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ABSTRACT 
In order to improve the convergence rate of the iterative methods namely Jacobi method and Gauss-Seidel method, we 
consider a new preconditioner based on the preconditioner proposed by Zhouji Chen [4]. We discuss some of the 
convergence property and also provide some comparison results of the new methods. In addition, some simple 
numerical examples are also introduced to illustrate the theoretical analysis. 
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1. INTRODUCTION  
 
Let us consider the following linear system 
                                                                                            𝐴𝐴𝐴𝐴 = 𝑏𝑏 
Where 𝐴𝐴 = (𝑎𝑎𝑖𝑖𝑖𝑖 )𝑛𝑛𝑛𝑛𝑛𝑛  is a known nonsingular 𝑀𝑀-matrix, 𝑏𝑏 is a known 𝑛𝑛𝑛𝑛1 and 𝑥𝑥 is an unknown 𝑛𝑛𝑛𝑛1 vectors. 
Throughout the present paper, without loss of generality we always assume that the coefficient matrix 𝐴𝐴 has a splitting 
of the form 𝐴𝐴 = 𝐼𝐼 − 𝐿𝐿 − 𝑈𝑈,  where 𝐼𝐼 is the identity matrix, 𝐿𝐿 and 𝑈𝑈 are strictly lower triangular and strictly upper 
triangular matrices derived from 𝐴𝐴, respectively. 
 
The basic idea behind an iterative method is first to write the system 𝐴𝐴𝐴𝐴 = 𝑏𝑏 in the equivalent form 𝑥𝑥 = 𝑇𝑇𝑇𝑇 + 𝑐𝑐. After 
making the system of equations 𝐴𝐴𝐴𝐴 = 𝑏𝑏 in the form 𝑥𝑥 = 𝑇𝑇𝑇𝑇 + 𝑐𝑐, a sequence of approximations {𝑥𝑥(𝑘𝑘)}𝑘𝑘∞ is obtained by 
the following scheme: 

𝑥𝑥(𝑘𝑘+1) = 𝑇𝑇𝑥𝑥(𝑘𝑘) + 𝑐𝑐;      𝑘𝑘 = 0, 1, 2, 3,⋯⋯⋯ 
starting with an initial approximations 𝑥𝑥(0) = (𝑥𝑥1

(0), 𝑥𝑥2
(0), 𝑥𝑥3

(0),⋯⋯⋯⋯ , 𝑥𝑥𝑛𝑛
(0))𝑇𝑇  to the true solution vector 𝑥𝑥 and 

𝐴𝐴 = 𝑀𝑀 −𝑁𝑁;   𝑀𝑀 is a nonsingular matrix. Then 𝑇𝑇 = 𝑀𝑀−1𝑁𝑁 is called the iteration matrix and 𝑐𝑐 = 𝑀𝑀−1𝑏𝑏 is called the 
iteration vector of the iterative method. 
 
Next, we transform the linear system 𝐴𝐴𝐴𝐴 = 𝑏𝑏 into the preconditioned linear system 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃, 
Where 𝑃𝑃 is called a preconditioner. When we apply the Jacobi iterative method or the Gauss-Seidel iterative method to 
the above preconditioned linear system, then we obtain the preconditioned Jacobi iterative method or the 
preconditioned Gauss-Seidel iterative method for solving the system of linear equations 𝐴𝐴𝐴𝐴 = 𝑏𝑏. 
 
In 1991, Gunawardena et al. [1] first proposed the preconditioner 𝑃𝑃𝑠𝑠 = 𝐼𝐼 + 𝑆𝑆, where 𝑆𝑆 is defined by,  

𝑆𝑆 = �𝑠𝑠𝑖𝑖𝑖𝑖 � = �
−𝑎𝑎𝑖𝑖 ,𝑖𝑖+1 ,    1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1

  0,          𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
� 

 
In 2004, M. Morimoto et al. [3] considered the preconditioner 𝑃𝑃𝑠𝑠𝑠𝑠  as follows: 

𝑃𝑃𝑠𝑠𝑠𝑠 = 𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚  ; 
Where 𝑆𝑆 is mentioned above and 𝑆𝑆𝑚𝑚  is defined as  

𝑆𝑆𝑚𝑚 = ((𝑠𝑠𝑚𝑚 )𝑖𝑖𝑖𝑖 ) =  �
−𝑎𝑎𝑖𝑖 ,𝑘𝑘𝑖𝑖  ,    𝑖𝑖 = 1, 2,⋯⋯ ,𝑛𝑛 − 2 ;     𝑗𝑗 > 𝑖𝑖 + 1

       0  ,               𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                         
� 

and                                                        𝑘𝑘𝑖𝑖 = min � j ∶ max
j �aij �, i < 𝑛𝑛 − 1, 𝑗𝑗 > 𝑖𝑖 + 1 �. 
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In 2013, Zhouji Chen [4] proposed the preconditioner 𝑃𝑃𝑠𝑠𝑠𝑠2 as follows: 

𝑃𝑃𝑠𝑠𝑠𝑠2 = 𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚  
Where 𝑆𝑆,  𝑆𝑆𝑚𝑚  are given above and 𝑅𝑅𝑚𝑚  is defined as  

𝑅𝑅𝑚𝑚 = (𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚 ) =  �
−𝑎𝑎𝑛𝑛 ,𝑘𝑘𝑛𝑛  ,    𝑖𝑖 = 𝑛𝑛 ,    𝑗𝑗 = 𝑘𝑘𝑛𝑛

0  ,         𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
� 

and                                      𝑘𝑘𝑛𝑛 = min{𝑗𝑗: �𝑎𝑎𝑛𝑛 ,𝑗𝑗 � = max��𝑎𝑎𝑛𝑛 ,𝑙𝑙 �, 𝑙𝑙 = 1, 2,⋯⋯ ,𝑛𝑛 − 1�} 
 
We propose a new preconditioner 𝑃𝑃𝑠𝑠𝑠𝑠3 as follows: 

𝑃𝑃𝑠𝑠𝑠𝑠3 = 𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅′ 
Where  𝑆𝑆, 𝑆𝑆𝑚𝑚 , 𝑅𝑅𝑚𝑚   are mentioned above and 𝑅𝑅′ is defined by  

𝑅𝑅′ = (𝑟𝑟𝑖𝑖𝑖𝑖′ ) =  �
−𝑎𝑎𝑛𝑛𝑛𝑛  ,   1 ≤ 𝑗𝑗 ≤ 𝑛𝑛 − 1 ,    𝑗𝑗 ≠ 𝑘𝑘𝑛𝑛

0,                        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
� 

Then the preconditioned system matrices for the preconditioners 𝑃𝑃𝑠𝑠 , 𝑃𝑃𝑠𝑠𝑠𝑠 , 𝑃𝑃𝑠𝑠𝑠𝑠2 and 𝑃𝑃𝑠𝑠𝑠𝑠3  are respectively as follows: 
𝐴𝐴𝑠𝑠 = 𝑀𝑀𝑠𝑠 − 𝑁𝑁𝑠𝑠 = 𝐼𝐼 − 𝐷𝐷 − 𝐿𝐿 − 𝐸𝐸 − 𝑈𝑈 + 𝑆𝑆 − 𝑆𝑆𝑆𝑆 

