} N(x_1, x_2, ..., x_{n-1}, k-l_0, t) \\ &= d(K, W+M, t) \\ &= d(K-l_0, W+M, t) \geq d(K-l_0, M, t) \end{split}$$

This shows that both m and zero are simultaneous t-best approximations to $S - l_0$ from M and this is a contradiction.

 $(ii) \Rightarrow (i)$. Assume that (i) does not hold. Then for some F-bounded subset K of X, K/M has two distinct simultaneous t-best approximations such as w+M and w'+M in W/M. Thus $w-w' \notin M$. Since M is simultaneous t-proximinal there exists simultaneous t-best approximations m and m' to K-w and K-w' from M respectively. Therefore $m \in S_M^t(K-w)$ and $m' \in S_M^t(K-w')$. Since $W+M \supseteq M$, w+M and w'+M are in $S_{W/M}^t(K/M) = S_{(K+M)/M}^t(K/M)$, by Theorem 4.10, w+m and $w'+m' \in S_{W+M}^t(K)$. But W+M is simultaneous t-Chebyshev. Thus w+m=w'+m' and so $w-w' \in M$, which is a contradiction.

Corollary 4.14: Let M be simultaneous t-Chebyshev subspace of a fuzzy n-normed linear space (X, N). If $W \supseteq M$ is a simultaneous t-Chebyshev subspace in X, then the following assertions are equivalent:

- (i) W is simultaneous t-Chebyshev in X.
- (ii) W/M is simultaneous t-Chebyshev in X/M.

ACKNOWLEDGEMENT:

The author is grateful to the referee for careful reading of the article and suggested improvements.

REFERENCES:

- [1] T. Bag and T.K. Samanta, Finite dimensional fuzzy normed linear spaces, The Journal of Fuzzy Mathematics, Vol. 11(3) (2003), 687-705.
- [2] T. Bag and T.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, Vol. 151 (2005), 513-547.
- [3] T. Bag and T.K. Samanta, A comparative study of fuzzy norms on a linear space, Fuzzy Sets and Systems, Vol. 159 (2008), 670-684.
- [4] S.C. Cheng and J.N. Mordesen, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Cal. Math. Soc., Vol. 86 (1994), 429-436.
- [5] C. Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets and Systems, Vol. 48 (1992), 239-248.
- [6] S.Gahler, Lineare 2-normierte Raume, Math. Nachr., Vol. 28 (1964), 1-43.
- [7] S. Gahler, Unter Suchungen uber verallagemeinerte m-mertische raume I, Math. Nachr., Vol. 40 (1969), 165-189.
- [8] M. Goudarzi and M. Vaezpour, Best simultaneous approximation in fuzzy normed spaces, Iranian Journal of fuzzy systems, Vol. 7(3) (2010), 87-96.
- [9] H. Gunawan and Mashadi, On finite Dimensional *n*-normed spaces, Int. J. Math. Math. Sci., Vol. 27(10) (2001), 631-639.
- [10] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, Vol. 12 (1984), 215-229.
- [11] A.K. Katsaras, Fuzzy topological vector spaces, Fuzzy Sets and Systems, Vol. 12 (1984), 143-154.
- [12] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric space, Kybernetica, Vol. 11 (1975), 326-334.
- [13] R. Malceski, Strong n-convex n-normed spaces, Math. Bulletin, Vol. 21(47) (1997), 81-102.
- [14] A. Misiak, *n*-inner product spaces, Math. Nachr., Vol. 140 (1989), 299-319.
- [15] I. Narayana and S. Vijayabalaji, Fuzzy n-normed linear space, Int. J. Math. Math. Sci., Vol. 24 (2005), 3963-3977.
- [16] B. Surender Reddy, Some results on t-best approximation in fuzzy 2-normed linear spaces, International Journal of Pure and Applied Mathematics, Vol. 72, No. 2, (2011). (In press)
- [17] B. Surender Reddy, Best simultaneous approximation in fuzzy 2-normed linear spaces. International Journal of Mathematics Research, (2011). (In press)
- [18] S.M. Vaezpour and F. Karimi, *t*-best approximation in fuzzy normed spaces, Iranian Journal of fuzzy systems, Vol. 5(2) (2008), 93-99.
- [19] S. Vijayabalaji and N. Thillaigovindan, Complete fuzzy n-normed linear space, Journal of Fundamental Sci., Vol. 3(1) (2007), 119-126.
- [20] L. A. Zadeh, Fuzzy sets, Information and Control, Vol. 8 (1965), 338-353.
