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ABSTRACT 
The study investigates the impact of the internal heat source and anisotropy in a Darcy model in an inclined porous 
layer. It is recognized that temperature influences viscosity fluctuations. Thus, for the sake of simplicity, we use a linear 
change in viscosity with temperature in the present situation. The eigenvalue problems obtained in linear theory were 
integrated numerically. The system is stable when the horizontal component of thermal diffusivity is dominant and 
unstable when the vertical component of thermal diffusivity is dominant. It has been shown that higher viscosity 
stabilizes the system, whereas lower viscosity promotes the initiation of convection. 
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1. INTRODUCTION 
 
The movement of fluids within porous materials, known as convection in porous media, has garnered significant 
attention in research over recent decades. This phenomenon holds immense relevance across various engineering 
domains and hydrological studies, including groundwater management, geothermal energy extraction, petroleum 
reservoir dynamics, carbon capture and storage, and even in food processing applications. 
 
Previous investigations conducted by Horton and Rogers [1] as well as Lapwood [2] have delved into the linear 
instability conditions pertaining to convection within a horizontal porous layer. These studies focus on scenarios where 
there exists a vertical thermal gradient between the horizontal boundaries. They are rooted in Darcy’s law, which 
overlooks inertial forces and the influence of solid boundaries. Nonetheless, this framework remains pertinent in highly 
porous materials, where these effects are negligible. The majority of research on convection in porous media adopts 
Darcy’s law [3]–[12], particularly when fluid motion is sufficiently slow and porosity is not near unity. However, an 
expanded rendition of Darcy’s law has been devised to capture convective motion within the medium. The Brinkman 
model [13] is invoked when the porosity of the medium is considerably high. Conversely, the Forchheimer model 
[14]–[15] is utilized when fluid motion is significant, resulting in the manifestation of notable inertial terms at the 
boundaries. For a more comprehensive understanding of the applications of the Brinkman and Forchheimer models, we 
refer to [16]–[23] and the references therein. 
 
In the aforementioned studies on porous-convection, the fluid’s viscosity is consistently treated as constant. However, 
in reality, fluid viscosity typically exhibits a strong dependence on temperature. Consequently, variations in viscosity 
induced by temperature fluctuations can significantly influence the stability threshold of convection in both fluid and 
fluid-saturated porous media. Understanding convective heat transfer in scenarios where viscosity varies with 
temperature is crucial across diverse fields, including food processing, petrochemical engineering, glass production, 
and volcanology.Weast et al. [24] compiled extensive tables detailing viscosity values corresponding to different 
temperatures, highlighting how even minor temperature changes can lead to substantial alterations in viscosity. The 
pioneering work by Tippelskirch[25] investigated thermal convection considering temperature-dependent viscosity, 
revealing that the direction of flow within the convection cell hinges on the specific form of the viscosity-temperature 
relationship.Subsequent researchers, such as those referenced in ([4], [26]–[32]), have further explored natural 
convection in the presence of temperature-dependent viscosity while maintaining other fluid properties constant. 
 

Corresponding Author: Badal Kumar1*, 
Department of Mathematics, Ranchi University, Ranchi-834001, Jharkhand, India. 

 
 
 

http://www.ijma.info/�


Badal Kumar*, Ashalata keshri/ 
On viscous stratified Darcy-model flow in an inclined porous layer with thermal anisotropy / IJMA- 15(5), May-2024. 

© 2024, IJMA. All Rights Reserved                                                                       9 

 
Anisotropy in porous materials, a key feature influencing their mechanical and thermal characteristics, stems from the 
presence of preferential alignments or irregular geometries like grain or fiber configurations. This behavior is 
prominently observed in various contexts. For instance, loft insulation displays reduced permeability parallel to the 
insulating layer compared to the perpendicular direction. Geological systems also exemplify anisotropic media, 
encompassing anisotropic sediments and rocks. Moreover, the anisotropy of porous media significantly influences the 
overall transport properties of fluid flows within them.[33] Meanwhile, anisotropic thermal conductivity or diffusivity 
denotes a material’s ability to conduct heat in varying directions, contingent upon its crystallographic structure, 
microstructure, or composition.[34] Such anisotropic thermal conductivity finds relevance in extreme thermal settings. 
For instance, in 3D printing, the heat transfer direction during material solidification can impact the resultant product’s 
microstructure, porosity, and mechanical attributes. 
 