𝐴𝐴𝑠𝑠𝑠𝑠 = 𝑀𝑀𝑠𝑠𝑠𝑠 − 𝑁𝑁𝑠𝑠𝑠𝑠 = 𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐿𝐿 − 𝐸𝐸 − 𝐸𝐸′ − 𝑈𝑈 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 − 𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑚𝑚𝑈𝑈−𝐹𝐹′ 
𝐴𝐴𝑠𝑠𝑠𝑠2 = 𝑀𝑀𝑠𝑠𝑠𝑠2 −𝑁𝑁𝑠𝑠𝑠𝑠2  

=  𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐿𝐿 − 𝐸𝐸 − 𝐸𝐸′ − 𝐷𝐷′′ − 𝐸𝐸′′ + 𝑅𝑅𝑚𝑚 − 𝑈𝑈 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 − 𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑚𝑚𝑈𝑈−𝐹𝐹′ 
and           
                    𝐴𝐴𝑠𝑠𝑠𝑠3 = 𝑀𝑀𝑠𝑠𝑠𝑠3 −𝑁𝑁𝑠𝑠𝑠𝑠3  
                             =  𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐿𝐿 − 𝐸𝐸 − 𝐸𝐸′ − 𝐷𝐷′′ − 𝐷𝐷′′′ − 𝐸𝐸′′ − 𝐸𝐸′′′ + 𝑅𝑅𝑚𝑚 + 𝑅𝑅′ − 𝑈𝑈 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 − 𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑚𝑚𝑈𝑈−𝐹𝐹′ 
Where 𝐷𝐷, 𝐸𝐸 are the diagonal and strictly lower triangular parts of 𝑆𝑆𝑆𝑆; 𝐷𝐷′, 𝐸𝐸′ and 𝐹𝐹′ are the diagonal, strictly lower and 
strictly upper triangular parts of 𝑆𝑆𝑚𝑚𝐿𝐿; 𝐷𝐷′′ and 𝐸𝐸′′ are the diagonal and strictly lower triangular parts of 𝑅𝑅𝑚𝑚 (𝐿𝐿 + 𝑈𝑈) and 
𝐷𝐷′′′, 𝐸𝐸′′′ are the diagonal and strictly lower triangular parts of 𝑅𝑅′(𝐿𝐿 + 𝑈𝑈)  respectively.  
 
Now, let we make the following assumption:  

(A)                                           

⎩
⎪
⎨

⎪
⎧          0 < 𝑎𝑎𝑖𝑖 ,𝑖𝑖+1𝑎𝑎𝑖𝑖+1,𝑖𝑖 + 𝑎𝑎𝑖𝑖 ,𝐾𝐾𝑖𝑖𝑎𝑎𝐾𝐾𝑖𝑖 ,𝑖𝑖 < 1;     𝑖𝑖 = 1, 2,⋯⋯ ,𝑛𝑛 − 2

0 < 𝑎𝑎𝑖𝑖 ,𝑖𝑖+1𝑎𝑎𝑖𝑖+1,𝑖𝑖 < 1;           𝑖𝑖 = 𝑛𝑛 − 1                          
0 < 𝑎𝑎𝑛𝑛 ,𝐾𝐾𝑛𝑛 𝑎𝑎𝐾𝐾𝑛𝑛 ,𝑛𝑛 < 1                                                  

 0 ≤ ∑ 𝑎𝑎𝑛𝑛 ,𝑘𝑘𝑎𝑎𝑘𝑘 ,𝑛𝑛 < 1,         𝑘𝑘 ≠ 𝐾𝐾𝑛𝑛𝑛𝑛−1
𝑘𝑘=1                           

� 

 
then the preconditioned iteration matrices 𝑇𝑇𝑠𝑠 ,  𝑇𝑇𝑠𝑠𝑠𝑠 , 𝑇𝑇𝑠𝑠𝑠𝑠2  and 𝑇𝑇𝑠𝑠𝑠𝑠3 for both the modified Jacobi and modified Gauss-
Seidel methods are well-defined. For our convenience, for solving the linear system by modified Jacobi method, we use 
index J and for solving by modified Gauss-Seidel method, we use index G. 
 
Next, we organize the remaining portion of the paper as follows: Section 2 is the preliminaries. In section 3, we 
established some comparison theorems. Two simple numerical examples are studied in section 4 to illustrate our 
theoretical results. Lastly in section 5, conclusion is drawn. 
 
2. PRELIMINARY NOTES 
 
Suppose 𝐴𝐴 = (𝑎𝑎𝑖𝑖𝑖𝑖 )𝑛𝑛𝑛𝑛𝑛𝑛   and 𝐵𝐵 = (𝑏𝑏𝑖𝑖𝑖𝑖 )𝑛𝑛𝑛𝑛𝑛𝑛  then we write 𝐴𝐴 ≥ 𝐵𝐵 if 𝑎𝑎𝑖𝑖𝑖𝑖 ≥ 𝑏𝑏𝑖𝑖𝑖𝑖  holds for all 𝑖𝑖, 𝑗𝑗 = 1, 2,⋯⋯ ,𝑛𝑛 and 𝐴𝐴 ≥ 0 
(called nonnegative) if 𝑎𝑎𝑖𝑖𝑖𝑖 ≥ 0 for all 𝑖𝑖, 𝑗𝑗 = 1, 2,⋯⋯ ,𝑛𝑛 ; where 0 is an 𝑛𝑛𝑛𝑛𝑛𝑛 zero matrix. For the 𝑛𝑛𝑛𝑛1 vectors 
𝑎𝑎, 𝑏𝑏;   𝑎𝑎 ≥ 𝑏𝑏 and 𝑎𝑎 ≥ 0 can also be defined in the similar manner.  
 
Definition 2.1: A 𝑍𝑍-matrix 𝐴𝐴 is called an 𝑀𝑀-matrx, if all the diagonal entries of  𝐴𝐴  are positive, all the real eigenvalues 
of  𝐴𝐴  are positive and the real part of any eigenvalue of  𝐴𝐴  is positive. 
 
Definition 2.2: [5] A matrix 𝐴𝐴 = (𝑎𝑎𝑖𝑖𝑖𝑖 )𝑛𝑛𝑛𝑛𝑛𝑛  is an 𝐿𝐿-matrix if 𝑎𝑎𝑖𝑖𝑖𝑖 > 0, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 and 𝑎𝑎𝑖𝑖𝑖𝑖 ≤ 0; 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛, 𝑖𝑖 ≠ 𝑗𝑗. A 
nonsingular 𝐿𝐿-matrix 𝐴𝐴 is said to be a nonsingular 𝑀𝑀-matrix if 𝐴𝐴−1 ≥ 0. 
 
