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ABSTRACT

In this paper by using gpr-open sets we define almost gpr-normality and mild gpr-normality also we continue the study
of further properties of gpr-normality. We show that these three axioms are regular open hereditary. We also define the
class of almost gpr-irresolute mappings and show that gpr-normality is invariant under almost gpr-irresolute M-gpr-
open continuous surjection.
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1. INTRODUCTION

In 1967, A. Wilansky has introduced the concept of US spaces. In 1968, C.E. Aull studied some separation axioms
between T, and T, spaces, namely, S; and S,. Next, in 1982, S.P. Arya et al have introduced and studied the concept of
semi-US spaces and also they made study of s-convergence, sequentially semi-closed sets, sequentially s-compact
notions. G.B. Navalagi studied P-Normal Almost-P-Normal, Mildly-P-Normal and Pre-US spaces. Recently S.
Balasubramanian and P.Aruna Swathi Vyjayanthi studied v-Normal Almost- v-Normal, Mildly-v-Normal and v-US
spaces. Inspired with these we introduce gpr-Normal Almost- gpr-Normal, Mildly- gpr-Normal, gpr-US, gpr-S; and
gpr-S,. Also we examine gpr-convergence, sequentially gpr-compact, sequentially gpr-continuous maps, and
sequentially sub gpr-continuous maps in the context of these new concepts. All notions and symbols which are not
defined in this paper may be found in the appropriate references. Throughout the paper X and Y denote Topological
spaces on which no separation axioms are assumed explicitly stated.

2. PRELIMINARIES

Definition 2.1: Ac X is called

(i) r-open if A = (cl(A))°.

(ii) rat-open [v-open] if 3 Ue alO(X)[RO(X)] such that Uc Ac acl(U)[ Uc Accl(U)].

(iii) r-closed[o-closed; pre-closed; PB—closed] if A = cl(A)[(cl(A®)° < A; cl(A®) < A; cl((cl(A))c Al
(iv) Semi closed [v-closed] if its complement if semi open[v-open].

(v) g-closed [rg-closed] if c] Ac U whenever Ac U and U is open in X.

(vi) pg-closed[gp-closed; gpr-closed] if pcl(A) cU whenever AcU and U is pre-open[open; regular-open] in X.

(vii) ag-closed if oicl(A) < U whenever Ac U and U is open in X.

Definition 2.2: A function fis said to be almost—v-irresolute if for each x in X and each v-neighborhood V of f(x),
vel(F (V) is a v-neighborhood of x.

Definition 2.3: A space X is said to be

(i) gpr-T| (gpr-Ty) if for any x #y in X, there exist (disjoint) U; Ve GPRO(X) such that xe U and ye V.

(i1) weakly Hausdorff if each point of X is the intersection of regular closed sets of X.

(iii) gpr-normal if for any pair of disjoint closed sets F, and F,, there exist disjoint gpr-open sets U and V such that
F cUandF,c V.
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(iv) Ry if for any point x and a closed set F with x¢ F in X, there exists a open set G containing F but not x.
(v) Ri[gpr- R] iff for x, y € X with cl{x} # cl{y}[gprcl{x} # gprcl{y}], there exist disjoint open[gpr-open] sets U and
V such that cl{x}c U, cl{y}cV.[gprcl{x} c U and gprcl{y} c V.]

Definition 2.4: Let Ac X. Then a point x is said to be a

(1) limit point of A if each open set containing x contains some point y of A such that x #y.

(ii) To-limit point of A if each open set containing x contains some point y of A such that cl{x} # cl{y}, or equivalently,
such that they are topologically distinct.

Note 1: Recall that two points are topologically distinguishable or distinct if there exists an open set containing one of
the points but not the other; equivalently if they have disjoint closures. In fact, the To—axiom is precisely to ensure that

any two distinct points are topologically distinct.

Example 1: Let X = {a, b, ¢, d} and © = {{a}, {b, c}, {a, b, c}, X, ¢}. Then b and c are the limit points but not the Ty—
limit points of the set {b, c}. Further d is a Ty—limit point of {b, c}.

Example 2: Let X = (0, 1) and Tt = {¢, X, and U, = (0, 1-1h), n =2, 3,4 .. .}. Then every point of X is a limit point of
X. Every point of X~U, is a Tp—limit point of X, but no point of U, is a Ty—limit point of X.

Definition 2.5: A set A together with all its To—limit points will be denoted by T¢—clA.

Note 2: (i). Every T,-limit point of a set A is a limit point of the set but the converse is not true in general.
(ii) In T¢—space both are same.

Note 3: Rp—axiom is weaker than T —axiom. It is independent of the To—axiom. However Ty = Ry+T)

Note 4: Every countable compact space is weakly countable compact but converse is not true in general. However, a
T,—space is weakly countable compact iff it is countable compact.

Note 5: We have the following interrelation among different closed sets.
closed — g-closed — aig-closed — gp-closed — gpr-closed

regular-closed > - > - — — — — — — — rg-closed none is reversible
3. gpr-Ty LIMIT POINT:

Definition 3.01: In X, a point x is said to be a gpr-Ty—limit point of A if each gpr-open set containing x contains some
point y of A such that gprcl{x} # gprcl{y}, or equivalently; such that they are topologically distinct with respect to
gpr-open sets.

Example 3: Since every regular open set is open set and every open set is gpr-open set, every r-T—limit point is a
T—limit point and every Ty—limit point is a gpr-T—limit point of the set.