The exploration of thermal instability in a layer of porous matrix with anisotropic permeability was initially undertaken 
by Castinel and Combarnous.[35] Their in-depth research not only examined the theoretical aspects of this 
phenomenon but also enhanced the scientific comprehension through experimental observations. Building on their 
work, Epherre[36] expanded the investigation to encompass the impact of anisotropic thermal diffusivity on 
steady-state thermal convection via linear instability analysis. Subsequent studies by various researchers, including 
Degan et al., [37] Storesletten and Rees,[38] Rees and Postelnicu,[39] Malashetty and Swamy, [40] Shivakumara        
et al.,[41] Tyvand and Storesletten, [42] Capone and Gianfrani,[43] and Swamy et al., [44] further advanced this field. 
They explored linear instability analysis in scenarios like vertical anisotropic porous layers, boundary layer flows in 
porous mediums, inclined anisotropic porous layers, double-diffusive convection, local thermal non-equilibrium 
(LTNE), anisotropic porous layers with vertical principal axes, rotating anisotropic porous layers in LTNE, and 
viscoelastic fluids with internal heat source effects. Tyvand and Storesletten[42] specifically investigated the 
convection onset in a porous layer exhibiting general three-dimensional anisotropy in permeability and conductivity, 
with principal axes restrictions in the vertical direction. In a recent contribution, Swamy et al.[44] explored the linear 
and weakly nonlinear theories of Darcy–Benard–Oldroyd convection in an anisotropic porous layer with internal heat 
generation. They determined that viscoelasticity, heat capacity ratio, and the Prandtl number have no impact on 
stationary convection. However, anisotropy in thermal diffusivity and heat capacity ratios leads to delayed convection. 
 
The boundary of instability, determined by the critical parameter of interest, can be derived from linear theory, while 
the stability boundary is established through energy theory. Instabilities arising from finite disturbances’ amplitudes are 
permissible only within these two boundaries. The space between these boundaries is termed the "region of subcritical 
instabilities." Clearly, the area above the linear instability boundary is unstable, whereas the region below the stability 
boundary is stable. The subcritical instability region remains stable against minor disturbances but can become unstable 
when subjected to sufficiently large disturbances. 
 
When studying the initiation of convection in a fluid-saturated porous material, it’s vital to consider the buoyancy force 
generated either through internal heat generation or heating at the bottom layer. The stability of a system influenced by 
an internal heat source has been explored in both isotropic and anisotropic fluid-saturated porous media, covering 
analyses of both mono-[45]-[50] and double-diffusive convection.[51]-[54] Gasser and Kazimi[45] delved into the 
onset of convection in a fluid-saturated porous medium with an internal heat source, identifying the critical internal and 
external Rayleigh numbers associated with stabilizing and destabilizing boundary conditions. Subsequently, 
Tveitereid[48] examined the onset of thermal convection in a porous medium with uniform internal heat generation by 
investigating steady-state solutions in hexagonal and two-dimensional roll patterns.In a recent research conducted by 
Mourya et al. [58], the authors examined the characteristics of viscous stratified Darcy-Forchheimer flow in a 
horizontal porous layer with thermal anisotropy and variable permeability. The researchers discovered that the system 
reached a stable state when the horizontal component of thermal diffusivity was dominant, but became unstable when 
the vertical component of thermal diffusivity was dominant.  
 