Definition 2.3:  Let 𝐴𝐴 be a real matrix. Then the representation 𝐴𝐴 = 𝑀𝑀 −𝑁𝑁 is called a splitting of 𝐴𝐴 if 𝑀𝑀 is a 
nonsingular matrix. The splitting is called  

(1)  convergent if  𝜌𝜌(𝑀𝑀−1𝑁𝑁) < 1; 
(2)  regular if  𝑀𝑀−1 ≥ 0 and  𝑁𝑁 ≥ 0; 
(3)  weak regular if  𝑀𝑀−1 ≥ 0 and  𝑀𝑀−1𝑁𝑁 ≥ 0; 
(4)  nonnegative if  𝑀𝑀−1𝑁𝑁 ≥ 0; 
(5)  𝑀𝑀-splitting if  𝑀𝑀 is a nonsingular 𝑀𝑀-matrix and 𝑁𝑁 ≥ 0. 
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Definition 2.4:  The splitting 𝐴𝐴 = 𝑀𝑀 −𝑁𝑁 is called the Jacobi splitting of 𝐴𝐴 if 𝑀𝑀 = 𝐼𝐼 is nonsingular and 𝑁𝑁 = 𝐿𝐿 + 𝑈𝑈. In 
addition, the splitting is called  

(1) Jacobi convergent if  𝜌𝜌(𝑀𝑀−1𝑁𝑁) < 1; 
(2) Jacobi regular if  𝑀𝑀−1 = 𝐼𝐼−1 ≥ 0 and  𝑁𝑁 = (𝐿𝐿 + 𝑈𝑈) ≥ 0. 

 
Definition 2.5:  A splitting of matrix 𝐴𝐴 i.e.  𝐴𝐴 = 𝑀𝑀 −𝑁𝑁 is called a Gauss-Seidel splitting if 𝑀𝑀 = 𝐼𝐼 − 𝐿𝐿 is nonsingular 
and 𝑁𝑁 = 𝑈𝑈. In addition, the splitting is called  

(1) Gauss-Seidel convergent if  𝜌𝜌(𝑀𝑀−1𝑁𝑁) < 1; 
(2) Gauss-Seidel regular if  𝑀𝑀−1 = (𝐼𝐼 − 𝐿𝐿)−1 ≥ 0 and  𝑁𝑁 = 𝑈𝑈 ≥ 0; 
(3) Gauss-Seidel weak regular if  𝑀𝑀−1 ≥ 0 and  𝑀𝑀−1𝑁𝑁 ≥ 0. 

 
Lemma 2.6:  [6] Let 𝐴𝐴 be a nonnegative 𝑛𝑛𝑛𝑛𝑛𝑛 nonzero matrix, then  

(1) 𝜌𝜌(𝐴𝐴), the spectral radius of 𝐴𝐴, is an eigenvalue; 
(2) 𝐴𝐴 has a nonnegative eigenvector corresponding to 𝜌𝜌(𝐴𝐴); 
(3) 𝜌𝜌(𝐴𝐴) is a simple eigenvalue of 𝐴𝐴; 
(4) 𝜌𝜌(𝐴𝐴) increases when any entry of 𝐴𝐴 increases. 

 
Lemma 2.7: [7] Let 𝐴𝐴 = 𝑀𝑀 −𝑁𝑁 be an 𝑀𝑀-splitting of 𝐴𝐴. Then  𝜌𝜌(𝑀𝑀−1𝑁𝑁) < 1 if and only if 𝐴𝐴 is a nonsingular 𝑀𝑀-
matrix. 
 
Lemma 2.8: [8] Let 𝐴𝐴 be a nonsingular 𝑀𝑀-matrix and let  𝐴𝐴 = 𝑀𝑀1 − 𝑁𝑁1 = 𝑀𝑀2 − 𝑁𝑁2 be two convergence splitting, the 
first one weak regular and second one regular if 𝑀𝑀1

−1 ≥ 𝑀𝑀2
−1, then  

𝜌𝜌(𝑀𝑀1
−1𝑁𝑁1) ≤ 𝜌𝜌(𝑀𝑀2

−1𝑁𝑁2) < 1. 
 
Lemma 2.9: [9] Let 𝐴𝐴 be a nonsingular 𝐿𝐿-matrix. Then 𝐴𝐴 is called a nonsingular 𝑀𝑀-matrix if and only if there exists a 
positive vector 𝑦𝑦 such that  𝐴𝐴𝐴𝐴 > 0. 
 
Lemma 2.10: [7] Let 𝐴𝐴 be irreducible, 𝐴𝐴 = 𝑀𝑀 −𝑁𝑁 be an 𝑀𝑀-splitting. Then there is a positive vector 𝑥𝑥 such that  
𝑀𝑀−1𝑁𝑁𝑁𝑁 =  𝜌𝜌(𝑀𝑀−1𝑁𝑁)𝑥𝑥 and 𝜌𝜌(𝑀𝑀−1𝑁𝑁) > 0. 
 
Lemma 2.11: [11] Let 𝐴𝐴 = (𝑎𝑎𝑖𝑖𝑖𝑖 ) ∈ 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛  be an irreducible 𝑀𝑀-matrix with 𝑎𝑎𝑖𝑖 ,𝑖𝑖+1 ≠ 0 for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1, and let 
𝐴𝐴𝑠𝑠 = (𝐼𝐼 + 𝑆𝑆)𝐴𝐴 = 𝑀𝑀𝑠𝑠 − 𝑁𝑁𝑠𝑠 be the Gauss-Seidel splitting of 𝐴𝐴𝑠𝑠 . Then 𝑀𝑀𝑠𝑠

−1𝑁𝑁𝑠𝑠 has a positive perron vector and 
𝜌𝜌(𝑀𝑀𝑠𝑠

−1𝑁𝑁𝑠𝑠) > 0. 
 
Lemma 2.12: [12] Let 𝐴𝐴 be an 𝑀𝑀-matrix and let 𝐴𝐴𝑠𝑠 = (𝐼𝐼 + 𝑆𝑆)𝐴𝐴 = 𝑀𝑀𝑠𝑠 − 𝑁𝑁𝑠𝑠 be the Gauss-Seidel splitting of 𝐴𝐴𝑠𝑠 . If 
𝜌𝜌(𝑀𝑀𝑠𝑠

−1𝑁𝑁𝑠𝑠) > 0, then 𝐴𝐴𝐴𝐴 ≥ 0 for any nonnegative perron vector of 𝑀𝑀𝑠𝑠
−1𝑁𝑁𝑠𝑠 . 

 
Lemma 2.13: [1] Let  𝐴𝐴 be a nonnegative matrix. Then 

(a) If  𝛼𝛼𝛼𝛼 ≤ 𝐴𝐴𝐴𝐴 for some nonnegative vector 𝑥𝑥, 𝑥𝑥 ≠ 0,  then 𝛼𝛼 ≤ 𝜌𝜌(𝐴𝐴). 
(b) If  𝐴𝐴𝐴𝐴 ≤ 𝛽𝛽𝛽𝛽 for some positive vector 𝑥𝑥, then 𝜌𝜌(𝐴𝐴) ≤ 𝛽𝛽. Moreover, if 𝐴𝐴 is irreducible and if  0 ≠ 𝛼𝛼𝛼𝛼 ≤ 𝐴𝐴𝐴𝐴 ≤ 𝛽𝛽𝛽𝛽 

for some nonnegative vector  𝑥𝑥, then 𝛼𝛼 ≤ 𝜌𝜌(𝐴𝐴) ≤ 𝛽𝛽 and 𝑥𝑥 is a positive vector. 
 