Definition 3.02: A set A together with all its gpr-T—limit points is denoted by To-gprcl (A)
Lemma 3.01: If x is a gpr-Ty—limit point of a set A then x is gpr-limit point of A.
Lemma 3.02: If X is gpr-To—space then every gpr-Ty—limit point and every gpr-limit point are equivalent.
Corollary 3.03: If X is r-To—space then every gpr-T,-limit point and every gpr-limit point are equivalent.
Theorem 3.04: For x #y € X,

(1) x1is a gpr-Ty-limit point of {y} iff x¢ gprcl{y} and y¢ gprcl{x}.

(i1) x is not a gpr-Ty—limit point of {y} iff either xe gprcl{y }or gprcl{x}= gprcl{y}.

(iii) x is not a gpr-Ty—limit point of {y} iff either xe gprcl{y }or ye gprcl{x}.
Corollary 3.05:

(1) Ifxisa gpr-To—limit point of {y}, then y cannot be a gpr-limit point of {x}.

(1) If gprcl{x}= gprcl{y}, then neither x is a gpr-Ty—limit point of {y} nor y is a gpr-T¢—limit point of {x}.
(iii) If a singleton set A has no gpr-Ty—limit point in X, then gprclA = gprcl{x} for all xe gprcl{A}.
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Lemma 3.06: In X, if x is a gpr-limit point of a set A, then in each of the following cases x becomes gpr-Ty—limit point
of A ({x} #A).

(i) gprcl{x} # gprcl{y} forye A, x#y.

(i) gprel{x} = {x)

(iii) X is a gpr-Ty—space.

(iv) A~{x} is gpr-open

Corollary 3.07: In X, if x is a limit point of a set A, then in each of the following cases x becomes gpr-Ty—limit point
of A ({x} #A).

(1) gprel{x} # gprcl{y} forye A, x #y.

(ii) gprel{x} = {x}

(iii) X is a gpr-Ty—space.

(iv) A~{x} is gpr-open

4. gpr-Ty AND gpr-R; AXIOMS,i=0, 1:

In view of Lemma 3.6(iii), gpr-To—axiom implies the equivalence of the concept of limit point of a set with that of
gpr-To-limit point of the set. But for the converse, if xe gprcl{y} then gprcl{x} # gprcl{y} in general, but if x is a
gpr-Ty—limit point of {y}, then gprcl{x} = gprcl{y}

Lemma 4.01: In a space X, a limit point x of {y} is a gpr-Ty—limit point of {y} iff gprcl{x} # gprcl{y}.
This lemma leads to characterize the equivalence of gpr-Ty—limit point and gpr-limit point of a set as the gpr-Ty—axiom.

Theorem 4.02: The following conditions are equivalent:
(1) Xisagpr-Ty space
(i) Every gpr-limit point of a set A is a gpr-Ty—limit point of A
(iii) Every r-limit point of a singleton set {x} is a gpr-Ty—limit point of {x}
(iv) For any x,y in X, x #y if xe gprcl{y}, then x is a gpr-Ty—limit point of {y}

Note 5: In a gpr-Ty—space X if every point of X is a r-limit point of X, then every point of X is gpr-T—limit point of X.
But a space X in which each point is a gpr-Ty—limit point of X is not necessarily a gpr-To—space

Theorem 4.03: The following conditions are equivalent:
(i) Xisagpr-R, space
(i1) For any x, y in X, if xe gprcl{y}, then x is not a gpr-T—limit point of {y}
(iii) A point gpr-closure set has no gpr-T—limit point in X
(iv) A singleton set has no gpr-Ty—limit point in X.

Since every r-Ry—space is gpr-Ro—space, we have the following corollary

Corollary 4.04: The following conditions are equivalent:
(i) Xisar-Ryspace
(i) For any x,y in X, if xe gprcl{y}, then x is not a gpr-Ty—limit point of {y}
(iii) A point gpr-closure set has no gpr-Ty—limit point in X
(iv) A singleton set has no gpr-Ty—limit point in X.

Theorem 4.05: In a gpr-R( space X, a point x is gpr-To-limit point of A iff every gpr-open set containing x contains
infinitely many points of A with each of which x is topologically distinct

If gpr-R, space is replaced by rRy space in the above theorem, we have the following corollaries:

Corollary 4.06: In an rRy—space X,
(1) If a point x is r'Ty—limit point of a set then every gpr-open set containing x contains infinitely many points of A
with each of which x is topologically distinct.
(i1) If a point x is gpr-Ty—limit point of a set then every gpr-open set containing x contains infinitely many points
of A with each of which x is topologically distinct.

Theorem 4.07: X is gpr-R, space iff a set A of the form A = U gprcl{X;;-i ©n}, @ finite union of point closure sets has
no gpr-Ty—limit point.

Corollary 4.08: If X is 1R, space and
(1) If A = U gprcl{x;} i =1 to n, a finite union of point closure sets has no gpr-Ty—limit point.
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>1)If X = v gprel{x;} i =1 to n ,then X has no gpr-Ty—limit point.

Theorem 4.09: The following conditions are equivalent:
(i) Xis gpr-Ry—space
(ii) For any x and a set A in X, x is a gpr-Ty—limit point of A iff every gpr-open set containing x contains infinitely
many points of A with each of which x is topologically distinct.

Various characteristic properties of gpr-Ty—limit points studied so far is enlisted in the following theorem for a ready
reference.

Theorem 4.10: In a gpr-Ro—space, we have the following:
(1) A singleton set has no gpr-Ty—limit point in X.
(i1) A finite set has no gpr-Ty-limit point in X.
(iii) A point gpr-closure has no set gpr-Ty—limit point in X
(iv) A finite union point gpr-closure sets have no set gpr-Ty—limit point in X.
(v) Forx, ye X, xeTy— gprcl{y} iff x =y.
(vi) For any x, ye X, x #y iff neither x is gpr-To—limit point of {y}nor y is gpr-Ty—limit point of {x}
(vii)For any x, ye X, x #y iff To— gprcl{x} NTy— gprcl{y} = ¢.
(viii) Any point xe X is a gpr-T—limit point of a set A in X iff every gpr-open set containing x contains infinitely
many points of A with each which x is topologically distinct.