To our knowledge, no previous studies have examined the combined effects of internal heat generation and anisotropic 
thermal diffusivity on the initiation of convection in a fluid-saturated Darcy–law in an inclined porous layer. This paper 
delves into thermal convection’s linear in an inclined porous medium with anisotropic thermal conductivity. Our 
analysis takes into account temperature-dependent viscosity and the impact of an internal heat source. This kind of 
problem involving temperature-dependent viscosity has been studied in fluid-saturated isotropic porous media by 
various researchers, exploring both mono-diffusive[37] and double-diffusive convection scenarios. [55]-[57] 
 
Given the significant applications of anisotropic thermal diffusivity and internal heat sources in engineering contexts, 
we investigate their combined effects in an anisotropic Darcy law in an inclined porous layer. The structure of the 
article is as follows: Section 2 presents the problem formulation, including non-dimensionalization along with the 
associated dimensionless numbers; Section 3 presents the basic state and perturbation equations. Sections 4 and 5 
discuss the linear theory and result and discussion respectively. Finally, Section 6 concludes the study with remarks. 
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2. MATHEMATICAL FORMULATION 
 
We investigate the linear stability characteristics of flow through an inclined porous medium, with an angle of 
inclination to the horizontal 𝜙𝜙, a Cartesian coordinate system (x, y, z) is used, wherein x, y and z denote the stream 
wise, the span wise and the wall-normal coordinates, respectively. Gravity acts in the negative vertical direction. The 
working fluid is assumed to be Newtonian and incompressible. The viscosity, 𝜇𝜇, and the density of the fluid, 𝜌𝜌 depend 
on the temperature. 
 
If 𝜇𝜇(𝑇𝑇) denotes the dynamic viscosity of the fluid, then it is defined as:  

𝜇𝜇(𝑇𝑇�) = 𝜇𝜇0[1 − 𝛾𝛾(𝑇𝑇� − 𝑇𝑇�0)],                                                                (1) 
 
where 𝛾𝛾  is constant, 𝜇𝜇0  is the reference viscosity and 𝑇𝑇�0  is the reference temperature. In general, an increase in 
temperature reduces the density of the fluid and it takes the form  

𝜌𝜌 = 𝜌𝜌0[1 − 𝛼𝛼(𝑇𝑇� − 𝑇𝑇�0)]                                                                        (2) 
  

where 𝛼𝛼 is the thermal coefficient and 𝜌𝜌0 is the reference density at the temperature at upper plate 𝑇𝑇�0. 
 
Describe fluid motion in a porous medium when the flow is slow. In this case, the governing equation of fluid motion, 
Darcy’s law, in the form of 

∇�𝑃𝑃� = −𝜇𝜇(𝑇𝑇�)
𝐾𝐾
𝑉𝑉 − 𝜌𝜌(𝑇𝑇�)𝑔𝑔(sin(𝜙𝜙)𝑖𝑖̂ + cos(𝜙𝜙)𝑘𝑘�)                                              (3) 

 
The governing equation (3) with the relation (1) and (2) can be written as  

∇�𝑃𝑃� = −𝜇𝜇0
𝐾𝐾

[1 − 𝛾𝛾(𝑇𝑇� − 𝑇𝑇�0)]𝑉𝑉 + 𝜌𝜌0𝛼𝛼𝛼𝛼(𝑇𝑇� − 𝑇𝑇�0)(sin(𝜙𝜙)𝑖𝑖̂ + cos(𝜙𝜙)𝑘𝑘�)                            (4) 
 
We assume that the fluid is incompressible then the equation of continuity 

∇� ⋅ 𝑉𝑉 = 0                                                                                 (5) 
and the energy equation  

(𝜌𝜌0𝑐𝑐)𝑚𝑚
𝜕𝜕𝑇𝑇�

𝜕𝜕𝑡𝑡̅
+ (𝜌𝜌0𝑐𝑐)𝑓𝑓𝑉𝑉 ⋅ ∇�𝑇𝑇� = 𝑘𝑘ℎ∇�1

2𝑇𝑇� + 𝑘𝑘𝑣𝑣
𝜕𝜕2𝑇𝑇�

𝜕𝜕𝑧𝑧̅2
+ 𝑄𝑄� ,                                              (6) 

Where ∇�1
2= 𝜕𝜕2

𝜕𝜕𝑥𝑥̅2
+ 𝜕𝜕2

𝜕𝜕𝑦𝑦�2, 𝑐𝑐 is the specific heat at constant pressure, 𝑘𝑘ℎ  and 𝑘𝑘𝑣𝑣  are thermal conductivities in horizontal 
and vertical directions and subscripts m and f refers to the medium and fluid respectively. 
 