3. COMPARISON RESULTS FOR MODIFIED ITERATIVE METHODS 
 
In this section, we derive some comparison theorems of the modified Jacobi and modified Gauss-Seidel methods with 
the preconditioners 𝑃𝑃𝑠𝑠 = 𝐼𝐼 + 𝑆𝑆 [1],𝑃𝑃𝑠𝑠𝑠𝑠 = 𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚  [3], 𝑃𝑃𝑠𝑠𝑠𝑠2 = 𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚  [4] and the proposed 
preconditioners 𝑃𝑃𝑠𝑠𝑠𝑠3 = 𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅′ and also discuss the convergence property of the two modified iterative 
methods with the above preconditioners. We assume,  𝐴𝐴 = (𝑎𝑎𝑖𝑖𝑖𝑖 )𝑛𝑛𝑛𝑛𝑛𝑛  is a nonsingular 𝑀𝑀-matrix with 𝑎𝑎𝑛𝑛 ,1 ≠ 0 and 
𝑎𝑎𝑖𝑖 ,𝑖𝑖+1 ≠ 0, 𝑖𝑖 = 1, 2, 3,⋯⋯ ,𝑛𝑛 − 1. 
 
Theorem 3.1: Let 𝐴𝐴 be a nonsingular 𝑀𝑀-matrix. Then under the assumption (A), the splitting 𝐴𝐴𝑠𝑠𝑠𝑠3𝐺𝐺 = 𝑀𝑀𝑠𝑠𝑠𝑠3𝐺𝐺 − 𝑁𝑁𝑠𝑠𝑠𝑠3𝐺𝐺  
is regular and Gauss-Seidel convergent.  
 
Proof: Under the assumption (A), we can notice that the diagonal elements of 𝐴𝐴𝑠𝑠𝑠𝑠3𝐺𝐺  all are positive and due to 
this 𝑀𝑀𝑠𝑠𝑠𝑠3𝐺𝐺

−1 exists. We know that (see [9]) an 𝐿𝐿-matrix 𝐴𝐴 is a nonsingular 𝑀𝑀-matrix if and only if there exists a 
positive vector 𝑦𝑦 such that 𝐴𝐴𝐴𝐴 > 0. By taking such 𝑦𝑦, the fact that 𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅′ ≥ 0 giving 𝐴𝐴𝑠𝑠𝑠𝑠3𝐺𝐺𝑦𝑦 =
(𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅′)𝐴𝐴𝐴𝐴 > 0. Thus, we have the 𝐿𝐿-matrix 𝐴𝐴𝑠𝑠𝑠𝑠3𝐺𝐺  is a nonsingular 𝑀𝑀-matrix which means that 
𝐴𝐴𝑠𝑠𝑠𝑠3𝐺𝐺

−1 ≥ 0 and therefore by Lemma 2.7., we obtain  𝜌𝜌(𝑀𝑀𝑠𝑠𝑠𝑠3𝐺𝐺
−1𝑁𝑁𝑠𝑠𝑠𝑠3𝐺𝐺 ) < 1 i.e. 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠3𝐺𝐺 ) < 1.  
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We also see that 𝐿𝐿 + 𝐸𝐸 + 𝐸𝐸′ + 𝐸𝐸′′ + 𝐸𝐸′′′ − 𝑅𝑅𝑚𝑚 − 𝑅𝑅′ ≥ 0, since 𝐿𝐿 ≥ 𝑅𝑅𝑚𝑚 + 𝑅𝑅′ ≥ 0. Using the assumption (A), we have 
𝐷𝐷 + 𝐷𝐷′ + 𝐷𝐷′′ + 𝐷𝐷′′′ < 𝐼𝐼 so that  𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐷𝐷′′ − 𝐷𝐷′′′ ≥ 0.  Thus 

𝑀𝑀𝑠𝑠𝑠𝑠3𝐺𝐺
−1 = (𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐷𝐷′′ − 𝐷𝐷′′′ − 𝐿𝐿 − 𝐸𝐸 − 𝐸𝐸′ − 𝐸𝐸′′ − 𝐸𝐸′′′ + 𝑅𝑅𝑚𝑚 + 𝑅𝑅′)−1 

= [(𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐷𝐷′′ − 𝐷𝐷′′′) − (𝐿𝐿 + 𝐸𝐸 + 𝐸𝐸′ + 𝐸𝐸′′ + 𝐸𝐸′′′ − 𝑅𝑅𝑚𝑚 − 𝑅𝑅′)]−1 
= [𝐼𝐼 − (𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐷𝐷′′ − 𝐷𝐷′′′)−1(𝐿𝐿 + 𝐸𝐸 + 𝐸𝐸′ + 𝐸𝐸′′ + 𝐸𝐸′′′ − 𝑅𝑅𝑚𝑚 − 𝑅𝑅′)]−1(𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐷𝐷′′ − 𝐷𝐷′′′)−1 

              = {𝐼𝐼 + [(𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐷𝐷′′ − 𝐷𝐷′′′)−1(𝐿𝐿 + 𝐸𝐸 + 𝐸𝐸′ + 𝐸𝐸′′ + 𝐸𝐸′′′ − 𝑅𝑅𝑚𝑚 − 𝑅𝑅′)] + [(𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐷𝐷′′ − 𝐷𝐷′′′)−1(𝐿𝐿 +
𝐸𝐸+𝐸𝐸′+𝐸𝐸′′+𝐸𝐸′′′−𝑅𝑅𝑚𝑚−𝑅𝑅′)2+⋯⋯⋯⋯+𝐼𝐼−𝐷𝐷−𝐷𝐷′−𝐷𝐷′′−𝐷𝐷′′′−1(𝐿𝐿+𝐸𝐸+𝐸𝐸′+𝐸𝐸′′+𝐸𝐸′′′−𝑅𝑅𝑚𝑚−𝑅𝑅′)𝑛𝑛−1}(𝐼𝐼−𝐷𝐷−𝐷𝐷′−𝐷𝐷′′−𝐷𝐷′′′)−1≥
0 
and   𝑁𝑁𝑠𝑠𝑠𝑠3𝐺𝐺 = 𝑈𝑈 − 𝑆𝑆 − 𝑆𝑆𝑚𝑚 + 𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑚𝑚𝑈𝑈 + 𝐹𝐹′ ≥ 0,  since 𝑈𝑈 ≥ 𝑆𝑆 + 𝑆𝑆𝑚𝑚 ≥ 0 and  𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑚𝑚𝑈𝑈 + 𝐹𝐹′ ≥ 0. 
 
Hence 𝐴𝐴𝑠𝑠𝑠𝑠3𝐺𝐺 = 𝑀𝑀𝑠𝑠𝑠𝑠3𝐺𝐺 − 𝑁𝑁𝑠𝑠𝑠𝑠3𝐺𝐺  is a regular and Gauss-Seidel convergent splitting by definition 2.5. and Lemma 2.7..  
 
Theorem 3.2: Let 𝐴𝐴 be a nonsingular 𝑀𝑀-matrix. Then under the assumption (A), the splitting 𝐴𝐴𝑠𝑠𝑠𝑠2𝐺𝐺 = 𝑀𝑀𝑠𝑠𝑠𝑠2𝐺𝐺 − 𝑁𝑁𝑠𝑠𝑠𝑠2𝐺𝐺  
is regular and Gauss-Seidel convergent.  
 
Proof: See, Zhouji Chen [4, Theorem 1]. 
 