Theorem 4.11: X is gpr-R, iff for any gpr-open set U in X and points X, y such that xe X~U, ye U, there exists a gpr-
open set V in X such that ye VcU, xe¢ V.

Lemma 4.12: In gpr-R; space X, if x is a gpr-Ty—limit point of X, then for any non empty gpr-open set U, there exists a
non empty gpr-open set V such that VcU, x¢ gprcl(V).

Lemma 4.13: In a gpr- regular space X, if x is a gpr-Ty—limit point of X, then for any non empty gpr-open set U, there
exists a non empty gpr-open set V such that gprcl(V)cU, x¢ gprcl(V).

Corollary 4.14: In a regular space X,
(1) Ifxisa gpr-Ty-limit point of X, then for any non empty gpr-open set U, there exists a non empty gpr-open set
V such that gprcl(V)cU, xe gprel(V).
(i) If x is a To—limit point of X, then for any non empty gpr-open set U, there exists a non empty gpr-open set V
such that gprcl(V)cU, x¢ gprcl(V).

Theorem 4.15: If X is a gpr-compact gpr-R;-space, then X is a Baire Space.

Proof: Let {A,} be a countable collection of gpr-closed sets of X, each A, having empty interior in X. Take A, since
A, has empty interior, A; does not contain any gpr-open set say Uy. Therefore we can choose a point ye Uy such that
y& A;. For X is gpr-regular, and ye (X~A;)"Uy , a gpr-open set, we can find a gpr-open set U, in X such that ye U,
gprel(Uy) c(X~A;)NU,. Hence U is a non empty gpr-open set in X such that gprcl(U;)cU, and gprcl(U))nA;| = ¢.
Continuing this process, in general, for given non empty gpr-open set U, ; , we can choose a point of U, _; which is not
in the gpr-closed set A, and a gpr-open set U, containing this point such that gprcl(U,) cU,_ and gprcl(U,)NA, = 0.
Thus we get a sequence of nested non empty gpr-closed sets which satisfies the finite intersection property. Therefore
N gprcl(U,) # ¢. Then some xe M gprel(U,) which in turn implies that xe U, | as gprcl(U,)cU,, | and x& A, for each n.

Corollary 4.16: If X is a compact gpr-R;-space, then X is a Baire Space.

Corollary 4.17: Let X be a gpr-compact gpr-R,-space. If {A,} is a countable collection of gpr-closed sets in X, each A,
having non-empty gpr-interior in X, then there is a point of X which is not in any of the A,.

Corollary 4.18: Let X be a gpr-compact R;-space. If {A,} is a countable collection of gpr-closed sets in X, each A,
having non-empty gpr- interior in X, then there is a point of X which is not in any of the A,,.

Theorem 4.19: Let X be a non empty compact gpr-R,-space. If every point of X is a gpr-Ty—limit point of X then X is
uncountable.

Proof: Since X is non empty and every point is a gpr-Ty-limit point of X, X must be infinite. If X is countable, we
construct a sequence of gpr- open sets {V,} in X as follows:
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Let X =V, then for x, is a gpr-Ty-limit point of X, we can choose a non empty gpr-open set V,in X such that V, cV,
and x,¢ gprclV,. Next for x, and non empty gpr-open set V,, we can choose a non empty gpr-open set V3 in X such that
V3 cV, and x,¢ gprclVs;. Continuing this process for each x, and a non empty gpr-open set V, , we can choose a non
empty gpr-open set V,,;in X such that V,,; <V, and x,& gprclV,,,.

Now consider the nested sequence of gpr-closed sets gprclV, D gprclV, D gprelV; O...0 gprelV, ... Since X is gpr-
compact and {gprclV,} the sequence of gpr-closed sets satisfies finite intersection property. By Cantors intersection
theorem, there exists an x in X such that xe gprclV,. Further xe X and xe V, which is not equal to any of the points of
X. Hence X is uncountable.

Corollary 4.20: Let X be a non empty gpr-compact gpr-R;-space. If every point of X is a gpr-T—limit point of X then
X is uncountable

5. gpr-Ty-IDENTIFICATION SPACES AND gpr-SEPARATION AXIOMS

Definition 5.01: Let (X, 7) be a topological space and let R be the equivalence relation on X defined by xRy iff
gprel{x} = gprel{y}

Problem 5.02: show that xRy iff gprcl{x} = gprcl{y} is an equivalence relation

Definition 5.03: The space (X,, Q(Xo)) is called the gpr-Ty—identification space of (X, 7), where X, is the set of
equivalence classes of R and Q(X) is the decomposition topology on Xj.
Let Px: (X, 7)— (X, O(X;y)) denote the natural map

Lemma 5.04: If xe X and A c X, then xe gpr-clA iff every gpr-open set containing x intersects A.

Theorem 5.05: The natural map Px:(X,7)— (X, Q(Xy)) is closed, open and Px ~'(Px(0)) = O for all Oe PO(X;t) and
(Xo, QXp)) is gpr-To

Proof: Let Oe PO(X,7 ) and let Ce Px(O). Then there exists xe O such that Px(x) = C. If yeC, then gprci{y} =
gprcl{x}, which, by lemma, implies ye O. Since 7 < PO(X, 7), then Px "I(PX(U)) = U for all Ue 7, which implies Px is
closed and open.

