GPR-Separation Axioms – I

S. Balasubramanian¹ and *M. Lakshmi Sarada²

E-mail: mani55682@rediffmail.com¹, laksha77492@yahoo.com²

¹Department of Mathematics, Government Arts College (A), Karur – 639 005, Tamilnadu (INDIA)

²Department of Mathematics, A.M.G. Degree College, Chilakaluripet – 522 616, Andhrapradesh (INDIA)

(Received on: 19-09-11; Accepted on: 06-10-11)

ABSTRACT

In this paper by using gpr-open sets we define almost gpr-normality and mild gpr-normality also we continue the study of further properties of gpr-normality. We show that these three axioms are regular open hereditary. We also define the class of almost gpr-irresolute mappings and show that gpr-normality is invariant under almost gpr-irresolute M-gpr-open continuous surjection.

AMS Subject Classification: 54D15, 54D10.

Key words and Phrases: *gpr*-open, semiopen, semipreopen, almost normal, midly normal, M-*gpr*-closed, M-*gpr*-open, rc-continuous.

1. INTRODUCTION

In 1967, A. Wilansky has introduced the concept of US spaces. In 1968, C.E. Aull studied some separation axioms between T₁ and T₂ spaces, namely, S₁ and S₂. Next, in 1982, S.P. Arya et al have introduced and studied the concept of semi-US spaces and also they made study of s-convergence, sequentially semi-closed sets, sequentially s-compact notions. G.B. Navalagi studied P-Normal Almost-P-Normal, Mildly-P-Normal and Pre-US spaces. Recently S. Balasubramanian and P.Aruna Swathi Vyjayanthi studied v-Normal Almost- v-Normal, Mildly-v-Normal and v-US spaces. Inspired with these we introduce *gpr*-Normal Almost- *gpr*-Normal, Mildly- *gpr*-Normal, *gpr*-US, *gpr*-S₁ and *gpr*-S₂. Also we examine *gpr*-convergence, sequentially *gpr*-compact, sequentially *gpr*-continuous maps, and sequentially sub *gpr*-continuous maps in the context of these new concepts. All notions and symbols which are not defined in this paper may be found in the appropriate references. Throughout the paper X and Y denote Topological spaces on which no separation axioms are assumed explicitly stated.

2. PRELIMINARIES

Definition 2.1: $A \subset X$ is called

- (i) r-open if $A = (cl(A))^{o}$.
- (ii) r α -open [ν -open] if $\exists U \in \alpha O(X)[RO(X)]$ such that $U \subset A \subset \alpha cl(U)[U \subset A \subset cl(U)]$.
- (iii) r-closed[α -closed; pre-closed; β -closed] if $A = cl(A^o)[(cl(A^o))^o \subseteq A; cl(A^o) \subseteq A; cl((cl(A))^o)\subseteq A]$.
- (iv) Semi closed [v-closed] if its complement if semi open[v-open].
- (v) g-closed [rg-closed] if cl $A \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (vi) pg-closed[gp-closed; gpr-closed] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is pre-open[open; regular-open] in X.
- (vii) αg -closed if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Definition 2.2: A function f is said to be almost–v-irresolute if for each x in X and each v-neighborhood V of f(x), $vcl(f^{-1}(V))$ is a v-neighborhood of x.

Definition 2.3: A space X is said to be

- (i) gpr- T_1 (gpr- T_2) if for any $x \neq y$ in X, there exist (disjoint) U; $V \in GPRO(X)$ such that $x \in U$ and $y \in V$.
- (ii) weakly Hausdorff if each point of X is the intersection of regular closed sets of X.
- (iii) gpr-normal if for any pair of disjoint closed sets F_1 and F_2 , there exist disjoint gpr-open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

*Corresponding author: S. Balasubramanian¹, *E-mail: mani55682@rediffmail.com¹

- (iv) R_0 if for any point x and a closed set F with $x \notin F$ in X, there exists a open set G containing F but not x.
- (v) $R_1[gpr R_1]$ iff for x, $y \in X$ with $cl\{x\} \neq cl\{y\}[gprcl\{x\} \neq gprcl\{y\}]$, there exist disjoint open[gpr-open] sets U and V such that $cl\{x\} \subset U$, $cl\{y\} \subset V$. $[gprcl\{x\} \subset U$ and $gprcl\{y\} \subset V$.

Definition 2.4: Let $A \subset X$. Then a point x is said to be a

- (i) limit point of A if each open set containing x contains some point y of A such that $x \neq y$.
- (ii) T_0 -limit point of A if each open set containing x contains some point y of A such that $cl\{x\} \neq cl\{y\}$, or equivalently, such that they are topologically distinct.
- **Note 1:** Recall that two points are topologically distinguishable or distinct if there exists an open set containing one of the points but not the other; equivalently if they have disjoint closures. In fact, the T_0 -axiom is precisely to ensure that any two distinct points are topologically distinct.
- **Example 1:** Let $X = \{a, b, c, d\}$ and $\tau = \{\{a\}, \{b, c\}, \{a, b, c\}, X, \phi\}$. Then b and c are the limit points but not the T_0 -limit points of the set $\{b, c\}$. Further d is a T_0 -limit point of $\{b, c\}$.
- **Example 2:** Let X = (0, 1) and $\tau = \{\phi, X, \text{ and } U_n = (0, 1-1/n), n = 2, 3, 4 ... \}$. Then every point of X is a limit point of X. Every point of $X \sim U_2$ is a T_0 -limit point of X, but no point of U_2 is a T_0 -limit point of X.
- **Definition 2.5:** A set A together with all its T_0 -limit points will be denoted by T_0 -clA.
- **Note 2:** (i). Every T₀-limit point of a set *A* is a limit point of the set but the converse is not true in general. (ii) In T₀-space both are same.
- Note 3: R_0 -axiom is weaker than T_1 -axiom. It is independent of the T_0 -axiom. However $T_1 = R_0 + T_0$
- **Note 4:** Every countable compact space is weakly countable compact but converse is not true in general. However, a T_1 -space is weakly countable compact iff it is countable compact.
- **Note 5:** We have the following interrelation among different closed sets.

$$\begin{array}{c} closed \rightarrow g\text{-}closed \rightarrow \alpha g\text{-}closed \rightarrow gp\text{-}closed \\ \uparrow & \uparrow \\ regular\text{-}closed \rightarrow rg\text{-}closed \ \ \, none is reversible \end{array}$$

3. *gpr*-T₀ LIMIT POINT:

Definition 3.01: In X, a point x is said to be a gpr-T₀-limit point of A if each gpr-open set containing x contains some point y of A such that gprcl $\{x\} \neq gpr$ cl $\{y\}$, or equivalently; such that they are topologically distinct with respect to gpr-open sets.

Example 3: Since every regular open set is open set and every open set is gpr-open set, every r- T_0 -limit point is a T_0 -limit point and every T_0 -limit point is a gpr- T_0 -limit point of the set.

Definition 3.02: A set A together with all its gpr- T_0 -limit points is denoted by T_0 -gprcl (A)

Lemma 3.01: If x is a gpr-T₀-limit point of a set A then x is gpr-limit point of A.

Lemma 3.02: If X is gpr- T_0 —space then every gpr- T_0 —limit point and every gpr-limit point are equivalent.