The system of governing equations is 

∇� ⋅ 𝑉𝑉 = 0                                                                                 (7) 
 
∇�𝑃𝑃� = −𝜇𝜇0

𝐾𝐾
[1 − 𝛾𝛾(𝑇𝑇� − 𝑇𝑇�0)]𝑉𝑉 + 𝜌𝜌0𝑔𝑔𝑔𝑔(𝑇𝑇� − 𝑇𝑇�0)(sin(𝜙𝜙)𝑖𝑖̂ + cos(𝜙𝜙)𝑘𝑘�)                            (8) 

 
𝑀𝑀 𝜕𝜕𝑇𝑇�

𝜕𝜕𝑡𝑡̅
+ 𝑉𝑉 ⋅ ∇�𝑇𝑇� = 𝑘𝑘ℎ∇�1

2𝑇𝑇� + 𝑘𝑘𝑣𝑣
𝜕𝜕2𝑇𝑇�

𝜕𝜕𝑧𝑧̅2
+ 𝑄𝑄′                                                       (9) 

with the boundary conditions: 
 𝜕𝜕𝑇𝑇�

𝜕𝜕𝑧𝑧̅
= 0,    𝑎𝑎𝑎𝑎    𝑧𝑧̅ = 0𝑇𝑇� = 𝑇𝑇�0    𝑎𝑎𝑎𝑎    𝑧𝑧̅ = 𝑑𝑑                                                     (10) 

where 𝑄𝑄�  is the constant internal heat source term, M is the ratio of the heat capacity per unit volume of the saturating 
porous layer to the heat capacity per unit volume of the saturated fluid, and 𝑘𝑘ℎ  and 𝑘𝑘𝑣𝑣  are thermal diffusivity in 
horizontal and vertical directions, respectively. 
 
Now we are defining the non-dimensional variables for governing parameters. 

(𝑥̅𝑥,𝑦𝑦�, 𝑧𝑧̅) = (𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑 , 𝑉𝑉 = 𝑘𝑘𝑣𝑣
𝑑𝑑
𝑉𝑉, 𝑃𝑃� = 𝜇𝜇0𝑘𝑘𝑣𝑣

𝐾𝐾
𝑃𝑃, 𝑡𝑡̅ = 𝑑𝑑2

𝑀𝑀𝑘𝑘𝑣𝑣
𝑡𝑡 

And              𝑇𝑇� − 𝑇𝑇�0 = �𝜇𝜇0𝛽𝛽𝑘𝑘𝑣𝑣
𝐾𝐾𝐾𝐾𝜌𝜌0𝛼𝛼

𝑇𝑇 

and substituting these into the system of perturbed equation (7)-(9)we get the following non-dimensional system of 
governing equations 

 ∇ ⋅ 𝑉𝑉 = 0,                                                                                (11) 
 
 ∇𝑃𝑃 = −𝑉𝑉 + Γ

𝑅𝑅
𝑇𝑇𝑇𝑇 + 𝑅𝑅𝑅𝑅(sin(𝜙𝜙)𝑖𝑖̂ + cos(𝜙𝜙)𝑘𝑘�)                                            (12) 