Let G, He Xjsuch that G # H and let xe G and ye H. Then gprcl{x} # gprcl{y}, which implies that x¢ gprcl{y} or
ye& gprcl{x}, say x¢ gprcl{y}. Since Py is continuous and open, then Ge A = Px{X~ gprcl{y}}e PO(Xy, Q(Xy)) and
He A

Theorem 5.06: The following are equivalent:
(i) X is gprRy (ii) Xo = { gprcl{x}: xe X}, and (iii) (Xo, Q(Xo)) is gprT;

Proof: (i) = (ii) Let Ce X, and let xeC. If ye C, then ye gprcl{y} = gprcl{x}, which implies Ce gprcl{x}. If ye
gprcl{x}, then xe gprcl{y}, since, otherwise, xe X~ gprcl{y}e PO(X, 7 ) which implies gprcl{x}c X~ gprcl{y},
which is a contradiction. Thus, if ye gprcl{x}, then xe gprcl{y}, which implies gprcl{y} = gprcl{x} and ye C. Hence
X = {gprcl{x}: xe X}

(ii) = (iii) Let A # BeX,. Then 3 x, ye X s.t A = gprcl{x}; B = gprcl{y}, and gprcl{x}ngprcl{y} = ¢. Then AeC =
Px(X~gprcl{y})e PO(X, O(Xy)) and Be C. Thus (X,, O(Xy)) is gpr-T,

(iii) = (1) Let xe Ue gprO(X). Let yg U and Cy, Cy € X, containing x and y respectively. Then x¢ gprcl{y}, which
implies C, # C, and there exists gpr-open set A such that Cye A and Cy¢ A. Since Py is continuous and open, then ye B
= Py '(A)e xegprO(X) and x¢ B, which implies y¢ gprcl{x}. Thus gprcl{x}c U. This is true for all gprci{x} implies
Ngprcl{x}c U. Hence X is gpr-R,

Theorem 5.07: (X, ) is gpr-R; iff (Xo, OQ(Xy)) is gpr-T»

The proof is straight forward from using theorems 5.05 and 5.06 and is omitted

6. gpr-OPEN FUNCTIONS AND gpr-T; SPACES, i = 0, 1, 2.

Theorem 6.01: X is gpr-T; ; i =0,1,2. iff there exists a gpr-continuous, almost—open, 1-1 function from (X, T ) into a
gpr-T; space; i=0,1,2. respectively.
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Proof: If X is gpr-T;; 1 =0, 1, 2, then the identity function on X satisfies the desired properties. The converse is (ii) part
of Theorem 2.13.

The following example shows that if f: (X, 7 )— (Y, ©) is continuous, gpr-open, bijective, Ae PO(Y, ©), and (Y, ©)
gpr-T;; 1=0,1,2, then f -! (A) need not be gpr—open and (X, 7) need not be gpr-T;; 1=0,1,2

Theorem 6.02: If/: (X, )— (Y,0) is gpr-continuous, gpr-open, and x, yeX such that gprcl{x} = gprcl{y}, then
gprell fix)} = gprel{ Ay)).

Proof: Suppose gprcl{f(x)} # gprcl{ f(y)}. Then f(x)¢ gprcl{f(y)} orf(y)¢ gprcl{f(x)}, say f(x)& gprcl{f(y)}. Then
fx)eA =Y~ gpr-cl{f(y)}e gprO(Y). If B = Y~cl(int(A)) # ¢, then f(x)¢ B, and B gprcl{f(y)} # ¢, which implies
f(y)eB, yef “(B)e gprO(X), and xe f (B) which is a contradiction. Thus cl(int(A)) = Y. Since f(y)¢ A, then

yeintf ~'(A). If xe cl(int(f ~'(A))), then {x}uint(f'(A)) is gpr-open containing x and not y, which is a contradiction.

Hence xe U = X~ cl(int(f'(A)))e rand 0 # f(U) € gprO(Y). Then C = (intf(U))Nint(A) = ¢, for suppose not. Then
(C)e gprO(X), which implies £~ (C)c cl(int(f™(C)))ccl(int(f(A))), which is a contradiction. Hence C =¢, which
contradicts cl(int(A)) = Y.

Theorem 6.03: The following are equivalent

(1) (X.7)is gpr-Ty

(ii) Elements of X, are singleton sets and

(iii)There exists a gpr-continuous, gpr-open, 1-1 functionf: (X, T )— (Y, ©), where (Y, o) is gpr-T,

Proof: (i) is equivalent to (ii) and (i) = (iii) are straight forward and is omitted.

(iii) = (i) Let x, ye X such that f(x) # f(y), which implies gpr-cl{ f(x)} # gpr-cl{ f(y)}. Then by theorem 6.02,
gpr-cl{x} # gpr-cl{y}. Hence (X, 7) is gpr-T,

Corollary 6.04: A space (X, t)is gpr-T;; i=1,2iff (X, t)is gpr-T; ., ; i= 1,2, respectively, and there exists a
gpr-continuous , gpr-open, 1-1 function f: (X, T ) into a gpr-T,, space.

Definition 6.05:f:X—Y is point—gpr-closure 1-1 iff for x, ye X such that gprcl{x} # gprcl{y},
gprel{f(x)} # gprel{f(y)}.

Theorem 6.06:
@) If f: (X, t)— (Y, 0) is point— gpr-closure 1-1 and (X, © ) is gpr-Ty, then f is 1-1
) If f: (X, T)— (Y, 0), where (X, T )and (Y, ©) are gpr-T, then f is point— gpr-closure 1-1 iff f is 1-1

Proof: omitted

The following result can be obtained by combining results for gpr-To— identification spaces, gpr-induced functions and
gpr-T; spaces; i=1,2.

Theorem 6.07: X is gpr-R; ; i = 0,1 iff there exists a gpr-continuous, almost-open point— gpr-closure 1-1 function
f: (X, 1) into a gpr-R; space; i=0,1 respectively.