Corollary 3.03: If X is r-T₀-space then every *gpr*-T₀-limit point and every *gpr*-limit point are equivalent.

Theorem 3.04: For $x \neq y \in X$,

- (i) x is a gpr-T₀-limit point of $\{y\}$ iff $x \notin gprcl\{y\}$ and $y \notin gprcl\{x\}$.
- (ii) x is not a gpr- T_0 -limit point of $\{y\}$ iff either $x \in gprcl\{y\}$ or $gprcl\{x\} = gprcl\{y\}$.
- (iii) x is not a gpr- T_0 -limit point of $\{y\}$ iff either $x \in gprcl\{y\}$ or $y \in gprcl\{x\}$.

Corollary 3.05:

- (i) If x is a gpr- T_0 -limit point of $\{y\}$, then y cannot be a gpr-limit point of $\{x\}$.
- (ii) If $gprcl\{x\}=gprcl\{y\}$, then neither x is a $gpr-T_0$ -limit point of $\{y\}$ nor y is a $gpr-T_0$ -limit point of $\{x\}$.
- (iii) If a singleton set A has no gpr- T_0 -limit point in X, then gprclA = gprcl{x} for all $x \in gprcl{A}$.

Lemma 3.06: In X, if x is a gpr-limit point of a set A, then in each of the following cases x becomes gpr- T_0 -limit point of A ($\{x\} \neq A$).

- (i) $gprcl\{x\} \neq gprcl\{y\}$ for $y \in A$, $x \neq y$.
- (ii) $gprcl\{x\} = \{x\}$
- (iii) X is a gpr-T₀-space.
- (iv) $A \sim \{x\}$ is gpr-open

Corollary 3.07: In X, if x is a limit point of a set A, then in each of the following cases x becomes gpr- T_0 -limit point of A ($\{x\} \neq A$).

- (i) $gprcl\{x\} \neq gprcl\{y\}$ for $y \in A$, $x \neq y$.
- (ii) $gprcl\{x\} = \{x\}$
- (iii) X is a gpr-T₀-space.
- (iv) $A \sim \{x\}$ is gpr-open

4. $gpr-T_0$ AND $gpr-R_i$ AXIOMS, i = 0, 1:

In view of Lemma 3.6(iii), gpr- T_0 -axiom implies the equivalence of the concept of limit point of a set with that of gpr- T_0 -limit point of the set. But for the converse, if $x \in gprcl\{y\}$ then $gprcl\{x\} \neq gprcl\{y\}$ in general, but if x is a $gpr-T_0$ -limit point of $\{y\}$, then $gprcl\{x\} = gprcl\{y\}$

Lemma 4.01: In a space X, a limit point x of $\{y\}$ is a $gpr-T_0$ -limit point of $\{y\}$ iff $gprcl\{x\} \neq gprcl\{y\}$.

This lemma leads to characterize the equivalence of gpr- T_0 -limit point and gpr-limit point of a set as the gpr- T_0 -axiom.

Theorem 4.02: The following conditions are equivalent:

- (i) X is a gpr-T₀ space
- (ii) Every gpr-limit point of a set A is a gpr-T₀-limit point of A
- (iii) Every r-limit point of a singleton set $\{x\}$ is a gpr-T₀-limit point of $\{x\}$
- (iv) For any x, y in X, $x \neq y$ if $x \in gprcl\{y\}$, then x is a $gpr-T_0$ -limit point of $\{y\}$

Note 5: In a gpr- T_0 -space X if every point of X is a r-limit point of X, then every point of X is gpr- T_0 -limit point of X. But a space X in which each point is a gpr- T_0 -limit point of X is not necessarily a gpr- T_0 -space

Theorem 4.03: The following conditions are equivalent:

- (i) X is a gpr-R₀ space
- (ii) For any x, y in X, if $x \in gprcl\{y\}$, then x is not a $gpr-T_0$ -limit point of $\{y\}$
- (iii) A point gpr-closure set has no gpr-T₀-limit point in X
- (iv) A singleton set has no gpr-T₀-limit point in X.

Since every r-R₀-space is *gpr*-R₀-space, we have the following corollary

Corollary 4.04: The following conditions are equivalent:

- (i) X is a r-R₀ space
- (ii) For any x, y in X, if $x \in gprcl\{y\}$, then x is not a $gpr-T_0$ -limit point of $\{y\}$
- (iii) A point gpr-closure set has no gpr-T₀-limit point in X
- (iv) A singleton set has no gpr-T₀-limit point in X.

Theorem 4.05: In a gpr- R_0 space X, a point x is gpr- T_0 -limit point of A iff every gpr-open set containing x contains infinitely many points of A with each of which x is topologically distinct

If gpr-R₀ space is replaced by rR₀ space in the above theorem, we have the following corollaries:

Corollary 4.06: In an rR₀-space X,

- If a point x is rT₀-limit point of a set then every gpr-open set containing x contains infinitely many points of A
 with each of which x is topologically distinct.
- (ii) If a point x is gpr-T₀-limit point of a set then every gpr-open set containing x contains infinitely many points of A with each of which x is topologically distinct.

Theorem 4.07: X is gpr-R₀ space iff a set A of the form $A = \bigcup gprcl\{x_{i \ i = 1 \ to \ n}\}$, a finite union of point closure sets has no gpr-T₀-limit point.

Corollary 4.08: If X is rR₀ space and

(i) If $A = \bigcup gprcl\{x_i\}$ i =1 to n, a finite union of point closure sets has no gpr-T₀-limit point.

(ii)If $X = \bigcup gprcl\{x_i\}$ i = 1 to n, then X has no gpr-T₀-limit point.

Theorem 4.09: The following conditions are equivalent:

- (i) X is gpr-R₀-space
- (ii) For any x and a set A in X, x is a gpr-T₀-limit point of A iff every gpr-open set containing x contains infinitely many points of A with each of which x is topologically distinct.

Various characteristic properties of *gpr*-T₀-limit points studied so far is enlisted in the following theorem for a ready reference.

Theorem 4.10: In a gpr- R_0 -space, we have the following:

- (i) A singleton set has no gpr-T₀-limit point in X.
- (ii) A finite set has no gpr-T₀-limit point in X.
- (iii) A point gpr-closure has no set gpr-T₀-limit point in X
- (iv) A finite union point gpr-closure sets have no set gpr-T₀-limit point in X.
- (v) For $x, y \in X$, $x \in T_0$ -gprcl $\{y\}$ iff x = y.
- (vi) For any $x, y \in X$, $x \neq y$ iff neither x is $gpr-T_0$ -limit point of $\{y\}$ nor y is $gpr-T_0$ -limit point of $\{x\}$
- (vii)For any $x, y \in X$, $x \neq y$ iff T_0 -gprcl $\{x\} \cap T_0$ -gprcl $\{y\} = \emptyset$.
- (viii) Any point $x \in X$ is a gpr-T₀-limit point of a set A in X iff every gpr-open set containing x contains infinitely many points of A with each which x is topologically distinct.

Theorem 4.11: X is gpr-R₁ iff for any gpr-open set U in X and points x, y such that $x \in X \sim U$, $y \in U$, there exists a gpr-open set V in X such that $y \in V \subset U$, $x \notin V$.