Theorem 3.3: Let 𝐴𝐴 be a nonsingular 𝑀𝑀-matrix. Then under the assumption(A), the following inequality holds: 

𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠3𝐺𝐺 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 ) < 1. 
 
Proof: From Theorem 3.2., we have 𝐴𝐴𝑠𝑠𝑠𝑠2𝐺𝐺 = 𝑀𝑀𝑠𝑠𝑠𝑠2𝐺𝐺 − 𝑁𝑁𝑠𝑠𝑚𝑚2𝐺𝐺 , where 𝑀𝑀𝑠𝑠𝑠𝑠2𝐺𝐺 = 𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐷𝐷′′ − 𝐿𝐿 − 𝐸𝐸 − 𝐸𝐸′ − 𝐸𝐸′′ +
𝑅𝑅𝑚𝑚  and 𝑁𝑁𝑠𝑠𝑠𝑠2𝐺𝐺 = 𝑈𝑈 − 𝑆𝑆 − 𝑆𝑆𝑚𝑚 + 𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑚𝑚𝑈𝑈 + 𝐹𝐹′; is the regular and Gauss-Seidel convergent splitting i.e., 𝑀𝑀𝑠𝑠𝑠𝑠2𝐺𝐺

−1 ≥
0, 𝑁𝑁𝑠𝑠𝑠𝑠2𝐺𝐺 ≥ 0 and 𝜌𝜌(𝑀𝑀𝑠𝑠𝑠𝑠2𝐺𝐺

−1𝑁𝑁𝑠𝑠𝑠𝑠2𝐺𝐺 ) < 1. Again, from Theorem 3.1., we know that 𝐴𝐴𝑠𝑠𝑠𝑠3𝐺𝐺 = 𝑀𝑀𝑠𝑠𝑠𝑠3𝐺𝐺 − 𝑁𝑁𝑠𝑠𝑚𝑚3𝐺𝐺 , where 
𝑀𝑀𝑠𝑠𝑠𝑠3𝐺𝐺 = 𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐷𝐷′′ − 𝐷𝐷′′′ − 𝐿𝐿 − 𝐸𝐸 − 𝐸𝐸′ − 𝐸𝐸′′ − 𝐸𝐸′′′ + 𝑅𝑅𝑚𝑚 + 𝑅𝑅′ and 𝑁𝑁𝑠𝑠𝑠𝑠3𝐺𝐺 = 𝑈𝑈 − 𝑆𝑆 − 𝑆𝑆𝑚𝑚 + 𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑚𝑚𝑈𝑈 + 𝐹𝐹′; is 
the regular and Gauss-Seidel convergent splitting i.e., 𝑀𝑀𝑠𝑠𝑠𝑠3𝐺𝐺

−1 ≥ 0, 𝑁𝑁𝑠𝑠𝑠𝑠3𝐺𝐺 ≥ 0 and 𝜌𝜌(𝑀𝑀𝑠𝑠𝑠𝑠3𝐺𝐺
−1𝑁𝑁𝑠𝑠𝑠𝑠3𝐺𝐺 ) < 1. 

 
Since 𝐴𝐴 is a nonsingular 𝑀𝑀-matrix and 𝐴𝐴𝑠𝑠𝑠𝑠2𝐺𝐺 = 𝑃𝑃𝑠𝑠𝑠𝑠2𝐴𝐴 is the Gauss-Seidel splitting, thus there exists a positive 
eigenvector 𝑥𝑥 such that 𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 𝑥𝑥 = 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 )𝑥𝑥 and 𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 � > 0. 
 
Ovbiously,                                                   𝑁𝑁𝑠𝑠𝑠𝑠3𝐺𝐺 = 𝑁𝑁𝑠𝑠𝑠𝑠2𝐺𝐺                                                                                                               
 
Also,                     𝑀𝑀𝑠𝑠𝑠𝑠3𝐺𝐺 − 𝑀𝑀𝑠𝑠𝑠𝑠2𝐺𝐺 = 𝑅𝑅′ − 𝐷𝐷′′′ − 𝐸𝐸′′′ = 𝑅𝑅′ − (𝐷𝐷′′′ + 𝐸𝐸′′′) 
                                                              = 𝑅𝑅′ − 𝑅𝑅′(𝐿𝐿 + 𝑈𝑈) = 𝑅𝑅′ − 𝑅𝑅′(𝐼𝐼 − 𝐴𝐴) = 𝑅𝑅′𝐴𝐴                                                        (1) 
It follows from (1) that 

𝑀𝑀𝑠𝑠𝑠𝑠2𝐺𝐺
−1 −𝑀𝑀𝑠𝑠𝑠𝑠23𝐺𝐺

−1 = 𝑀𝑀𝑠𝑠𝑠𝑠3𝐺𝐺
−1𝑅𝑅′𝐴𝐴𝑀𝑀𝑠𝑠𝑠𝑠2𝐺𝐺

−1                                                     (2) 
 
Multiplying on the right of (2) by 𝑁𝑁𝑠𝑠𝑠𝑠2𝐺𝐺 , we get 

𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 − 𝑇𝑇𝑠𝑠𝑠𝑠23𝐺𝐺 = 𝑀𝑀𝑠𝑠𝑠𝑠3𝐺𝐺
−1𝑅𝑅′𝐴𝐴𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺                                                                     (3) 

 
Multiplying again on the right of (3) by 𝑥𝑥 > 0, we have 

𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 �𝑥𝑥 − 𝑇𝑇𝑠𝑠𝑠𝑠3𝐺𝐺 𝑥𝑥 = 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 )𝑀𝑀𝑠𝑠𝑠𝑠3𝐺𝐺
−1𝑅𝑅′𝐴𝐴𝐴𝐴                                                    (4) 

Again,  
                                                        𝐴𝐴𝑠𝑠𝑠𝑠2𝐺𝐺 = 𝑃𝑃𝑠𝑠𝑠𝑠2𝐴𝐴 = 𝑀𝑀𝑠𝑠𝑠𝑠2𝐺𝐺 − 𝑁𝑁𝑠𝑠𝑚𝑚2𝐺𝐺      
Or,                                                   𝐴𝐴 = 𝑃𝑃𝑠𝑠𝑠𝑠2

−1 𝑀𝑀𝑠𝑠𝑠𝑠2𝐺𝐺 − 𝑃𝑃𝑠𝑠𝑠𝑠2
−1 𝑁𝑁𝑠𝑠𝑚𝑚2𝐺𝐺  

 
We assume                                      𝑀𝑀1 = 𝑃𝑃𝑠𝑠𝑠𝑠2

−1 𝑀𝑀𝑠𝑠𝑠𝑠2𝐺𝐺   and  𝑁𝑁1 = 𝑃𝑃𝑠𝑠𝑠𝑠2
−1 𝑁𝑁𝑠𝑠𝑠𝑠2𝐺𝐺  

One can easily verify that 𝑀𝑀1
−1𝑁𝑁1 = 𝑀𝑀𝑠𝑠𝑠𝑠2𝐺𝐺

−1𝑁𝑁𝑠𝑠𝑠𝑠2𝐺𝐺  and hence 𝜌𝜌(𝑀𝑀1
−1𝑁𝑁1) < 1 and 𝐴𝐴 = 𝑀𝑀1 − 𝑁𝑁1 be a regular and 

Gauss-Seidel convergent splitting and thus there exists a positive vector 𝑥𝑥 such that  𝜌𝜌(𝑀𝑀1
−1𝑁𝑁1)𝑥𝑥 = 𝑀𝑀1