7. gpr-Normal; Almost gpr-normal and Mildly gpr-normal spaces

Definition 7.1: A space X is said to be gpr-normal if for any pair of disjoint closed sets F; and F, , there exist disjoint
gpr-open sets U and V such that FycUand F, c V.

Note 6: From the above definition we have the following implication diagram.
Ty — g-Ty — 0g-Ts — gp-Ts — gpr-Ty

T T
r-Ty— - > —> > —> —> — — rg-T, none is reversible

Example 4: Let X = {a, b, c} and T = {¢, {a}, {b, c}, X}. Then X is gpr-normal.

Example 5: Let X = {a, b, ¢, d} and T = {¢,{b, d},{a, b, d},{b, ¢, d}, X}. Then X is gpr-normal and is not normal.
We have the following characterization of gpr-normality.
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Theorem 7.1: For a space X the following are equivalent:

(i) Xis gpr-normal.

(i1) For every pair of open sets U and V whose union is X, there exist gpr-closed sets A and B such that AcU, B cV
and AUB =X.

(iii) For every closed set F and every open set G containing F, there exists a gpr-open set U such that F c U
gprcl(U) cG.

Proof: (a)=(b): Let U and V be a pair of open sets in a gpr-normal space X such that X =UUV. Then X-U,X-V are
disjoint closed sets . Since X is gpr-normal there exist disjoint gpr-open sets U; and V; such that X-U c U; and X-V
V). Let A=X-U;, B=X-V,. Then A and B are gpr-closed sets such that A cU, B cV and AUB = X.

(b) =(c): Let F be a closed set and G be an open set containing F. Then X-F and G are open sets whose union is X.
Then by (b) , there exist gpr-closed sets W; and W, such that W; < X-F and W, < G and W; UW, = X. Then Fc X-
Wi, X-G c X-W; and (X-W)N(X-Wy)= ¢. Let U= X-W,; and V= X-W,. Then U and V are disjoint gpr-open sets such
that FEcUcX-VcG.As X-V is gpr-closed set, we have gprcl(U) cX-V and FcUc gprcl(U)cG.

(c) = (a): Let F, and F, be any two disjoint closed sets of X. Put G = X-F,, then F;NG = ¢. F; < G where G is an open
set .Then by (c) , there exists a gpr-open set U of X such that F; € U < gprcl(U) cG. It follows that F, < X- gprcl(U)
=V, say, then V is gpr-open and U N V = ¢. Hence F, and F, are separated by gpr-open sets U and V. Therefore X is
gpr-normal.

Theorem 7.2: A regular open subspace of a gpr-normal space is gpr-normal.

Proof: Let Y be a regular open subspace of a gpr-normal space X .Let A and B be disjoint closed subsets of Y .As Y
is regular open , A,B are closed sets of X. By gpr-normality of X, there exist disjoint gpr-open sets U and V in X such
that A cU and BcV, UNY and VNY are gpr-open in Y such that AcUNY and BcVNY. Hence Y is gpr-normal.
Example 6: Let X = {a, b, c} with T ={¢, {a}, {b}, {a, b}, X} is gpr-normal and gpr-regular.

Now, we define the following.

Definition 7.2: A function f: X — Y is said to be almost —gpr-irresolute if for each x in X and each gpr-neighborhood
V of fix), gprel(f (V) is a gpr-neighborhood of x.

Clearly every gpr-irresolute map is almost gpr-irresolute.

The Proof of the following lemma is straightforward and hence omitted.

Lemma 7.1: fis almost gpr-irresolute iff f "Wy c gpr-int(gprcl(f 'vy)) for every Ve GPRO(Y).

Now we prove the following.

Lemma 7.2: fis almost gpr-irresolute iff figprcl(U)) c gprcl(f(U)) for every Ue GPRO(X).

Proof: Let Ue GPRO(X).Suppose y& gprcl(f(U)). Then there exists Ve GPRO(y) such that VAAU) = ¢.

Hence f'(V)NU= ¢. Since Ue GPRO(X), we have gpr-int(gprel(f'(V))) N gprel(U) = ¢. Then by lemma 7.1,
£ (V)N gprel(U) = ¢ and hence Vf(gprel(U)) = ¢. This implies that y& f{gprcl(U)).

Conversely, if Ve GPRO(Y), then W = X- gprcl(f LV))e GPRO(X). By hypothesis, figprcl(W))cgprel ({W))) and
hence X- gpr-int(gprel(f'(V))) = gprel(W)cf  (gprel(fW ) figprellAX-f (V)ef ' [gprel(Y-V)]

=f1(Y-V) = X+1(V).
Therefore, f'(V)cgpr-int(gprel(f(V))). By lemma 7.1, fis almost gpr-irresolute.

Now we prove the following result on the invariance of gpr-normality.

Theorem 7.3: If fis an M-gpr-open continuous almost gpr-irresolute function from a gpr-normal space X onto a space
Y, then Y is gpr-normal.

Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, f'(A) is closed and
F(B) is an open set of X such that f' (A) c f'(B). As X is gpr-normal, there exists a gpr-open set U in X such that
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FYA) c U c gprel(U)c £1(B). Then f(f ((A))c AU)  figprel(U)) < f(f'(B)). Since fis M-gpr-open almost
gpr-irresolute surjection, we obtain Ac f{U) c gprcl(f(U)) c B. Then again by Theorem 7.1 the space Y is gpr-normal.

Lemma 7.3: A mapping f is M-gpr-closed if and only if for each subset B in Y and for each gpr-open set U in X
containing f !(B), there exists a gpr-open set V containing B such that f '(V)cU.

Now we prove the following:

Theorem 7.4: If f is an M-gpr-closed continuous function from a gpr-normal space onto a space Y, then Y is gpr-
normal.