Lemma 4.12: In gpr-R₁ space X, if x is a gpr-T₀-limit point of X, then for any non empty gpr-open set U, there exists a non empty gpr-open set V such that $V \subset U$, $x \notin gprcl(V)$.

Lemma 4.13: In a gpr- regular space X, if x is a gpr- T_0 -limit point of X, then for any non empty gpr-open set U, there exists a non empty gpr-open set V such that $gprcl(V) \subset U$, $x \notin gprcl(V)$.

Corollary 4.14: In a regular space X,

- (i) If x is a gpr- T_0 -limit point of X, then for any non empty gpr-open set U, there exists a non empty gpr-open set V such that $gprcl(V) \subset U$, $x \notin gprcl(V)$.
- (ii) If x is a T₀-limit point of X, then for any non empty gpr-open set U, there exists a non empty gpr-open set V such that gprcl(V)⊂U, x∉ gprcl(V).

Theorem 4.15: If X is a gpr-compact gpr-R₁-space, then X is a Baire Space.

Proof: Let $\{A_n\}$ be a countable collection of gpr-closed sets of X, each A_n having empty interior in X. Take A_1 , since A_1 has empty interior, A_1 does not contain any gpr-open set say U_0 . Therefore we can choose a point $y \in U_0$ such that $y \notin A_1$. For X is gpr-regular, and $y \in (X \sim A_1) \cap U_0$, a gpr-open set, we can find a gpr-open set U_1 in X such that $y \in U_1$, $gprcl(U_1) \subset (X \sim A_1) \cap U_0$. Hence U_1 is a non empty gpr-open set in X such that $gprcl(U_1) \subset U_0$ and $gprcl(U_1) \cap A_1 = \emptyset$. Continuing this process, in general, for given non empty gpr-open set U_{n-1} , we can choose a point of U_{n-1} which is not in the gprclosed set A_n and a gpr-open set U_n containing this point such that $gprcl(U_n) \subset U_{n-1}$ and $gprcl(U_n) \cap A_n = \emptyset$. Thus we get a sequence of nested non empty gpr-closed sets which satisfies the finite intersection property. Therefore $Gprcl(U_n) \neq \emptyset$. Then some $x \in Gprcl(U_n)$ which in turn implies that $x \in U_{n-1}$ as $gprcl(U_n) \subset U_{n-1}$ and $x \notin A_n$ for each $x \in Gprcl(U_n)$

Corollary 4.16: If X is a compact gpr-R₁-space, then X is a Baire Space.

Corollary 4.17: Let X be a gpr-compact gpr- R_1 -space. If $\{A_n\}$ is a countable collection of gpr-closed sets in X, each A_n having non-empty gpr-interior in X, then there is a point of X which is not in any of the A_n .

Corollary 4.18: Let X be a gpr-compact R_1 -space. If $\{A_n\}$ is a countable collection of gpr-closed sets in X, each A_n having non-empty gpr- interior in X, then there is a point of X which is not in any of the A_n .

Theorem 4.19: Let X be a non empty compact $gpr-R_1$ -space. If every point of X is a $gpr-T_0$ -limit point of X then X is uncountable.

Proof: Since X is non empty and every point is a gpr- T_0 -limit point of X, X must be infinite. If X is countable, we construct a sequence of gpr- open sets $\{V_n\}$ in X as follows:

Let $X = V_1$, then for x_1 is a gpr- T_0 -limit point of X, we can choose a non empty gpr-open set V_2 in X such that $V_2 \subset V_1$ and $x_1 \notin \text{gprcl} V_2$. Next for x_2 and non empty gpr-open set V_2 , we can choose a non empty gpr-open set V_3 in X such that $V_3 \subset V_2$ and $x_2 \notin \text{gprcl} V_3$. Continuing this process for each x_n and a non empty gpr-open set V_n , we can choose a non empty gpr-open set V_{n+1} in X such that $V_{n+1} \subset V_n$ and $x_n \notin \text{gprcl} V_{n+1}$.

Now consider the nested sequence of gpr-closed sets $gprclV_1 \supset gprclV_2 \supset gprclV_3 \supset ... \supset gprclV_n \supset ... \supset gprclV_n \supset ...$ Since X is gpr-compact and $\{gprclV_n\}$ the sequence of gpr-closed sets satisfies finite intersection property. By Cantors intersection theorem, there exists an x in X such that $x \in gprclV_n$. Further $x \in X$ and $x \in V_1$, which is not equal to any of the points of X. Hence X is uncountable.

Corollary 4.20: Let X be a non empty gpr-compact gpr- R_1 -space. If every point of X is a gpr- T_0 -limit point of X then X is uncountable

5. gpr-T₀-IDENTIFICATION SPACES AND gpr-SEPARATION AXIOMS

Definition 5.01: Let (X, τ) be a topological space and let \Re be the equivalence relation on X defined by $x\Re y$ iff $gprcl\{x\} = gprcl\{y\}$

Problem 5.02: show that $x\Re y$ iff $gprcl\{x\} = gprcl\{y\}$ is an equivalence relation

Definition 5.03: The space $(X_0, Q(X_0))$ is called the gpr- T_0 -identification space of (X, τ) , where X_0 is the set of equivalence classes of \Re and $Q(X_0)$ is the decomposition topology on X_0 . Let $P_X: (X, \tau) \to (X_0, Q(X_0))$ denote the natural map

Lemma 5.04: If $x \in X$ and $A \subset X$, then $x \in gpr$ -clA iff every gpr-open set containing x intersects A.

Theorem 5.05: The natural map $P_X:(X,\tau) \to (X_0, Q(X_0))$ is closed, open and $P_X^{-1}(P_X(O)) = O$ for all $O \in PO(X,\tau)$ and $(X_0, Q(X_0))$ is $gpr-T_0$

Proof: Let $O \in PO(X, \tau)$ and let $C \in P_X(O)$. Then there exists $x \in O$ such that $P_X(x) = C$. If $y \in C$, then $gprcl\{y\} = gprcl\{x\}$, which, by lemma, implies $y \in O$. Since $\tau \subset PO(X, \tau)$, then $P_X^{-1}(P_X(U)) = U$ for all $U \in \tau$, which implies P_X is closed and open.