 
 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑉𝑉 ⋅ ∇𝑇𝑇 = 𝜉𝜉∇1

2𝑇𝑇 + 𝜕𝜕2𝑇𝑇
𝜕𝜕𝑧𝑧2 + 𝑅𝑅𝑅𝑅 (13) 

with the boundary conditions 
 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0    𝑎𝑎𝑎𝑎    𝑧𝑧 = 0    𝑎𝑎𝑎𝑎𝑎𝑎    𝑇𝑇 = 0    𝑎𝑎𝑎𝑎    𝑧𝑧 = 1.                                            (14) 
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Where Γ = 𝛽𝛽𝛽𝛽𝛽𝛽 , 𝑄𝑄 = 𝑄𝑄′𝑑𝑑

𝑘𝑘𝑣𝑣𝛽𝛽
 

𝜉𝜉 = 𝑘𝑘ℎ
𝑘𝑘𝑣𝑣

, 𝑅𝑅 = �𝑔𝑔𝜌𝜌0𝛼𝛼𝐾𝐾0𝛽𝛽𝑑𝑑2

𝜇𝜇0𝑘𝑘𝑣𝑣
 

Here 𝑅𝑅𝑅𝑅 = 𝑅𝑅2 is the thermal Rayleigh number and 𝜉𝜉 is the horizontal to vertical thermal diffusivity ratio. 
 
3. BASIC-STEADY STATE SOLUTION 
 
Let (𝑉𝑉𝐵𝐵 ,𝑇𝑇𝐵𝐵 ,𝑃𝑃𝐵𝐵 ) be the basic-steady state solution for the system (11)-(13) . Assuming that 𝑉𝑉𝐵𝐵 = (𝑈𝑈𝐵𝐵(𝑧𝑧),0,0) and 
𝑇𝑇𝐵𝐵 = 𝑇𝑇𝐵𝐵(𝑧𝑧) then the basic velocity and temperature profile are given by 

𝑈𝑈𝐵𝐵(𝑧𝑧) = 𝑅𝑅2𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 (𝜙𝜙)
Γ𝑄𝑄(1−𝑧𝑧2)−2

[𝑧𝑧2 − 𝐴𝐴coth(1/𝐴𝐴) − 𝐴𝐴2]                                            (15) 

 Where 𝐴𝐴 = �1 − 2
Γ𝑄𝑄
�

1
2 and  

𝑇𝑇𝐵𝐵(𝑧𝑧) = −𝑅𝑅𝑅𝑅
2

(𝑧𝑧2 − 1)                                                                       (16) 
 
To assess the stability of the system, we introduce a perturbation (u, 𝜃𝜃,𝜋𝜋) to the basic solution such that  

V = 𝑉𝑉𝐵𝐵  + u, T = 𝑇𝑇𝐵𝐵  + 𝜃𝜃, P = 𝑃𝑃𝐵𝐵  + 𝜋𝜋, 
 
substituting the perturbation into the systems (11)-(14) and utilizing the Eqs. 15 and 16, we obtained the system of 
perturbed governing equations  

 ∇ ⋅ 𝑢𝑢 = 0                                                                                (17) 
 

 ∇𝜋𝜋 = 𝐹𝐹(𝑧𝑧)𝑢𝑢 + Γ
𝑅𝑅
𝑉𝑉𝐵𝐵𝜃𝜃 + Γ

𝑅𝑅
𝜃𝜃𝜃𝜃 + 𝑅𝑅𝑅𝑅(sin(𝜙𝜙)𝑖𝑖̂ + cos(𝜙𝜙)𝑘𝑘�)                                   (18) 

 
 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑈𝑈𝐵𝐵(𝑧𝑧) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑢𝑢 ⋅ ∇𝜃𝜃 + 𝑑𝑑𝑇𝑇𝐵𝐵

𝑑𝑑𝑑𝑑
𝑤𝑤 = 𝜉𝜉∇1

2𝜃𝜃 + 𝜕𝜕2𝜃𝜃
𝜕𝜕𝑧𝑧2                                             (19) 

 
subjected to the boundary conditions  

𝑤𝑤 = 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 at 𝑧𝑧 = 0 and  
𝑤𝑤 = 0, 𝜃𝜃 = 0 at 𝑧𝑧 = 1 
where  𝐹𝐹(𝑧𝑧) = Γ𝑄𝑄(1−𝑧𝑧2)

2
− 1. 