Proof of the theorem is routine and hence omitted.
Now in view of lemma 2.2 [19] and lemma 7.3, we prove that the following result.

Theorem 7.5: If f is an M-gpr-closed map from a weakly Hausdorff gpr-normal space X onto a space Y such that f'(y)
is S-closed relative to X for each ye Y , then Y is gpr-T».

Proof: Let y, and y, be any two distinct points of Y. Since X is weakly Hausdorff, £ /(y;) and f " (y») are disjoint closed
subsets of X by lemma 2.2 [19]. As X is gpr-normal, there exist disjoint gpr-open sets V; and V, such that

f '1(yi) c Vy, fori=1, 2. Since fis M-gpr-closed, there exist gpr-open sets U; and U, containing y; and y, such that
f'l(Ui) c V;fori=1,2. Then it follows that U;nU, =¢. Hence Y is gpr-T.

Theorem 7.6: For a space X we have the following:

(a) If X is normal then for any disjoint closed sets A and B, there exist disjoint gpr-open sets U, V such that A < U and
BcV;

(b) If X is normal then for any closed set A and any open set V containing A, there exists an gpr-open set U of X such
that AcUcgprcl(U) cV.

Definition 7.2: X is said to be almost gpr-normal if for each closed set A and each regular closed set B such that
ANB =0, there exist disjoint gpr-open sets U and V such that AcU and B&V.

Clearly, every gpr-normal space is almost gpr-normal, but not conversely in general.
Note 7: From the above definition we have the following implication diagram.
Al-Ty — Al-g-T4 — Al-0g-T4 — Al-gp-T4 — Al-gpr-T,
T
Al-r-Ty—» - > —> > > > = = — — — Al-rg-T, none is reversible
Example 7: Let X = {a, b, ¢} and t© = {¢,{a}, {a, b}, {a, c}, X}.Then X is almost gpr-normal and not gpr-normal.
Now, we have characterization of almost gpr-normality in the following.
Theorem 7.7: For a space X the following statements are equivalent:
(i) Xis almost gpr-normal
(ii) For every pair of sets U and V , one of which is open and the other is regular open whose union is X, there exist
gpr-closed sets G and H such that GcU ,HcV and GUH = X.

(iii) For every closed set A and every regular open set B containing A, there is a gpr-open set V such that A cVc
gprcl(V) C B.

Proof: (a)=>(b) Let U be an open set and V be a regular open set in an almost gpr-normal space X such that UUV = X.
Then (X-U) is closed set and (X-V) is regular closed set with (X-U)N(X-V) = ¢. By almost gpr-normality of X, there
exist disjoint gpr-open sets U; and V; such that X-U c U; and X-V c V,. Let G = X- U; and H = X-V, .Then G and H
are gpr-closed sets such that GcU, HcV and GUH = X.

(b) = (¢) and (c) = (a) are obvious.
One can prove that almost gpr-normality is also regular open hereditary.

Almost gpr-normality does not imply almost gpr-regularity in general. However, we observe that every almost gpr-
normal gpr-Rgspace is almost gpr-regular.
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Next, we prove the following.
Theorem 7.8: Every almost regular, v-compact space X is almost gpr-normal.
Recall that a function f: X— Y is called rc-continuous if inverse image of regular closed set is regular closed.
Now, we state the invariance of almost gpr-normality in the following.

Theorem 7.9: If fis continuous M-gpr-open rc-continuous and almost gpr-irresolute surjection from an almost gpr-
normal space X onto a space Y, then Y is almost gpr-normal.

Definition 7.3: A space X is said to be mildly gpr-normal if for every pair of disjoint regular closed sets F; and F, of X,
there exist disjoint gpr-open sets U and V such that Fc Uand F, c V..

Note 8: From the above definition we have the following implication diagram.
Mild-T, — Mild-g-T4 — Mild-ag-T, — Mild-gp-T, — Mild-gpr-Ty
T T
Mild-r-Ty—» > > - > > - —> —> > > — — — — Mild-rg-T4 none is reversible
We have the following characterization of mild gpr-normality.
Theorem 7.10: For a space X the following are equivalent.
(i) Xis mildly gpr-normal.
(i1) For every pair of regular open sets U and V whose union is X, there exist gpr-closed sets G and H such that G c
U,Hc Vand GUH = X.
(iii) For any regular closed set A and every regular open set B containing A, there exists a gpr-open set U such that
AcUcgprcl(U)cB.

(iv) For every pair of disjoint regular closed sets, there exist gpr-open sets U and V such that AcU, BcV and
gprcl(U)mgprel(V) = 0.

This theorem may be proved by using the arguments similar to those of Theorem 7.7.
Also, we observe that mild gpr-normality is regular open hereditary.
We define the following

Definition 7.4: A space X is weakly gpr-regular if for each point x and a regular open set U containing {x}, there is a
gpr-open set V such that xe Vc clV c U.

Theorem 7.11: If £ X — Y is an M-gpr-open rc-continuous and almost gpr-irresolute function from a mildly gpr-
normal space X onto a space Y, then Y is mildly gpr-normal.

Proof: Let A be a regular closed set and B be a regular open set containing A. Then by rc-continuity of f, f7'(A)is a
regular closed set contained in the regular open set f'(B). Since X is mildly gpr-normal, there exists a gpr-open set V

such that f'(A) cVc gprel(V) c £ (B) by Theorem 7.10. As f is M-gpr-open and almost gpr-irresolute surjection, it
follows that fiV)e GPRO(Y) and Ac f(iV) c gprcl(fiV))c B. Hence Y is mildly gpr-normal.

Theorem 7.12: If £ X — Y is rc-continuous, M-gpr-closed map from a mildly gpr-normal space X onto a space Y,
then Y is mildly gpr-normal.

