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ABSTRACT 
The notion of rare continuity was introduced by Popa [9] and almost continuous functions were introduced by 
Singal and Singal [13] in 1968. In this paper, we introduced the new class of functions called rarely αg*s-
continuous and almost αg*s-continuous functions in topological spaces using αg*s-open sets. We investigated 
several properties of rarely αg*s-continuous and almost αg*s-continuous functions which are weaker than     
αg*s-continuous functions. 
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1. INTRODUCTION AND PRELIMINARIES 
 
A crucial area of discussion in general topology is the concept of continuity. Singal and Singal [13] defined 
almost continuous functions as generalizations of continuity as weaker and stronger types of continuity. In 1978, 
Popa [9] generalized Singal's notion of virtually continuity by defining almost quasi continuous functions. In 
topological spaces, Munshi and Basan looked into the characteristics of almost semi-continuous functions.  
 
In this paper, a new class of weaker than αg*s-continuous functions, known as rarely αg*s-continuous functions 
was introduced using αg*s-open sets. The examination of a new weaker class of functions known as almostαg    
*s-continuous, along with various characterizations is covered in the next section. Finally, some essential 
characteristics of almostαg*s-functions are defined. 
 
Throughout this paper, spaces P* and S* always means topological spaces (P*,τ) and (S*,σ) and Ψ:(P*,τ) →( S*,σ)  
(simply  Ψ: P* → S*) denotes a function Ψ of a space (P*, τ) into a space (S*, σ). 
 
For the convenience of the reader we first review some basic concepts, most of them are very well-known from the 
literature. 
 
Definition1.1[11]:A subset A  of  a  topological space X is  called  αg*s-closed  ifα-cl(A) ⊆ U  whenever A ⊆ U  and 
U is gs-open in P*. 
 
The complement of a αg*s-closed set is called αg*s-open. 
 
Definition 1.2 [11]: A function Ψ issaid to be αg*s-continuous (αg*s- irresolute) if for every open (resp. αg*s-open) set 
V in S*,Ψ−1(V) is αg*s-open in P*. 
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Definition 2.1: A function Ψis called almost continuous [13] (in the sense of Signal) at r ∈P* if for every open set V* 
in S* containing Ψ(r), there is an open set U* in P* containing r such that Ψ(U*) ⊂ cl(int(V*)).  

 
If Ψis almost continuous at every point of P*, then it is called almost continuous. 
 
2. Rarely αg*s-Continuous Functions 
 
In this section, authors introduced the concept of weaker forms of continuous functions called rarely αg*s-
continuous functions in topological spaces and some basic properties related to these functions are studied. 
 
Definition 2.1: A function Ψ :P* → S* is called rarely αg*s-continuous (briefly r. αg*s.C) if for each p ∈P* and 
each W* ∈ S*(Ψ(r)), there exist a rare set R*αg*s with W* ∩ cl(R*w) = Φ and U* ∈ O(P*, p) withΨ(U*) ⊂ W* ∪ 
R*w. 
 
Theorem 2.2: The following statements are equivalent for a functionΨ: 

(i) Ψ is r.αg*s.C at p ∈ P*. 
(ii) For each W* ∈ S*(Ψ(p)), there exists U* ∈αg*s-O(P*,p) such that int[Ψ(U) ∩ (S*−W*)] = Φ. 
(iii) For each W* ∈ S*(Ψ(p)), there exists U* ∈αg*s-O(P*,p) with Int[Ψ(U* )] ⊂ cl(W*). 

 
Proof:  
(i) → (ii): Let W* ∈ S*(Ψ(p)). AsΨ(p) ∈ W* ⊂ Int(cl(W*)) and int(cl(W*)) ∈ S*(Ψ(p)), then there exist a rare 
set R*αg*s with int(cl(W*)) ∩ cl(R*αg*s) = φ, where U* ∈αg*s-O(P*, p) andΨ(U*) ⊂ int(cl(W*)) ∪ R*αg*s.  
 
Thus, int[Ψ(U*) ∩ (S*− W*)] = int[Ψ(U*)] ∩ int(S*−W*) ⊂ int[int(cl(W*)) ∪ R*αg*s]∩ (S*− cl(W*)) ⊂ (cl(W*) 
∪ int(R*αg*s )) ∩ (S*−cl(W*)) = Φ. Hence, int[Ψ(U*) ∩ (S*−W* )] = Φ. 
 
(ii) → (iii): Let W* ∈ S*(Ψ(p)). From (ii), there exists U* ∈αg*s-O(P*, p) with int[Ψ(U*)∩(S*− W*)] = Φ. We 
have, int[Ψ(U*)∩(S*−W*)] = int(Ψ(U*))∩int((S*− W*)) = int(Ψ(U*)) ∩ (S* −cl(W*)) = Φ.  
Then int[Ψ(U*)] ⊂cl(W* ). 
 
(iii) ⇒ (i): Let G* ∈O(S*, Ξ(p)). Then by (iii), there exists U* ∈αg*s-O(P*, p) such that int[Ψ(U*)] ⊂ cl(G*). 
SoΨ(U*) = [Ψ(U*) − Int( Ψ(U*))] ∪ int(Ψ(U*)) ⊂ [Ψ(U*) − int( Ψ(U*))] ∪ cl(G*) = 
[Ψ(U*)−int(Ψ(U*))]∪G*∪(cl(G*)−G*) = [Ψ(U*)−int(Ψ(U*))]∩(S*−G*)∪G*∪(Cl(G*)−G*).  
 
Set R* = [Ψ(U*) − int(Ψ(U*))] ∩ (S* − G*) and R∗∗ = Cl(G*) – G*. Then R* and R∗∗ are rare sets.  
 