 
We assume that the perturbations (𝑢𝑢,𝜋𝜋,𝜃𝜃)  , defined on (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ 𝑅𝑅2 × [0,1] , are periodic functions in x- and 
y-directions of periods 2𝜋𝜋

𝑘𝑘
 and 2𝜋𝜋

𝑙𝑙
 , respectively, where 𝑘𝑘 > 0 and 𝑙𝑙 > 0 being horizontal wave numbers in x- and     

y- directions , respectively. The overall wave number is defined as 𝑎𝑎 = √𝑘𝑘2 + 𝑙𝑙2. We shall denote the periodicity cell 
by Ω = [0,2𝜋𝜋/𝑘𝑘] × [0,2𝜋𝜋/𝑙𝑙] × [0,1]. 
 
4. LINEAR INSTABILITY ANALYSIS 
 
linearizing the perturbation Eqs. (17)-(19) then we get 

∇ ⋅ 𝑢𝑢 = 0,                                                                                (20) 
 
∇𝜋𝜋 = 𝐹𝐹(𝑧𝑧)𝑢𝑢 + Γ

𝑅𝑅
𝑉𝑉𝐵𝐵𝜃𝜃 + 𝑅𝑅𝑅𝑅(sin(𝜙𝜙)𝑖𝑖̂ + cos(𝜙𝜙)𝑘𝑘�)                                            (21) 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈𝐵𝐵(𝑧𝑧) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝜉𝜉∇1

2𝜃𝜃 + 𝜕𝜕2𝜃𝜃
𝜕𝜕𝑧𝑧2                                                      (22) 

 
To remove the pressure 𝜋𝜋, we consider the double curl of the (21) equation so that the third component of the resulting 
equation is 

−𝐹𝐹(𝑧𝑧)∇2𝑤𝑤 −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
Γ
𝑅𝑅

(𝑈𝑈𝐵𝐵𝜃𝜃,𝑧𝑧𝑧𝑧+
𝑑𝑑𝑈𝑈𝐵𝐵
𝑑𝑑𝑑𝑑

𝜃𝜃,𝑥𝑥 ) + 𝑅𝑅sin(𝜙𝜙)𝜃𝜃,𝑧𝑧𝑧𝑧+ 𝑅𝑅cos(𝜙𝜙)(𝜃𝜃,𝑥𝑥𝑥𝑥+ 𝜃𝜃,𝑦𝑦𝑦𝑦 ) = 0 
.  
We introduce normal modes of writing the perturbations as 

𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑊𝑊(𝑧𝑧)𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘+𝑙𝑙𝑙𝑙 )+𝜎𝜎𝑡𝑡 , and 𝜃𝜃(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = Θ(𝑧𝑧)𝑒𝑒𝑖𝑖(𝑙𝑙𝑙𝑙+𝑘𝑘𝑘𝑘 )+𝜎𝜎𝑡𝑡 , 
where 𝑘𝑘 and 𝑙𝑙 are wave number and 𝑎𝑎 = √𝑘𝑘2 + 𝑙𝑙2 , and 𝜎𝜎  is the time decay coefficient. Eqs. (20)- (22) 

becomes 
𝐹𝐹(𝑧𝑧)(𝐷𝐷2 − 𝑎𝑎2)𝑊𝑊 + 𝐹𝐹′(𝑧𝑧)𝐷𝐷𝐷𝐷 − 𝑖𝑖𝑖𝑖 Γ

𝑅𝑅
�𝑈𝑈𝐵𝐵𝐷𝐷 + 𝑑𝑑𝑈𝑈𝐵𝐵

𝑑𝑑𝑑𝑑
�Θ− 𝑅𝑅(𝑖𝑖𝑖𝑖sin(𝜙𝜙)𝐷𝐷 + 𝑎𝑎2cos(𝜙𝜙))Θ = 0       (23) 