8. gpr-US spaces:

Definition 8.1: A sequence <x,> is said to be gpr-converges to a point x of X, written as <x,> —*" x if <x,> is
eventually in every gpr-open set containing x.

Clearly, if a sequence <x,> r-converges to a point x of X, then <x,> gpr-converges to x.
Definition 8.2: A space X is said to be gpr-US if every sequence <x,> in X gpr-converges to a unique point.

Theorem 8.1: Every gpr-US space is gpr-T;.
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Proof: Let X be gpr-US space. Let x and y be two distinct points of X. Consider the sequence <x,> where x, = x for
every n. Cleary, <x,> gpr-converges to X. Also, since x # y and X is gpr-US, <x,> cannot gpr-converge to y, i.e, there
exists a gpr-open set V containing y but not x. Similarly, if we consider the sequence <y,> where y, =y for all n, and
proceeding as above we get a gpr-open set U containing x but not y. Thus, the space X is gpr-T).

Theorem 8.2: Every gpr-T, space is gpr-US.

Proof: Let X be gpr-T, space and <x,> be a sequence in X. If possible suppose that <x,> gpr-converge to two distinct
points x and y. That is, <x,> is eventually in every gpr-open set containing x and also in every gpr-open set containing
y. This is contradiction since X is gpr-T, space. Hence the space X is gpr-US.

Definition 8.3: A set F is sequentially gpr-closed if every sequence in F gpr-converges to a point in F.

Theorem 8.3: X is gpr-US iff the diagonal set is a sequentially gpr-closed subset of X x X.

Proof: Let X be gpr-US. Let <x, , X,> be a sequence in A. Then <x,> is a sequence in X. As X is gpr-US, <x,> =" x
for a unique x € X. i.e., if <x,> gpr-converges to x and y. Thus, x = y. Hence A is sequentially gpr-closed set.

Conversely, let A be sequentially gpr-closed. Let a sequence <x,> gpr-converge to x and y. Hence sequence <x, , X,>
gpr-converges to (x,y). Since A is sequentially gpr-closed, (x,y) € A which means that x =y implies space X is gpr-
Us.

Definition 8.4: A subset G of a space X is said to be sequentially gpr-compact if every sequence in G has a
subsequence which gpr-converges to a point in G.

Theorem 8.4: In a gpr-US space every sequentially gpr-compact set is sequentially gpr-closed.

Proof: Let X be gpr-US space. Let Y be a sequentially gpr-compact subset of X. Let <x,> be a sequence in Y.
Suppose that <x,> gpr-converges to a point in X-Y. Let <x,,> be subsequence of <x,> that gpr-converges to a point y
€ Y since Y is sequentially gpr-compact. Also, let a subsequence <x,,> of <x,> gpr-converge to x € X-Y. Since
<Xpp> is a sequence in the gpr-US space X, x=y. Thus, Y is sequentially gpr-closed set.

Next, we give a hereditary property of gpr-US spaces.

Theorem 8.5: Every regular open subset of a gpr-US space is gpr-US.

Proof: Let X be a gpr-US space and Y < X be an regular open set. Let <x,> be a sequence in Y. Suppose that <x,>
gpr-converges to x and y in Y. We shall prove that <x,> gpr-converges to x and y in X. Let U be any gpr-open subset
of X containing x and V be any gpr-open set of X containing y. Then, UNY and VMY are gpr-open sets in Y.
Therefore, <x,> is eventually in UNY and VMY and so in U and V. Since X is gpr-US, this implies that x = y. Hence
the subspace Y is gpr-US.

Theorem 8.6: A space X is gpr-T, iff it is both gpr-R; and gpr-US.

Proof: Let X be gpr-T, space. Then X is gpr-R; and gpr-US by Theorem 8.2.

Conversely, let X be both gpr-R; and gpr-US space. By Theorem 8.1, X is both gpr-T; and gpr-R, and, it follows that
space X is gpr-T».

Definition 8.5: A point y is a gpr-cluster point of sequence <x,> iff <x,> is frequently in every gpr-open set containing
X.

The set of all gpr-cluster points of <x,> will be denoted by gpr-cl(x,).

Definition 8.6: A point y is gpr-side point of a sequence <x,> if y is a gpr-cluster point of <x,> but no subsequence of
<x,> gpr-converges to y.

Now, we define the following.

Definition 8.7: A space X is said to be gpr-S; if it is gpr-US and every sequence <x,> gpr-converges with subsequence
of <x,> gpr-side points.
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Definition 8.8: A space X is said to be gpr-S, if it is gpr-US and every sequence <x,> in X gpr-converges which has
no gpr-side point.

Lemma 8.1: Every gpr-S, space is gpr-S; and Every gpr-S; space is gpr-US.

Now using the notion of sequentially continuous functions, we define the notion of sequentially gpr-continuous
functions.

Definition 8.9: A function fis said to be sequentially gpr-continuous at x € X if f{x,) gpr-converges to f(x) whenever
<x,> is a sequence gpr-converging to x. If f is sequentially gpr-continuous at all xe X, then fis said to be sequentially
gpr-continuous.

Theorem 8.7: Let fand g be two sequentially gpr-continuous functions. If Y is gpr-US, then the set A = {x | fix) =
g(x)} is sequentially gpr-closed.

Proof: Let Y be gpr-US and suppose that there is a sequence <x,> in A gpr-converging to x € X. Since f and g are
sequentially gpr-continuous functions, f (x,) =" f(x) and g(x,) =" g(x). Hence f(x) = g(x) and x € A. Therefore, A is
sequentially gpr-closed.

Next, we prove the product theorem for gpr-US spaces.
Theorem 8.8: Product of arbitrary family of gpr-US spaces is gpr-US.