Let $G, H \in X_0$ such that $G \neq H$ and let $x \in G$ and $y \in H$. Then $gprcl\{x\} \neq gprcl\{y\}$, which implies that $x \notin gprcl\{y\}$ or $y \notin gprcl\{x\}$, say $x \notin gprcl\{y\}$. Since P_X is continuous and open, then $G \in A = P_X\{X \sim gprcl\{y\}\} \notin PO(X_0, Q(X_0))$ and $H \notin A$

Theorem 5.06: The following are equivalent:

(i) X is $gprR_0$ (ii) $X_0 = \{ gprcl\{x\}: x \in X \}$, and (iii) $(X_0, Q(X_0))$ is $gprT_1$

Proof: (i) \Rightarrow (ii) Let $C \in X_0$, and let $x \in C$. If $y \in C$, then $y \in gprcl\{y\} = gprcl\{x\}$, which implies $C \in gprcl\{x\}$. If $y \in gprcl\{x\}$, then $x \in gprcl\{y\}$, since, otherwise, $x \in X \sim gprcl\{y\} \in PO(X, \tau)$ which implies $gprcl\{x\} \subset X \sim gprcl\{y\}$, which is a contradiction. Thus, if $y \in gprcl\{x\}$, then $x \in gprcl\{y\}$, which implies $gprcl\{y\} = gprcl\{x\}$ and $y \in C$. Hence $X_0 = \{gprcl\{x\} : x \in X\}$

(ii) \Rightarrow (iii) Let $A \neq B \in X_0$. Then $\exists x, y \in X$ s.t $A = gprcl\{x\}$; $B = gprcl\{y\}$, and $gprcl\{x\} \cap gprcl\{y\} = \emptyset$. Then $A \in C = P_X(X \sim gprcl\{y\}) \in PO(X_0, Q(X_0))$ and $B \notin C$. Thus $(X_0, Q(X_0))$ is $gpr-T_1$

(iii) \Rightarrow (i) Let $x \in U \in gprO(X)$. Let $y \notin U$ and C_x , $C_y \in X_0$ containing x and y respectively. Then $x \notin gprcl\{y\}$, which implies $C_x \neq C_y$ and there exists gpr-open set A such that $C_x \in A$ and $C_y \notin A$. Since P_X is continuous and open, then $y \in B = P_X^{-1}(A) \in x \in gprO(X)$ and $x \notin B$, which implies $y \notin gprcl\{x\}$. Thus $gprcl\{x\} \subset U$. This is true for all $gprcl\{x\}$ implies $\cap gprcl\{x\} \subset U$. Hence X is gpr-R₀

Theorem 5.07: (X, τ) is $gpr-R_1$ iff $(X_0, Q(X_0))$ is $gpr-T_2$

The proof is straight forward from using theorems 5.05 and 5.06 and is omitted

6. gpr-OPEN FUNCTIONS AND gpr-T_i SPACES, i = 0, 1, 2.

Theorem 6.01: X is gpr- T_i ; i = 0,1,2. iff there exists a gpr-continuous, almost-open, 1-1 function from (X, τ) into a gpr- T_i space; i = 0,1,2. respectively.

Proof: If X is gpr- T_i ; i = 0, 1, 2, then the identity function on X satisfies the desired properties. The converse is (ii) part of Theorem 2.13.

The following example shows that if $f: (X, \tau) \to (Y, \sigma)$ is continuous, gpr-open, bijective, $A \in PO(Y, \sigma)$, and (Y, σ) gpr- T_i ; i = 0,1,2, then $f^{-1}(A)$ need not be gpr-open and (X, τ) need not be gpr- T_i ; i = 0,1,2

Theorem 6.02: If $f: (X, \tau) \to (Y, \sigma)$ is gpr-continuous, gpr-open, and $x, y \in X$ such that $gprcl\{x\} = gprcl\{y\}$, then $gprcl\{f(x)\} = gprcl\{f(y)\}$.

Proof: Suppose $gprcl\{f(x)\} \neq gprcl\{f(y)\}$. Then $f(x) \notin gprcl\{f(y)\}$ or $f(y) \notin gprcl\{f(x)\}$, say $f(x) \notin gprcl\{f(y)\}$. Then $f(x) \in A = Y \sim gpr-cl\{f(y)\} \in gprO(Y)$. If $B = Y \sim cl(int(A)) \neq \emptyset$, then $f(x) \notin B$, and $B \cap gprcl\{f(y)\} \neq \emptyset$, which implies $f(y) \in B$, $y \in f^{-1}(B) \in gprO(X)$, and $x \notin f^{-1}(B)$ which is a contradiction. Thus cl(int(A)) = Y. Since $f(y) \notin A$, then $y \notin int(f^{-1}(A))$, if $x \in cl(int(f^{-1}(A)))$, then $\{x\} \cup int(f^{-1}(A))$ is gpr-open containing x and not y, which is a contradiction.

Hence $x \in U = X \sim cl(int(f^{-1}(A))) \in \tau$ and $\phi \neq f(U) \in gprO(Y)$. Then $C = (intf(U)) \cap int(A) = \phi$, for suppose not. Then $f^{-1}(C) \in gprO(X)$, which implies $f^{-1}(C) \subset cl(int(f^{-1}(C))) \subset cl(int(f^{-1}(A)))$, which is a contradiction. Hence $C = \phi$, which contradicts cl(int(A)) = Y.

Theorem 6.03: The following are equivalent

- (i) (X,τ) is gpr- T_0
- (ii) Elements of X_0 are singleton sets and
- (iii) There exists a gpr-continuous, gpr-open, 1–1 function $f: (X, \tau) \to (Y, \sigma)$, where (Y, σ) is gpr- T_0

Proof: (i) is equivalent to (ii) and (i) \Rightarrow (iii) are straight forward and is omitted.

(iii) \Rightarrow (i) Let x, y \in X such that $f(x) \neq f(y)$, which implies $gpr\text{-cl}\{f(x)\} \neq gpr\text{-cl}\{f(y)\}$. Then by theorem 6.02, $gpr\text{-cl}\{x\} \neq gpr\text{-cl}\{y\}$. Hence (X, τ) is $gpr\text{-T}_0$

Corollary 6.04: A space (X, τ) is $gpr-T_i$; i = 1, 2 iff (X, τ) is $gpr-T_{i-1}$; i = 1, 2, respectively, and there exists a gpr-continuous, gpr-open, gpr-o

Definition 6.05: $f: X \to Y$ is point–gpr-closure 1–1 iff for $x, y \in X$ such that $gprcl\{x\} \neq gprcl\{y\}$, $gprcl\{f(x)\} \neq gprcl\{f(y)\}$.

Theorem 6.06:

(i) If $f: (X, \tau) \to (Y, \sigma)$ is point– gpr-closure 1–1 and (X, τ) is gpr- T_0 , then f is 1–1 (ii) If $f: (X, \tau) \to (Y, \sigma)$, where (X, τ) and (Y, σ) are gpr- T_0 then f is point– gpr-closure 1–1 iff f is 1–1

Proof: omitted

The following result can be obtained by combining results for gpr- T_0 - identification spaces, gpr-induced functions and gpr- T_i spaces; i = 1,2.

Theorem 6.07: X is gpr-R_i; i = 0.1 iff there exists a gpr-continuous, almost-open point- gpr-closure 1-1 function $f: (X, \tau)$ into a gpr-R_i space; i = 0.1 respectively.

7. gpr-Normal; Almost gpr-normal and Mildly gpr-normal spaces

Definition 7.1: A space X is said to be *gpr*-normal if for any pair of disjoint closed sets F_1 and F_2 , there exist disjoint *gpr*-open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

Note 6: From the above definition we have the following implication diagram.

$$\begin{array}{c} T_4 \rightarrow g\text{-}T_4 \rightarrow \alpha g\text{-}T_4 \rightarrow gp\text{-}T_4 \rightarrow gpr\text{-}T_4 \\ \uparrow & \uparrow \\ r\text{-}T_4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow rg\text{-}T_4 \text{ none is reversible} \end{array}$$

Example 4: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then X is *gpr*-normal.

Example 5: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. Then X is *gpr*-normal and is not normal. We have the following characterization of *gpr*-normality.