−1𝑁𝑁1𝑥𝑥. 
Now,                                               𝐴𝐴𝐴𝐴 = (𝑀𝑀1 − 𝑁𝑁1)𝑥𝑥 = 𝑀𝑀1(𝐼𝐼 − 𝑀𝑀1

−1𝑁𝑁1)𝑥𝑥  
    = 𝑀𝑀1[1 − 𝜌𝜌(𝑀𝑀1

−1𝑁𝑁1)]𝑥𝑥 

    =
1 − 𝜌𝜌(𝑀𝑀1

−1𝑁𝑁1)
𝜌𝜌(𝑀𝑀1

−1𝑁𝑁1) 𝑀𝑀1 𝜌𝜌(𝑀𝑀1
−1𝑁𝑁1)𝑥𝑥 

   = 1−𝜌𝜌�𝑀𝑀1
−1𝑁𝑁1�

𝜌𝜌�𝑀𝑀1
−1𝑁𝑁1�

𝑁𝑁1𝑥𝑥 ≥ 0                                                                                         (5) 
 
We can easily observe from (4) and (5) that  

𝑇𝑇𝑠𝑠𝑠𝑠3𝐺𝐺𝑥𝑥 ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 )𝑥𝑥 
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Therefore, it follows from Lemma 2.13., that 

𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠3𝐺𝐺 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 ) 
Hence                                                                 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠3𝐺𝐺 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 ) < 1.   
 
This completes the proof of the theorem. 
 
Theorem 3.4: Let 𝐴𝐴 be a nonsingular 𝑀𝑀-matrix. Then under the assumption (A), the following inequality holds: 

𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠𝐺𝐺 ) < 1. 
 
Proof: See, Zhouji Chen [4, Theorem 3]. 
 
Theorem 3.5: Let 𝐴𝐴 be a nonsingular 𝑀𝑀-matrix. Then under the assumption (A), the following inequality holds: 

𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠𝐺𝐺 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝐺𝐺 ) < 1. 
 
Proof: See, M. Morimoto et al. [3]. 
 
Theorem 3.6: Let 𝐴𝐴 be a nonsingular 𝑀𝑀-matrix. Then under the assumption (A), the following inequality holds: 

𝜌𝜌(𝑇𝑇𝑠𝑠𝐺𝐺 ) ≤ 𝜌𝜌(𝑇𝑇) < 1. 
 
Proof: See, A. D. Gunawardena et al. [1]. 
 
Theorem 3.7: Let 𝐴𝐴 be a nonsingular 𝑀𝑀-matrix. Then under the assumption (A), the following inequality holds: 

𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠3𝐺𝐺 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠𝐺𝐺 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝐺𝐺 ) ≤ 𝜌𝜌(𝑇𝑇) < 1. 
 
Proof: Combining Theorem 3.3., Theorem 3.4., Theorem 3.5., and Theorem 3.6., we obtain 

𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠3𝐺𝐺 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠𝐺𝐺 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝐺𝐺 ) ≤ 𝜌𝜌(𝑇𝑇) < 1. 
 
Theorem 3.8: Let 𝐴𝐴 be a nonsingular 𝑀𝑀-matrix. Then under the assumption (A), the splittings 𝐴𝐴𝑠𝑠𝑠𝑠3𝐽𝐽 = 𝑀𝑀𝑠𝑠𝑠𝑠3𝐽𝐽 − 𝑁𝑁𝑠𝑠𝑠𝑠3𝐽𝐽   
and 𝐴𝐴𝑠𝑠𝑠𝑠2𝐽𝐽 = 𝑀𝑀𝑠𝑠𝑠𝑠2𝐽𝐽 − 𝑁𝑁𝑠𝑠𝑠𝑠2𝐽𝐽  both are regular and Jacobi convergent.  
 
Proof: We have 𝐴𝐴−1 ≥ 0, as 𝐴𝐴 is a nonsingular 𝑀𝑀-matrix. Under the assumption (A), the diagonal elements of 𝐴𝐴𝑠𝑠𝑠𝑠3𝐽𝐽  
are positive and so 𝑀𝑀𝑠𝑠𝑠𝑠3𝐽𝐽

−1 is well defined. We know that (see [9]) an 𝐿𝐿-matrix 𝐴𝐴 is a nonsingular 𝑀𝑀-matrix if and 
only if there exists a positive vector 𝑦𝑦 such that 𝐴𝐴𝐴𝐴 > 0. By taking such 𝑦𝑦, the fact that 𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅′ ≥ 0 
gives 𝐴𝐴𝑠𝑠𝑠𝑠3𝐽𝐽 𝑦𝑦 = (𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅′)𝐴𝐴𝐴𝐴 > 0. Due to this, the 𝐿𝐿-matrix 𝐴𝐴𝑠𝑠𝑠𝑠3𝐽𝐽  is a nonsingular 𝑀𝑀-matrix that means 
𝐴𝐴𝑠𝑠𝑠𝑠3𝐽𝐽

−1 ≥ 0 and hence by Lemma 2.7., we have  𝜌𝜌(𝑀𝑀𝑠𝑠𝑠𝑠3𝐽𝐽
−1𝑁𝑁𝑠𝑠𝑠𝑠3𝐽𝐽 ) < 1 i.e. 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠3𝐽𝐽 ) < 1.  

 From the assumption (A) mentioned above, we have 𝐷𝐷 + 𝐷𝐷′ + 𝐷𝐷′′ + 𝐷𝐷′′′ < 𝐼𝐼 so that, 𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐷𝐷′′ − 𝐷𝐷′′′ ≥ 0. 
Hence 

𝑀𝑀𝑠𝑠𝑠𝑠3𝐽𝐽
−1 = (𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐷𝐷′′ − 𝐷𝐷′′′)−1 

               = [𝐼𝐼 − (𝐷𝐷 + 𝐷𝐷′ + 𝐷𝐷′′ + 𝐷𝐷′′′)]−1 
       = 𝐼𝐼 + (𝐷𝐷 + 𝐷𝐷′ + 𝐷𝐷′′ + 𝐷𝐷′′′) + (𝐷𝐷 + 𝐷𝐷′ + 𝐷𝐷′′ + 𝐷𝐷′′′)2 + ⋯⋯⋯⋯ ≥ 0 

and           𝑁𝑁𝑠𝑠𝑠𝑠3𝐽𝐽 = 𝐿𝐿 + 𝐸𝐸 + 𝐸𝐸′ + 𝐸𝐸′′ + 𝐸𝐸′′′ − 𝑅𝑅𝑚𝑚 − 𝑅𝑅′ + 𝑈𝑈 − 𝑆𝑆 − 𝑆𝑆𝑚𝑚 + 𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑚𝑚𝑈𝑈 + 𝐹𝐹′ ≥ 0, since 𝐿𝐿 ≥ 𝑅𝑅𝑚𝑚 + 𝑅𝑅′ ≥ 0,  
𝑈𝑈 ≥ 𝑆𝑆 + 𝑆𝑆𝑚𝑚 ≥ 0 and 𝐸𝐸 + 𝐸𝐸′ + 𝐸𝐸′′ + 𝐸𝐸′′′ + 𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑚𝑚𝑈𝑈 + 𝐹𝐹′ ≥ 0. 
 