(𝐷𝐷2 − 𝜉𝜉𝑎𝑎2)Θ + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑖𝑖𝑖𝑖𝑈𝑈𝐵𝐵𝜃𝜃 = 𝜎𝜎Θ                                                     (24) 
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with the associated boundary conditions 

𝑊𝑊 = 0, 𝜕𝜕Θ
𝜕𝜕𝜕𝜕

= 0        𝑎𝑎𝑎𝑎    𝑧𝑧 = 0    𝑎𝑎𝑎𝑎𝑎𝑎    𝑊𝑊 = 0,Θ = 0    𝑎𝑎𝑎𝑎    𝑧𝑧 = 1                          (25) 
 
The fourth-order systems (23) and (24) were solved by using the Chebyshev-tau method [60], which is a spectral 
technique coupled with the QZ algorithm [61]. We found that the growth rate parameter 𝜎𝜎 is real at the onset of 
convection for all governing parameter ranges considered in the present problem. We define the critical value of Ra at 
the onset as the minimum of Ra with varying 𝑎𝑎 for fixing other flow-governing parameters. 

 
5. RESULTS AND DISCUSSION 
 
In the case of the horizontal porous medium, the present problem reduces to the study by Gasser and Kazimi[59]. Table 
1 shows a very good agreement of the present numerical results with the external Rayleigh number  Re given in Gasser 
and Kazimi [59]. In the linear and theory critical Rayleigh numbers, 𝑅𝑅𝑎𝑎𝑐𝑐  increases for inclination angle 𝜙𝜙. 

 
𝑄𝑄 GasserandKazimi[59] (Re) PresentstudyRac 
0 39.48 39.4783 
5 34.59 34.5950 

10 27.02 27.0160 
15 21.45 21.4461 
20 17.63 17.6264 
25 14.92 14.9163 
30 12.91 12.9115 
40 10.16 10.1605 
50 8.37 8.3689 
60 7.11 7.1120 
80 5.47 5.4669 

100 4.44 4.4390 
 

Table-1: Comparison between the linear stability results of Gasser and Kazimi [59] and this article’s linear stability 
results at 𝜙𝜙 = 0. 

(a)                                          (b) 
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(c) 

 
Figure-1: Neutral stability curves for transverse roll for different values of 𝜉𝜉 with fixed 𝜙𝜙 = 30,𝑄𝑄 = 5, (a) Γ = 0.1, 
(b) Γ = 0.5 and (c) Γ = 1. 

 
Figure-2: Neutral stability curves for the transverse roll for different values of 𝜙𝜙  with fixed 𝜉𝜉 = 1,𝑄𝑄 = 5,  and 
Γ = 0.5. 

 
Figure-3: Neutral stability curves for the transverse roll for different values of Γ  with fixed 𝜉𝜉 = 1,𝑄𝑄 = 5,  and 
𝜙𝜙 = 30. 
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Figure 1 depicts the neutral stability curves for the onset of convection in the presence of an internal heat source 
(𝑄𝑄) = 5, angle of inclination (𝜙𝜙) = 30∘, for different values of 𝜉𝜉 = 0.5, 1 and 1.5, for the fixed value of Γ = 0.1 in 
figure 1(a), Γ = 0.5 in figure 1(b), and Γ = 1.5 in figure 1(c) in (𝑅𝑅𝑅𝑅, 𝑘𝑘) planes respectively. Figure 1(a), figure 1(b), 
and Figure 1(c) have the same nature of the graph, and these figures show that the critical Rayleigh number 𝑅𝑅𝑎𝑎𝑐𝑐  
increases to a critical wave number 𝑘𝑘𝑐𝑐  and attains its minimum. Beyond this critical wave number, the Rayleigh 
number increases. The minimum of 𝑅𝑅𝑅𝑅 for varying 𝑘𝑘 is the threshold value, below which the flow is stable, and above 
this threshold value, at least one unstable mode exists. This minimum 𝑅𝑅𝑅𝑅 for varying 𝑘𝑘 is called the critical Rayleigh 
number 𝑅𝑅𝑎𝑎𝑐𝑐 . Furthermore, in linear stability analysis, there is a consistent observation that the critical Rayleigh 
number is increasing with both 𝜉𝜉  and Γ  figure 1(a) Γ = 0.1 , figure 1(b) Γ = 0.5 , and figure 1(c) Γ = 1.5 
respectively. These are attributed to decreasing viscosity promoting the onset of convective instability, whereas 
increasing viscosity stabilizes the system.  
 