Theorem 7.1: For a space X the following are equivalent:

- (i) X is *gpr*-normal.
- (ii) For every pair of open sets U and V whose union is X, there exist gpr-closed sets A and B such that $A \subset U$, $B \subset V$ and $A \cup B = X$.
- (iii) For every closed set F and every open set G containing F, there exists a *gpr*-open set U such that $F \subset U \subset gprcl(U) \subset G$.

Proof: (a) \Rightarrow (b): Let U and V be a pair of open sets in a *gpr*-normal space X such that $X = U \cup V$. Then X-U,X-V are disjoint closed sets . Since X is *gpr*-normal there exist disjoint *gpr*-open sets U_1 and V_1 such that $X - U \subset U_1$ and $X - V \subset V_1$. Let $A = X - U_1$, $B = X - V_1$. Then A and B are *gpr*-closed sets such that $A \subset U$, $B \subset V$ and $A \cup B = X$.

(b) \Rightarrow (c): Let F be a closed set and G be an open set containing F. Then X-F and G are open sets whose union is X. Then by (b), there exist gpr-closed sets W_1 and W_2 such that $W_1 \subset X$ -F and $W_2 \subset G$ and $W_1 \cup W_2 = X$. Then $F \subset X$ - W_1 , X-G $\subset X$ - W_2 and (X- W_1) \cap (X- W_2)= ϕ . Let U= X- W_1 and V= X- W_2 . Then U and V are disjoint gpr-open sets such that $F \subset U \subset X$ -V $\subset G$. As X-V is gpr-closed set, we have $gprcl(U) \subset X$ -V and $F \subset U \subset gprcl(U) \subset G$.

(c) \Rightarrow (a): Let F_1 and F_2 be any two disjoint closed sets of X. Put $G = X - F_2$, then $F_1 \cap G = \emptyset$. $F_1 \subset G$ where G is an open set .Then by (c), there exists a gpr-open set U of X such that $F_1 \subset U \subset gprcl(U) \subset G$. It follows that $F_2 \subset X$ - gprcl(U) = V, say, then V is gpr-open and $U \cap V = \emptyset$. Hence F_1 and F_2 are separated by gpr-open sets U and V. Therefore X is gpr-normal.

Theorem 7.2: A regular open subspace of a *gpr*-normal space is *gpr*-normal.

Proof: Let Y be a regular open subspace of a *gpr*-normal space X .Let A and B be disjoint closed subsets of Y .As Y is regular open, A,B are closed sets of X. By *gpr*-normality of X, there exist disjoint *gpr*-open sets U and V in X such that $A \subset U$ and $B \subset V$, $U \cap Y$ and $V \cap Y$ are *gpr*-open in Y such that $A \subset U \cap Y$ and $B \subset V \cap Y$. Hence Y is *gpr*-normal.

Example 6: Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ is *gpr*-normal and *gpr*-regular.

Now, we define the following.

Definition 7.2: A function $f: X \to Y$ is said to be almost -gpr-irresolute if for each x in X and each gpr-neighborhood V of f(x), gprcl $(f^{-1}(V))$ is a gpr-neighborhood of x.

Clearly every *gpr*-irresolute map is almost *gpr*-irresolute.

The Proof of the following lemma is straightforward and hence omitted.

Lemma 7.1: f is almost gpr-irresolute iff $f^{-1}(V) \subset gpr$ -int $(gprcl(f^{-1}(V))))$ for every $V \in GPRO(Y)$.

Now we prove the following.

Lemma 7.2: f is almost gpr-irresolute iff $f(gprcl(U)) \subset gprcl(f(U))$ for every $U \in GPRO(X)$.

Proof: Let $U \in GPRO(X)$. Suppose $y \notin gprcl(f(U))$. Then there exists $V \in GPRO(y)$ such that $V \cap f(U) = \emptyset$.

Hence $f^{-1}(V) \cap U = \emptyset$. Since $U \in GPRO(X)$, we have $gpr\text{-int}(gprcl(f^{-1}(V))) \cap gprcl(U) = \emptyset$. Then by lemma 7.1, $f^{-1}(V) \cap gprcl(U) = \emptyset$ and hence $V \cap f(gprcl(U)) = \emptyset$. This implies that $y \notin f(gprcl(U))$.

Conversely, if $V \in GPRO(Y)$, then W = X- $gprcl(f^1(V))) \in GPRO(X)$. By hypothesis, $f(gprcl(W)) \subset gprcl(f(W))$ and hence X- gpr-int $(gprcl(f^1(V))) = gprcl(W) \subset f^1(gprcl(f(W))) \subset f(gprcl[f(X-f^1(V))]) \subset f^{-1}[gprcl(Y-V)]$ = $f^{-1}(Y-V) = X-f^1(V)$.

Therefore, $f^1(V) \subset gpr\text{-int}(gprcl(f^1(V)))$. By lemma 7.1, f is almost gpr-irresolute.

Now we prove the following result on the invariance of *gpr*-normality.

Theorem 7.3: If f is an M-gpr-open continuous almost gpr-irresolute function from a gpr-normal space X onto a space Y, then Y is gpr-normal.

Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, $f^1(A)$ is closed and $f^1(B)$ is an open set of X such that $f^1(A) \subset f^1(B)$. As X is gpr-normal, there exists a gpr-open set U in X such that © 2011, IJMA. All Rights Reserved

 $f^1(A) \subset U \subset gprcl(U) \subset f^1(B)$. Then $f(f^1(A)) \subset f(U) \subset f(gprcl(U)) \subset f(f^1(B))$. Since f is M-gpr-open almost gpr-irresolute surjection, we obtain $A \subset f(U) \subset gprcl(f(U)) \subset B$. Then again by Theorem 7.1 the space Y is gpr-normal.

Lemma 7.3: A mapping f is M-gpr-closed if and only if for each subset B in Y and for each gpr-open set U in X containing $f^1(B)$, there exists a gpr-open set V containing B such that $f^1(V) \subset U$.

Now we prove the following:

Theorem 7.4: If f is an M-gpr-closed continuous function from a gpr-normal space onto a space Y, then Y is gpr-normal.

Proof of the theorem is routine and hence omitted.

Now in view of lemma 2.2 [19] and lemma 7.3, we prove that the following result.

Theorem 7.5: If f is an M-gpr-closed map from a weakly Hausdorff gpr-normal space X onto a space Y such that $f^1(y)$ is S-closed relative to X for each $y \in Y$, then Y is gpr- T_2 .

Proof: Let y_1 and y_2 be any two distinct points of Y. Since X is weakly Hausdorff, $f^{-1}(y_1)$ and $f^{-1}(y_2)$ are disjoint closed subsets of X by lemma 2.2 [19]. As X is gpr-normal, there exist disjoint gpr-open sets V_1 and V_2 such that $f^{-1}(y_i) \subset V_1$, for i = 1, 2. Since f is M-gpr-closed, there exist gpr-open sets U_1 and U_2 containing y_1 and y_2 such that $f^{-1}(U_i) \subset V_i$ for i = 1, 2. Then it follows that $U_1 \cap U_2 = \emptyset$. Hence Y is gpr- V_2 .