Therefore, it follows from definition 2.4. and Lemma 2.7., 𝐴𝐴𝑠𝑠𝑠𝑠3𝐽𝐽 = 𝑀𝑀𝑠𝑠𝑠𝑠3𝐽𝐽 − 𝑁𝑁𝑠𝑠𝑠𝑠3𝐽𝐽  is a regular and Jacobi convergent 
splitting. 
 
Similarly, it can be proved that 𝐴𝐴𝑠𝑠𝑠𝑠2𝐽𝐽 = 𝑀𝑀𝑠𝑠𝑠𝑠2𝐽𝐽 − 𝑁𝑁𝑠𝑠𝑠𝑠2𝐽𝐽  is a regular and Jacobi convergent splitting i.e. 𝑀𝑀𝑠𝑠𝑠𝑠2𝐽𝐽

−1 =
(𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐷𝐷′′)−1 ≥ 0,  𝑁𝑁𝑠𝑠𝑠𝑠2𝐽𝐽 = 𝐿𝐿 + 𝐸𝐸 + 𝐸𝐸′ + 𝐸𝐸′′ − 𝑅𝑅𝑚𝑚 + 𝑈𝑈 − 𝑆𝑆 − 𝑆𝑆𝑚𝑚 + 𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑚𝑚𝑈𝑈 + 𝐹𝐹′ ≥ 0 and 
𝜌𝜌(𝑀𝑀𝑠𝑠𝑠𝑠2𝐽𝐽

−1𝑁𝑁𝑠𝑠𝑠𝑠2𝐽𝐽 ) < 1 i.e. 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠2𝐽𝐽 ) < 1. 
 
Theorem 3.9: Let 𝐴𝐴 be a nonsingular 𝑀𝑀-matrix. Then under the assumption (A), the following inequality holds: 

𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠3𝐽𝐽 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠2𝐽𝐽 ) < 1. 
 
Proof: By Theorem 3.8., we have the splittings 𝐴𝐴𝑠𝑠𝑠𝑠3𝐽𝐽 = 𝑀𝑀𝑠𝑠𝑠𝑠3𝐽𝐽 − 𝑁𝑁𝑠𝑠𝑠𝑠3𝐽𝐽   and 𝐴𝐴𝑠𝑠𝑠𝑠2𝐽𝐽 = 𝑀𝑀𝑠𝑠𝑠𝑠2𝐽𝐽 − 𝑁𝑁𝑠𝑠𝑠𝑠2𝐽𝐽  are regular and 
Jacobi convergent i.e., 𝑀𝑀𝑠𝑠𝑠𝑠3𝐽𝐽

−1 = (𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐷𝐷′′ − 𝐷𝐷′′′)−1 ≥ 0, 𝑁𝑁𝑠𝑠𝑠𝑠3𝐽𝐽 = 𝐿𝐿 + 𝐸𝐸 + 𝐸𝐸′ + 𝐸𝐸′′ + 𝐸𝐸′′′ − 𝑅𝑅𝑚𝑚 − 𝑅𝑅′ + 𝑈𝑈 −
𝑆𝑆 − 𝑆𝑆𝑚𝑚 + 𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑚𝑚𝑈𝑈 + 𝐹𝐹′ ≥ 0, 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠3𝐽𝐽 ) <1 and 𝑀𝑀𝑠𝑠𝑠𝑠2𝐽𝐽

−1 = (𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐷𝐷′′)−1 ≥ 0,  𝑁𝑁𝑠𝑠𝑠𝑠2𝐽𝐽 = 𝐿𝐿 + 𝐸𝐸 + 𝐸𝐸′ + 𝐸𝐸′′ −
𝑅𝑅𝑚𝑚 + 𝑈𝑈 − 𝑆𝑆 − 𝑆𝑆𝑚𝑚 + 𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑚𝑚𝑈𝑈 + 𝐹𝐹′ ≥ 0 and 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠2𝐽𝐽 ) < 1. 
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In order to develop the required inequality, we consider the following splittings of 𝐴𝐴: 

𝐴𝐴𝑠𝑠𝑠𝑠3𝐽𝐽 = 𝑃𝑃𝑠𝑠𝑠𝑠3𝐴𝐴 = (𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅′)𝐴𝐴 = 𝑀𝑀𝑠𝑠𝑠𝑠3𝐽𝐽 − 𝑁𝑁𝑠𝑠𝑠𝑠3𝐽𝐽  
Then                    𝐴𝐴 = (𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅′)−1𝑀𝑀𝑠𝑠𝑠𝑠3𝐽𝐽 − (𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅′)−1𝑁𝑁𝑠𝑠𝑠𝑠3𝐽𝐽   
We let                  𝑀𝑀2 = (𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅′)−1𝑀𝑀𝑠𝑠𝑠𝑠3𝐽𝐽  
and                       𝑁𝑁2 = (𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅′)−1𝑁𝑁𝑠𝑠𝑠𝑠3𝐽𝐽  
Again,                  𝐴𝐴𝑠𝑠𝑠𝑠2𝐽𝐽 = 𝑃𝑃𝑠𝑠𝑠𝑠2𝐴𝐴 = (𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 )𝐴𝐴 = 𝑀𝑀𝑠𝑠𝑠𝑠2𝐽𝐽 − 𝑁𝑁𝑠𝑠𝑠𝑠2𝐽𝐽  
Then                    𝐴𝐴 = (𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 )−1𝑀𝑀𝑠𝑠𝑠𝑠2𝐽𝐽 − (𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚)−1𝑁𝑁𝑠𝑠𝑠𝑠2𝐽𝐽   
We assume          𝑀𝑀3 = (𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚)−1𝑀𝑀𝑠𝑠𝑠𝑠2𝐽𝐽  
and                       𝑁𝑁3 = (𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 )−1𝑁𝑁𝑠𝑠𝑠𝑠2𝐽𝐽  
It can be easily verify that 𝑀𝑀2

−1𝑁𝑁2 = 𝑀𝑀𝑠𝑠𝑠𝑠3𝐽𝐽
−1𝑁𝑁𝑠𝑠𝑠𝑠3𝐽𝐽   and  𝑀𝑀3

−1𝑁𝑁3 = 𝑀𝑀𝑠𝑠𝑠𝑠2𝐽𝐽
−1𝑁𝑁𝑠𝑠𝑠𝑠2𝐽𝐽  and then 𝐴𝐴 = 𝑀𝑀2 −𝑁𝑁2 = 𝑀𝑀3 −

𝑁𝑁3 be the two regular and convergent splittings. Thus we get, 𝜌𝜌(𝑀𝑀2
−1𝑁𝑁2) < 1 and 𝜌𝜌(𝑀𝑀3

−1𝑁𝑁3) < 1. Also                                         
𝑀𝑀2

−1 = 𝑀𝑀𝑠𝑠𝑠𝑠3𝐽𝐽
−1(𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅′) 