Figure 2 depicts the neutral stability curves for the onset of convection in the presence of an internal heat source 𝑄𝑄 =
5, for different values of angle of inclination (𝜙𝜙) = 0, 30 and 45, and Γ = 0.5 in (𝑅𝑅𝑅𝑅, 𝑘𝑘) plane.This figure shows that 
the Rayleigh number decreases to a critical wave number 𝑘𝑘  and attains its minimum. Beyond this critical wave 
number, the Rayleigh number increases. The minimum of 𝑅𝑅𝑅𝑅 for varying 𝑘𝑘 is the threshold value, below which the 
flow is stable, and above this threshold value, at least one unstable mode exists. This minimum 𝑅𝑅𝑅𝑅 for varying 𝑘𝑘 is 
called the critical Rayleigh number 𝑅𝑅𝑎𝑎𝑐𝑐 . Furthermore, in linear stability analysis, there is a consistent observation that 
the critical Rayleigh number is increasing with 𝜙𝜙. 
 
Figure 3 depicts the neutral stability curves for the onset of convection in the presence of an internal heat source 𝑄𝑄 =
5, for different values of Γ = 0, 0.5 and 1, and angle of inclination 30∘ in (𝑅𝑅𝑅𝑅, 𝑘𝑘) plane.This figure shows that the 
Rayleigh number decreases to a critical wave number 𝑘𝑘 and attains its minimum. Beyond this critical wave number, 
the Rayleigh number increases. The minimum of 𝑅𝑅𝑅𝑅 for varying 𝑘𝑘 is the threshold value, below which the flow is 
stable, and above this threshold value, at least one unstable mode exists. This minimum 𝑅𝑅𝑅𝑅 for varying 𝑘𝑘 is called the 
critical Rayleigh number 𝑅𝑅𝑎𝑎𝑐𝑐 . Furthermore, in linear stability analysis, there is a consistent observation that the critical 
Rayleigh number is increasing with Γ. This is attributed to the fact that decreasing viscosity promotes the onset of 
convective instability, whereas increasing viscosity stabilizes the system. 
 
6. CONCLUSION 
 
In this study, we explored the impact of anisotropic thermal diffusivity on linear instability in the presence of an 
internal heat source. Anisotropic thermal conductivity plays a crucial role in high-temperature settings. For example, in 
3D printing, the heat transport direction during material solidification significantly affects the resulting microstructure, 
porosity, and mechanical properties. We utilized the Darcy model to describe velocity in porous media and 
incorporated a linear variation of viscosity with temperature. The dynamics of this study are governed by dimensionless 
parameters including The thermal Rayleigh number (𝑅𝑅𝑅𝑅), temperature-dependent viscosity parameter (Γ), anisotropic 
thermal diffusivity (𝜉𝜉), and internal heat source (𝑄𝑄). The anisotropic thermal diffusivity (𝜉𝜉) emerged as a key factor in 
our analysis. A system dominated by the horizontal thermal diffusivity component remains stable, with slower 
convection onset. Conversely, a system dominated by the vertical thermal diffusivity component becomes unstable. We 
observed that reduced viscosity accelerates convection initiation, while increased viscosity enhances system stability. 
Additionally, increasing the inclination angle (𝜙𝜙) stabilizes the system further. 
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