Theorem 7.6: For a space *X* we have the following:

- (a) If X is normal then for any disjoint closed sets A and B, there exist disjoint gpr-open sets U, V such that $A \subset U$ and $B \subset V$:
- (b) If X is normal then for any closed set A and any open set V containing A, there exists an gpr-open set U of X such that $A \subset U \subset gprcl(U) \subset V$.

Definition 7.2: X is said to be almost *gpr*-normal if for each closed set A and each regular closed set B such that $A \cap B = \emptyset$, there exist disjoint *gpr*-open sets U and V such that $A \subset U$ and $B \subset V$.

Clearly, every *gpr*-normal space is almost *gpr*-normal, but not conversely in general.

Note 7: From the above definition we have the following implication diagram.

$$\begin{array}{c} \text{Al-T}_4 \rightarrow \text{Al-g-T}_4 \rightarrow \text{Al-}\alpha \text{g-T}_4 \rightarrow \text{Al-gp-T}_4 \rightarrow \text{Al-gpr-T}_4 \\ \uparrow & \uparrow \\ \text{Al-r-T}_4 \rightarrow \text{Al-rg-T}_4 \text{ none is reversible} \end{array}$$

Example 7: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then X is almost *gpr*-normal and not *gpr*-normal.

Now, we have characterization of almost *gpr*-normality in the following.

Theorem 7.7: For a space X the following statements are equivalent:

- (i) X is almost *gpr*-normal
- (ii) For every pair of sets U and V, one of which is open and the other is regular open whose union is X, there exist gpr-closed sets G and H such that $G \subset U$, $H \subset V$ and $G \cup H = X$.
- (iii) For every closed set A and every regular open set B containing A, there is a *gpr*-open set V such that $A \subset V \subset gprcl(V) \subset B$.

Proof: (a) \Rightarrow (b) Let U be an open set and V be a regular open set in an almost gpr-normal space X such that $U \cup V = X$. Then (X-U) is closed set and (X-V) is regular closed set with (X-U) \cap (X-V) = ϕ . By almost gpr-normality of X, there exist disjoint gpr-open sets U_1 and V_1 such that $X - U \subset U_1$ and $X - V \subset V_1$. Let $G = X - U_1$ and $H = X - V_1$. Then G and H are gpr-closed sets such that $G \subset U$, $H \subset V$ and $G \cup H = X$.

(b)
$$\Rightarrow$$
 (c) and (c) \Rightarrow (a) are obvious.

One can prove that almost gpr-normality is also regular open hereditary.

Almost *gpr*-normality does not imply almost *gpr*-regularity in general. However, we observe that every almost *gpr*-normal *gpr*-R₀ space is almost *gpr*-regular.

Next, we prove the following.

Theorem 7.8: Every almost regular, *v*-compact space X is almost *gpr*-normal.

Recall that a function $f: X \to Y$ is called re-continuous if inverse image of regular closed set is regular closed.

Now, we state the invariance of almost *gpr*-normality in the following.

Theorem 7.9: If f is continuous M-gpr-open rc-continuous and almost gpr-irresolute surjection from an almost gpr-normal space X onto a space Y, then Y is almost gpr-normal.

Definition 7.3: A space X is said to be mildly *gpr*-normal if for every pair of disjoint regular closed sets F_1 and F_2 of X, there exist disjoint *gpr*-open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

Note 8: From the above definition we have the following implication diagram.

We have the following characterization of mild *gpr*-normality.

Theorem 7.10: For a space X the following are equivalent.

- (i) X is mildly *gpr*-normal.
- (ii) For every pair of regular open sets U and V whose union is X, there exist gpr-closed sets G and H such that $G \subset U$, $H \subset V$ and $G \cup H = X$.
- (iii) For any regular closed set A and every regular open set B containing A, there exists a gpr-open set U such that $A \subset U \subset gprcl(U) \subset B$.
- (iv) For every pair of disjoint regular closed sets, there exist gpr-open sets U and V such that $A \subset U$, $B \subset V$ and $gprcl(U) \cap gprcl(V) = \phi$.

This theorem may be proved by using the arguments similar to those of Theorem 7.7.

Also, we observe that mild *gpr*-normality is regular open hereditary.

We define the following

Definition 7.4: A space X is weakly *gpr*-regular if for each point x and a regular open set U containing $\{x\}$, there is a *gpr*-open set V such that $x \in V \subset clV \subset U$.

Theorem 7.11: If $f: X \to Y$ is an M-gpr-open rc-continuous and almost gpr-irresolute function from a mildly gpr-normal space X onto a space Y, then Y is mildly gpr-normal.

Proof: Let A be a regular closed set and B be a regular open set containing A. Then by rc-continuity of f, $f^{-1}(A)$ is a regular closed set contained in the regular open set $f^1(B)$. Since X is mildly gpr-normal, there exists a gpr-open set V such that $f^1(A) \subset V \subset gprcl(V) \subset f^{-1}(B)$ by Theorem 7.10. As f is M-gpr-open and almost gpr-irresolute surjection, it follows that $f(V) \in GPRO(Y)$ and $A \subset f(V) \subset gprcl(f(V)) \subset B$. Hence Y is mildly gpr-normal.

Theorem 7.12: If $f: X \to Y$ is re-continuous, M-gpr-closed map from a mildly gpr-normal space X onto a space Y, then Y is mildly gpr-normal.

8. gpr-US spaces:

Definition 8.1: A sequence $\langle x_n \rangle$ is said to be *gpr*-converges to a point x of X, written as $\langle x_n \rangle \to^{gpr} x$ if $\langle x_n \rangle$ is eventually in every *gpr*-open set containing x.

Clearly, if a sequence $\langle x_n \rangle$ r-converges to a point x of X, then $\langle x_n \rangle$ gpr-converges to x.

Definition 8.2: A space X is said to be *gpr*-US if every sequence $\langle x_n \rangle$ in X *gpr*-converges to a unique point.

Theorem 8.1: Every gpr-US space is gpr- T_1 .

Proof: Let X be gpr-US space. Let x and y be two distinct points of X. Consider the sequence $\langle x_n \rangle$ where $x_n = x$ for every n. Cleary, $\langle x_n \rangle$ gpr-converges to x. Also, since $x \neq y$ and X is gpr-US, $\langle x_n \rangle$ cannot gpr-converge to y, i.e, there exists a gpr-open set V containing y but not x. Similarly, if we consider the sequence $\langle y_n \rangle$ where $y_n = y$ for all n, and proceeding as above we get a gpr-open set U containing x but not y. Thus, the space X is gpr-T₁.

Theorem 8.2: Every gpr- T_2 space is gpr-US.

Proof: Let X be gpr-T₂ space and $\langle x_n \rangle$ be a sequence in X. If possible suppose that $\langle x_n \rangle$ gpr-converge to two distinct points x and y. That is, $\langle x_n \rangle$ is eventually in every gpr-open set containing x and also in every gpr-open set containing y. This is contradiction since X is gpr-T₂ space. Hence the space X is gpr-US.

Definition 8.3: A set F is sequentially *gpr*-closed if every sequence in F *gpr*-converges to a point in F.

Theorem 8.3: X is *gpr*-US iff the diagonal set is a sequentially *gpr*-closed subset of X x X.