         = (𝐼𝐼 − 𝐷𝐷 − 𝐷𝐷′ − 𝐷𝐷′′ − 𝐷𝐷′′′)−1(𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅′) 
         ≥ [𝐼𝐼 − (𝐷𝐷 + 𝐷𝐷′ + 𝐷𝐷′′ + 𝐷𝐷′′′)]−1(𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 ) 
         ≥ [𝐼𝐼 − (𝐷𝐷 + 𝐷𝐷′ + 𝐷𝐷′′)]−1(𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚) 
         = 𝑀𝑀𝑠𝑠𝑠𝑠2𝐽𝐽

−1 (𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚) 
          = [(𝐼𝐼 + 𝑆𝑆 + 𝑆𝑆𝑚𝑚 + 𝑅𝑅𝑚𝑚 )−1𝑀𝑀𝑠𝑠𝑠𝑠2𝐽𝐽 ]−1 = 𝑀𝑀3

−1 
i.e.                                                                             𝑀𝑀2

−1 ≥ 𝑀𝑀3
−1 

Thus it follows from Lemma 2.8., that    𝜌𝜌(𝑀𝑀2
−1𝑁𝑁2) ≤ 𝜌𝜌(𝑀𝑀3

−1𝑁𝑁3) < 1 
i.e.                                                         𝜌𝜌(𝑀𝑀𝑠𝑠𝑠𝑠3𝐽𝐽

−1𝑁𝑁𝑠𝑠𝑠𝑠3𝐽𝐽 ) ≤ 𝜌𝜌(𝑀𝑀𝑠𝑠𝑠𝑠2𝐽𝐽
−1𝑁𝑁𝑠𝑠𝑠𝑠2𝐽𝐽 ) < 1 

i.e.                                                                       𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠3𝐽𝐽 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠2𝐽𝐽 ) < 1.   
This completes the proof of the theorem. 
 
Theorem 3.10: Let 𝐴𝐴 be a nonsingular 𝑀𝑀-matrix. Then under the assumption (A), the following inequality holds: 

𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠2𝐽𝐽 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠𝐽𝐽 ) < 1. 
 
Proof: This theorem follows from Theorem 3.7. of the article “A comparative study of modified iterative methods for 
solving linear systems with 𝑀𝑀-matrices”. 
 
Theorem 3.11: Let 𝐴𝐴 be a nonsingular 𝑀𝑀-matrix. Then under the assumption (A), the following inequality holds: 

𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠𝐽𝐽 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝐽𝐽 ) < 1. 
 
Proof: The proof of this theorem is similar to the proof of the Theorem 3.10.. 
 
Theorem 3.12: Let 𝐴𝐴 be a nonsingular 𝑀𝑀-matrix. Then under the assumption (A), the following inequality holds: 

𝜌𝜌(𝑇𝑇𝑠𝑠𝐽𝐽 ) ≤ 𝜌𝜌(𝑇𝑇𝐽𝐽 ) < 1. 
 
Proof: The proof of this theorem follows from the Theorem 3.1., of the article “A comparative study of modified 
iterative methods for solving linear systems with 𝑀𝑀-matrices”. 
 
Theorem 3.13: Let 𝐴𝐴 be a nonsingular 𝑀𝑀-matrix. Then under the assumption (A), the following inequality holds: 

𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠3𝐽𝐽 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠2𝐽𝐽 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝑠𝑠𝐽𝐽 ) ≤ 𝜌𝜌(𝑇𝑇𝑠𝑠𝐽𝐽 ) ≤ 𝜌𝜌(𝑇𝑇𝐽𝐽 ) < 1. 
 
Proof: The proof of this theorem follows from the Theorem 3.9., Theorem 3.10., Theorem 3.11., and Theorem 3.12.. 
 
4. NUMERICAL EXAMPLES 
 
In this section, we consider two simple numerical examples in order to confirm our theoretical analysis provided in 
section 3. 
 
Example 1: Let us consider the following matrix: 

𝐴𝐴 =

⎝

⎜
⎛

  1 −0.2 −0.3 −0.1 −0.2
−0.1
−0.2
−0.2

1
−0.1
−0.1

−0.1
1

−0.1

−0.3
−0.1

1

−0.1
−0.2
−0.3

−0.1 −0.2 −0.2 −0.1 1 ⎠

⎟
⎞

 

After computation using MATLAB R12, we obtain 
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𝜌𝜌(𝑇𝑇𝐺𝐺) = 0.4608,       𝜌𝜌�𝑇𝑇𝐽𝐽 � = 0.6551 
𝜌𝜌�𝑇𝑇𝑠𝑠𝐺𝐺 � = 0.3414,       𝜌𝜌�𝑇𝑇𝑠𝑠𝐽𝐽 � = 0.6044 

𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠𝐺𝐺 � = 0.2217,       𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠𝐽𝐽 � = 0.5344 

𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 � = 0.1996,       𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠2𝐽𝐽 � = 0.5195 

𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠3𝐺𝐺 � = 0.1662,       𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠3𝐽𝐽 � = 0.4694 
Clearly,  we have 

𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠3𝐺𝐺 � < 𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 � < 𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠𝐺𝐺 � < 𝜌𝜌�𝑇𝑇𝑠𝑠𝐺𝐺� < 𝜌𝜌(𝑇𝑇𝐺𝐺) < 1 
and 

𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠3𝐽𝐽 � < 𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠2𝐽𝐽 � < 𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠𝐽𝐽 � < 𝜌𝜌�𝑇𝑇𝑠𝑠𝐽𝐽 � < 𝜌𝜌�𝑇𝑇𝐽𝐽 � < 1 
 
Example 2: Let us consider the following matrix: 

𝐴𝐴 = �
 1 −0.1 −0.2 −0.5

−0.1
−0.3

1
−0.1

−0.1
1

−0.5
−0.1

−0.4 −0.3 −0.1 1
� 

By computation in MATLAB R12, we obtain 
𝜌𝜌(𝑇𝑇𝐺𝐺) = 0.5408,       𝜌𝜌�𝑇𝑇𝐽𝐽 � = 0.7332 
𝜌𝜌�𝑇𝑇𝑠𝑠𝐺𝐺 � = 0.4907,       𝜌𝜌�𝑇𝑇𝑠𝑠𝐽𝐽 � = 0.7159 

𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠𝐺𝐺 � = 0.2694,       𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠𝐽𝐽 � = 0.5337 

𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 � = 0.2501,       𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠2𝐽𝐽 � = 0.5233 

𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠3𝐺𝐺 � = 0.2432,       𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠3𝐽𝐽 � = 0.5081 
Clearly, we have 

𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠3𝐺𝐺 � < 𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠2𝐺𝐺 � < 𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠𝐺𝐺 � < 𝜌𝜌�𝑇𝑇𝑠𝑠𝐺𝐺� < 𝜌𝜌(𝑇𝑇𝐺𝐺) < 1 
and 

𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠3𝐽𝐽 � < 𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠2𝐽𝐽 � < 𝜌𝜌�𝑇𝑇𝑠𝑠𝑠𝑠𝐽𝐽 � < 𝜌𝜌�𝑇𝑇𝑠𝑠𝐽𝐽 � < 𝜌𝜌�𝑇𝑇𝐽𝐽 � < 1 
 
5. CONCLUSION 
 
In the present article, we proposed two modified iterative methods with a new preconditioner for solving system of 
linear equations. The comparison theorems and numerical experiments show that the proposed methods are superior as 
compared to the respective classical methods and some of the other respective modified methods. 
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