Proof: Let X = [Lc. X; where X; is gpr-US. Let a sequence <x,> in X gpr-converges to x (= x3) and y (= y;). Then
the sequence <x,;,> gpr-converges to x, and y, for all A € A. For suppose there exists a L € A such that <x,,> does not
gpr-converges to x,. Then there exists a T,-gpr-open set U, containing x, such that <x,,> is not eventually in U,.
Consider the set U = [[)c. Xy x U,. Then U is a gpr-open subset of X and x € U. Also, <x,> is not eventually in U,
which contradicts the fact that <x,> gpr-converges to x. Thus we get <x,;> gpr-converges to x; and y; forall A € A.

Since X, is gpr-US for each Ae A. Thus x = y. Hence X is gpr-US.
9. Sequentially sub-gpr-continuity:

In this section we introduce and study the concepts of sequentially sub-gpr-continuity, sequentially nearly gpr-
continuity and sequentially gpr-compact preserving functions and study their relations and the property of gpr-US
spaces.

Definition 9.1: A function f is said to be sequentially nearly gpr-continuous if for each point xe X and each sequence
<x,> in X gpr-converging to x, there exists a subsequence <x,> of <x,>suchthat  <f(x,)>—*" f(x).

Definition 9.2: A function f is said to be sequentially sub-gpr-continuous if for each point x € X and each sequence
<x,> in X gpr-converging to x, there exists a subsequence <x,> of <x,> and a point y € Y such that <f(x,)> =" y.

Definition 9.3: A function fis said to be sequentially gpr-compact preserving if f{K) is sequentially gpr-compact in Y
for every sequentially gpr-compact set K of X.

Lemma 9.1: Every function fis sequentially sub-gpr-continuous if Y is a sequentially gpr-compact.

Proof: Let <x,> be a sequence in X gpr-converging to a point x of X. Then {f (x,)} is a sequence in Y and as Y is
sequentially gpr-compact, there exists a subsequence {f(x,)} of {f(x,)} gpr-converging to a point ye Y. Hence f is
sequentially sub-gpr-continuous.

Theorem 9.1: Every sequentially nearly gpr-continuous function is sequentially gpr-compact preserving.

Proof: Suppose fis a sequentially nearly gpr-continuous function and let K be any sequentially gpr-compact subset of
X. Let <y,> be any sequence in f (K). Then for each positive integer n, there exists a point x, € K such that f(x,) = y,.
Since <x,> is a sequence in the sequentially gpr-compact set K, there exists a subsequence <x> of <x,> gpr-
converging to a point x € K. By hypothesis, f is sequentially nearly gpr-continuous and hence there exists a
subsequence <x;> of <x,> such that f(x;))—*" f(x). Thus, there exists a subsequence <y;> of <y,> gpr-converging to
Jx)ef(K). This shows that f{K) is sequentially gpr-compact set in Y.

Theorem 9.2: Every sequentially sg-continuous function is sequentially gpr-continuous.
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Proof: Let f be a sequentially gp-continuous and <x,> be a sequence in X which gp-converges to a point xe X. Then
<x,> gp-converges to X. Since fis sequentially gp-continuous, f(x,)—>* f(x). But we know that <x,> gp-converges to x
implies <x,> gpr-converges to x and hence f(x,)—*" f(x) implies fis sequentially gpr-continuous.

Note 9: From the above Theorem we have the following implication diagram.
seq.c — seq.g.c — seq.0lg.c — seq.gp.c — seq.gpr.c

Seq.rc - —- — — — — — — = — — seq.rg.c none is reversible
Theorem 9.3: Every sequentially gpr-compact preserving function is sequentially sub-gpr-continuous.

Proof: Suppose fis a sequentially gpr-compact preserving function. Let x be any point of X and <x,> any sequence in
X gpr-converging to x. We shall denote the set {x,In=1,2,3, ...} by A and K = A U {x}. Then K is sequentially gpr-
compact since x, —*" x. By hypothesis, f is sequentially gpr-compact preserving and hence f{K) is a sequentially gpr-
compact set of Y. Since {f(x,)} is a sequence in f{(K), there exists a subsequence {f(x,)} of {f(x,)} gpr-converging to a
point ye f(K). This implies that f'is sequentially sub-gpr-continuous.

Theorem 9.4: A function f: X— Y is sequentially gpr-compact preserving iff fix: K — f (K) is sequentially sub-gpr-
continuous for each sequentially gpr-compact subset K of X.

Proof: Suppose fis a sequentially gpr-compact preserving function. Then f(K) is sequentially gpr-compact set in Y for
each sequentially gpr-compact set K of X. Therefore, by Lemma 9.1 above, fix: K— f (K) is sequentially
gpr-continuous function.

Conversely, let K be any sequentially gpr-compact set of X. Let <y,> be any sequence in f{K). Then for each positive
integer n, there exists a point x,€ K such that f(x,) = y,. Since <x,> is a sequence in the sequentially gpr-compact set
K, there exists a subsequence <x,> of <x,> gpr-converging to a point x € K. By hypothesis, f x: K— fiK) is
sequentially sub-gpr-continuous and hence there exists a subsequence <y, > of <y,> gpr-converging to a point ye
Sf(K).This implies that f{K) is sequentially gpr-compact set in Y. Thus, f is sequentially gpr-compact preserving
function.

The following corollary gives a sufficient condition for a sequentially sub-gpr-continuous function to be sequentially
gpr-compact preserving.

Corollary 9.1: If fis sequentially sub-gpr-continuous and f (K) is sequentially gpr-closed set in Y for each sequentially
gpr-compact set K of X, then f'is sequentially gpr-compact preserving function.

Proof: Omitted.
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