Proof: Let X be gpr-US. Let $\langle x_n \rangle$, $x_n >$ be a sequence in Δ . Then $\langle x_n \rangle$ is a sequence in X. As X is gpr-US, $\langle x_n \rangle \rightarrow^{gpr} x$ for a unique $x \in X$. i.e., if $\langle x_n \rangle gpr$ -converges to x and y. Thus, x = y. Hence Δ is sequentially gpr-closed set.

Conversely, let Δ be sequentially gpr-closed. Let a sequence $< x_n > gpr$ -converge to x and y. Hence sequence $< x_n , x_n > gpr$ -converges to (x,y). Since Δ is sequentially gpr-closed, $(x,y) \in \Delta$ which means that x = y implies space X is gpr-US.

Definition 8.4: A subset G of a space X is said to be sequentially *gpr*-compact if every sequence in G has a subsequence which *gpr*-converges to a point in G.

Theorem 8.4: In a *gpr*-US space every sequentially *gpr*-compact set is sequentially *gpr*-closed.

Proof: Let X be *gpr*-US space. Let Y be a sequentially *gpr*-compact subset of X. Let $\langle x_n \rangle$ be a sequence in Y. Suppose that $\langle x_n \rangle$ *gpr*-converges to a point in X-Y. Let $\langle x_{np} \rangle$ be subsequence of $\langle x_n \rangle$ that *gpr*-converges to a point y $\langle x_n \rangle$ is sequentially *gpr*-converge to x $\langle x_n \rangle$. Since $\langle x_n \rangle$ is a sequence in the *gpr*-US space X, x= y. Thus, Y is sequentially *gpr*-closed set.

Next, we give a hereditary property of gpr-US spaces.

Theorem 8.5: Every regular open subset of a *gpr*-US space is *gpr*-US.

Proof: Let X be a *gpr*-US space and Y \subset X be an regular open set. Let $< x_n >$ be a sequence in Y. Suppose that $< x_n >$ *gpr*-converges to x and y in X. Let U be any *gpr*-open subset of X containing x and V be any *gpr*-open set of X containing y. Then, U \cap Y and V \cap Y are *gpr*-open sets in Y. Therefore, $< x_n >$ is eventually in U \cap Y and V \cap Y and so in U and V. Since X is *gpr*-US, this implies that x = y. Hence the subspace Y is *gpr*-US.

Theorem 8.6: A space X is gpr- T_2 iff it is both gpr- R_1 and gpr-US.

Proof: Let X be *gpr*-T₂ space. Then X is *gpr*-R₁ and *gpr*-US by Theorem 8.2.

Conversely, let X be both gpr-R₁ and gpr-US space. By Theorem 8.1, X is both gpr-T₁ and gpr-R₁ and, it follows that space X is gpr-T₂.

Definition 8.5: A point y is a *gpr*-cluster point of sequence $\langle x_n \rangle$ iff $\langle x_n \rangle$ is frequently in every *gpr*-open set containing x.

The set of all *gpr*-cluster points of $\langle x_n \rangle$ will be denoted by *gpr*-cl(x_n).

Definition 8.6: A point y is gpr-side point of a sequence $\langle x_n \rangle$ if y is a gpr-cluster point of $\langle x_n \rangle$ but no subsequence of $\langle x_n \rangle$ gpr-converges to y.

Now, we define the following.

Definition 8.7: A space X is said to be gpr-S₁ if it is gpr-US and every sequence $\langle x_n \rangle gpr$ -converges with subsequence of $\langle x_n \rangle gpr$ -side points.

Definition 8.8: A space X is said to be gpr-S₂ if it is gpr-US and every sequence $\langle x_n \rangle$ in X gpr-converges which has no gpr-side point.

Lemma 8.1: Every gpr- S_2 space is gpr- S_1 and Every gpr- S_1 space is gpr-US.

Now using the notion of sequentially continuous functions, we define the notion of sequentially *gpr*-continuous functions.

Definition 8.9: A function f is said to be sequentially gpr-continuous at $x \in X$ if $f(x_n)$ gpr-converges to f(x) whenever (x_n) is a sequence gpr-converging to x. If f is sequentially gpr-continuous at all $x \in X$, then f is said to be sequentially gpr-continuous.

Theorem 8.7: Let f and g be two sequentially gpr-continuous functions. If Y is gpr-US, then the set $A = \{x \mid f(x) = g(x)\}$ is sequentially gpr-closed.

Proof: Let Y be *gpr*-US and suppose that there is a sequence $\langle x_n \rangle$ in A *gpr*-converging to $x \in X$. Since f and g are sequentially *gpr*-continuous functions, $f(x_n) \to^{gpr} f(x)$ and $g(x_n) \to^{gpr} g(x)$. Hence f(x) = g(x) and $x \in A$. Therefore, A is sequentially *gpr*-closed.

Next, we prove the product theorem for gpr-US spaces.

Theorem 8.8: Product of arbitrary family of *gpr*-US spaces is *gpr*-US.

Proof: Let $X = \prod_{\lambda \in \wedge} X_{\lambda}$ where X_{λ} is gpr-US. Let a sequence $\langle x_n \rangle$ in X gpr-converges to x (= x_{λ}) and y (= y_{λ}). Then the sequence $\langle x_{n\lambda} \rangle gpr$ -converges to x_{λ} and y_{λ} for all $\lambda \in \wedge$. For suppose there exists a $\mu \in \wedge$ such that $\langle x_{n\mu} \rangle$ does not gpr-converges to x_{μ} . Then there exists a τ_{μ} -gpr-open set U_{μ} containing x_{μ} such that $\langle x_{n\mu} \rangle$ is not eventually in U_{μ} . Consider the set $U = \prod_{\lambda \in \wedge} X_{\lambda} \times U_{\mu}$. Then U is a gpr-open subset of X and $X \in U$. Also, $\langle x_n \rangle$ is not eventually in U, which contradicts the fact that $\langle x_n \rangle gpr$ -converges to X. Thus we get $\langle x_n \rangle gpr$ -converges to x_{λ} and y_{λ} for all $\lambda \in \wedge$.

Since X_{λ} is gpr-US for each $\lambda \in \wedge$. Thus x = y. Hence X is gpr-US.

9. Sequentially sub-gpr-continuity:

In this section we introduce and study the concepts of sequentially sub-gpr-continuity, sequentially nearly gpr-continuity and sequentially gpr-compact preserving functions and study their relations and the property of gpr-US spaces.

Definition 9.1: A function f is said to be sequentially nearly gpr-continuous if for each point $x \in X$ and each sequence $\langle x_n \rangle$ in X gpr-converging to x, there exists a subsequence $\langle x_n \rangle$ of $\langle x_n \rangle$ such that $\langle f(x_n k) \rangle \rightarrow gpr f(x)$.

Definition 9.2: A function f is said to be sequentially sub-gpr-continuous if for each point $x \in X$ and each sequence $\langle x_n \rangle$ in X gpr-converging to x, there exists a subsequence $\langle x_n \rangle$ of $\langle x_n \rangle$ and a point $y \in Y$ such that $\langle f(x_n) \rangle \rightarrow g^{pr} y$.

Definition 9.3: A function f is said to be sequentially gpr-compact preserving if f(K) is sequentially gpr-compact in Y for every sequentially gpr-compact set K of X.

Lemma 9.1: Every function f is sequentially sub-gpr-continuous if Y is a sequentially gpr-compact.

Proof: Let $\langle x_n \rangle$ be a sequence in X *gpr*-converging to a point x of X. Then $\{f(x_n)\}$ is a sequence in Y and as Y is sequentially *gpr*-compact, there exists a subsequence $\{f(x_{nk})\}$ of $\{f(x_n)\}$ *gpr*-converging to a point $y \in Y$. Hence f is sequentially sub-*gpr*-continuous.

Theorem 9.1: Every sequentially nearly *gpr*-continuous function is sequentially *gpr*-compact preserving.

Proof: Suppose f is a sequentially nearly gpr-continuous function and let K be any sequentially gpr-compact subset of K. Let $\langle y_n \rangle$ be any sequence in f(K). Then for each positive integer K, there exists a point K such that K such

Theorem 9.2: Every sequentially *sg*-continuous function is sequentially *gpr*-continuous.

Proof: Let f be a sequentially gp-continuous and $< x_n >$ be a sequence in X which gp-converges to a point $x \in X$. Then $< x_n > gp$ -converges to x. Since f is sequentially gp-continuous, $f(x_n) \rightarrow^{gp} f(x)$. But we know that $< x_n > gp$ -converges to x implies $< x_n > gpr$ -converges to x and hence $f(x_n) \rightarrow^{gpr} f(x)$ implies f is sequentially gpr-continuous.

Note 9: From the above Theorem we have the following implication diagram.

$$\begin{array}{c} seq.c \rightarrow seq.g.c \rightarrow seq. \\ \alpha g.c \rightarrow seq.gp.c \rightarrow seq.gpr.c \\ \uparrow \\ Seq.r.c \rightarrow seq.rg.c \text{ none is reversible} \end{array}$$

Theorem 9.3: Every sequentially *gpr*-compact preserving function is sequentially sub-*gpr*-continuous.

Proof: Suppose f is a sequentially gpr-compact preserving function. Let x be any point of X and x_n any sequence in X gpr-converging to x. We shall denote the set $\{x_n \mid n=1,2,3,\ldots\}$ by A and $K=A \cup \{x\}$. Then K is sequentially gpr-compact since $x_n \to^{gpr} x$. By hypothesis, f is sequentially gpr-compact preserving and hence f(K) is a sequentially gpr-compact set of Y. Since $\{f(x_n)\}$ is a sequence in f(K), there exists a subsequence $\{f(x_n)\}$ of $\{f(x_n)\}$ gpr-converging to a point $y \in f(K)$. This implies that f is sequentially gpr-continuous.

Theorem 9.4: A function $f: X \to Y$ is sequentially gpr-compact preserving iff $f_{/K}: K \to f(K)$ is sequentially sub-gpr-continuous for each sequentially gpr-compact subset K of X.

Proof: Suppose f is a sequentially gpr-compact preserving function. Then f(K) is sequentially gpr-compact set in Y for each sequentially gpr-compact set K of X. Therefore, by Lemma 9.1 above, $f_{K}: K \rightarrow f(K)$ is sequentially gpr-continuous function.

Conversely, let K be any sequentially gpr-compact set of X. Let $\langle y_n \rangle$ be any sequence in f(K). Then for each positive integer n, there exists a point $x_n \in K$ such that $f(x_n) = y_n$. Since $\langle x_n \rangle$ is a sequence in the sequentially gpr-compact set K, there exists a subsequence $\langle x_{nk} \rangle$ of $\langle x_n \rangle$ gpr-converging to a point $x \in K$. By hypothesis, $f_{/K}: K \to f(K)$ is sequentially gpr-continuous and hence there exists a subsequence $\langle y_{nk} \rangle$ of $\langle y_n \rangle$ gpr-converging to a point $y \in f(K)$. This implies that f(K) is sequentially gpr-compact set in Y. Thus, f is sequentially gpr-compact preserving function.

The following corollary gives a sufficient condition for a sequentially sub-gpr-continuous function to be sequentially gpr-compact preserving.

Corollary 9.1: If f is sequentially sub-gpr-continuous and f(K) is sequentially gpr-closed set in Y for each sequentially gpr-compact set K of X, then f is sequentially gpr-compact preserving function.

Proof: Omitted.

ACKNOWLEDGMENT

The Author is thankful to the referees for their comments and suggestions for the development of the paper.

REFERENCES

- [1] S.P. Arya and M.P. Bhamini, A note on semi-US spaces, Ranchi Uni. Math. J. Vol. 13 (1982), 60-68.
- [2] Ashish Kar and P.Bhattacharyya, Some weak separation axioms, Bull. Cal. Math. Soc., 82 (1990), 415-422.
- [3] C.E. Aull, Sequences in topological spaces, Comm. Math. (1968), 329-36.
- [4] S. Balasubramanian and P. Aruna Swathi Vyjayanthi, On v-separation axioms (Accepted),
- [5] S. Balasubramanian and M. Lakshmi Sarada, *gpr*—separation axioms, Bull. Kerala Math. Association, Vol 8. No.1 (2011)157 173.
- [6] H.F. Cullen, Unique sequential limits, Boll. UMI, 20 (1965) 123-127.
- [7] Charles Dorsett, semi-T₁, semi-T₂ and semi-R₁ spaces, Ann. Soc. Sci. Bruxelles, 92 (1978) 143-158.
- [8] K.K. Dube and B.L. namdeo, T₀-Limit point of a set and its implications, J. Tripura Math. Soc, Vol.9 (2007)85-96

- S. Balasubramanian¹ and *M. Lakshmi Sarada²/ GPR-Separation Axioms I/IJMA- 2(10), Oct.-2011, Page: 2055-2067
- [9] S. R. Malghan and G. B. Navalagi, Almost –p-regular, p-completely regular and almost –p-completely regular spaces, Bull. Math. Soc. Sci. Math., R.S.R. Tome 34(82), nr.4 (1990), 317-326.
- [10] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci., Bruxelles, 89 (1975), 395-402.
- [11] G. B. Navalagi, Further properties of preseparation axioms, (Unpublished)
- [12] G. B. Navalagi, P-Normal Almost-P-Normal, Mildly-P-Normal, Topology Atlas.
- [13] G. B. Navalagi, Pre-US Spaces, Topology Atlas.
- [14] T. Noiri, Almost continuity and some separation axioms, Glasnik Mat., 9(29) (1974), 131-135.
- [15] T. Noiri, Sequentially subcontinuous functions, Accad. Naz. Dei. Lincei. Estratto dei. Rendiconti. Della Classe di Sci. Fis. Mat. Nat. Series. VIII, Vol. LVIII, fase. 3 (1975), 370-376.
- [16] Paul and Bhattacharyya, On p-normal spaces, Soochow Jour.Math., Vol.21. No.3, (1995), 273-289
- [17] M. K. Singal and S. P. Arya, On almost normal and almost completely regular spaces, Glasnik Mat., 5(25) (1970), 141-152.
- [18] M. K. Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math. J., 13(1) (1973)27-31.
- [19] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc., 60(1976)335-338.
- [20] A. Wilansky, Between T₁ and T₂, Amer. Math. Monthly. 74 (1967), 261-266.