Moreover RG = R* ∪ R** is a rare set such that cl(RG) ∩ G* = φ and Ψ(U*) ⊂ G* ∪ RG. This shows that Ψ is 
r.αg*s.C. 
 
Theorem 2.3: Every rarely continuous function is r.αg*s.C. 
 
Proof: Let p ∈ P* and W* ∈O(S*) containing Ψ(p). As Ψ is r.C, there exists U* ∈ O(P*) with Int(Ψ(U*)) ⊂ 
Cl(W*). Then, U* ∈αg*s-O(O*, p). Hence Ψ is r.αg*s.C. 
 
Example 2.4: Let P* = S* = {a, b, c} with τ = {P*, φ, {a, b}, {c}} and σ = {S*, φ, {a}, {b}, {a, b}}. Let us 
consider the function Ψ: P* → S* as the identity functions. Then Ψ is r.αg*s.C but not rarely continuous. Let a ∈ 
S*. The for any open set U* containing a, we have int[Ψ(U*) ∩ (S* - W*)] ≠φ. 
 
Theorem 2.5: A function Ψ is r.αg*s.C if and only if for each W* ∈ O(S*), where W* ⊂ S*, there exists a rare 
set Rαg*s with W* ∩Cl(Rαg*s) = φ with Ψ−1(W* ) ⊂Intαg*s[Ψ−1(W* ∪Rαg*s)]. 
 
Proof: Let W* ∈O(S*, Ψ(p)), then there exists a rare set Rαg*s with W* ∩ cl(Rαg*s) = φ and U* ∈αg*s-O(P*, p) 
with Ψ(U*) ⊂ W* ∪Rαg*s. Let s ∈ W*. Since, W* ⊂ W* ∪Rαg*s, then s ∈ W* ∪Rαg*s. It follows that p ∈Ψ−1(W*) 
⊂Ψ−1(W* ∪Rαg*s), that is p ∈ Int-αg*s(Ψ−1(W* ∪Rαg*s)). 
 
On the other hand, let W* ∈O(S*, Ψ(p)). Then there exists a rare set Rαg*s with W* ∩ Cl(Rαg*s) = φ with Ψ−1(W*) ⊂ 
Int-αg*s[Ψ−1(W* ∪Rαg*s)]. Let p ∈Ψ−1(W*) ⊂Ψ−1(W* ∪Rαg*s). This implies that p ∈ Int-αg*s(Ψ−1(W* ∪Rαg*s)). Then, 
Ψ is r.αg*s.C. 
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Definition 2.6: A function Ψ is said to be αg*s*-continuous (briefly αg*s*.C) at the point p if for each W*∈O(S*, 
Ψ(p)), there exists U* ∈αg*s-O(P*, p) with int[Ψ(U*)] ⊂ W*.  
If Ψ has this property at each point p ∈ P*, then Ψ is αg*s.C on P*. 
 
Theorem 2.7: Let S* be a regular space of a function Ψ is αg*s*.C on P* if and only if Ψ is r.αg*s.C on P*. 
 
Proof: Let Ψ be r.αg*s*.C on P*, where p ∈ P*. Suppose W* ∈O(S*, Ψ (p)). There exists U* ∈αg*s-O(P*, 
p)such that Int[Ψ(U*)] ⊂ W*, and so Int[Ψ(U*)] ⊂ Cl(W*). Thus, Ψ(U*) = [Ψ(U*)−Int(Ψ(U*))]∪ Int(Ψ(U*)) ⊂ 
[Ψ(U*) − Int(Ψ(U*))] ∪cl(W*) = [Ψ(U*) − Int(Ψ(U*))] ∪ W* ∪ (cl(W*) – W*) = [Ψ(U*) − Int(Ψ(U*))] ∩ (S*− 
W*) ∪ W* ∪ (cl(W*) – W*).Put R*1 = [Ψ(U*) − Int(Ψ(U*))] ∩ (S*− W*) and R*2 = (Cl(W*) – W*) and so R*1 
and R*2 are rare sets. Also Rαg*s = R*1∪ R*2 is a rare set with Cl(Rαg*s) ∩ W* = φ and Ψ(U*) ⊂ W* ∪Rαg*s. 
ThusΨ is r.αg*s.C. 
 
On the other hand, let Ψ be r.αg*s.C and p ∈ P*. Suppose Ψ(p) ∈ W*, such that W* ∈ O(S*). As S* is regular, 
there exists W*1∈ O(S*) with Cl(W*1) ⊂ W*. As Ξ is r.αg*s.C, so U* ∈αg*sO(P*,p) with Int[Ψ(U*)] ⊂ 
Cl(W*1), which shows that Int[Ψ(U*)] ⊂ W*. ThusΨ is r.αg*s*.C. 
 
Definition 2.8: A function Ψ is called almost weakly αg*s-continuous (a.w.αg*s.C) if for each W*∈O(S*, Ψ(p)), 
there exists U* ∈αg*s-O(P*,p) with Ψ(U*) ⊂ Cl(W*). 
 
Theorem 2.9: IfΨ be αg*s-open, r.αg*s.C, thenΨ is a.w.αg*s.C. 
 
Proof: Let p ∈P* and W* O(S*, Ψ(p)). SinceΨ is r.αg*s.C, so U* ∈αg*s-O(P*) with Int(Ψ(U* )) ⊂ Cl(W*). 
Again asΨ is αg*s-open, Ψ(U*) ∈αg*sO(R*) and hence Ψ(U*) = αg*s-Int(Ψ(U*)) ⊆ Int(Ψ(U*)) ⊂ Cl(W*). SoΨ 
is a.w.αg*s.C. 
 
Theorem 2.10: Let Ψ be r.αg*s.C. The graph g*: P* → P* x S*, defined as g*(p) = (p, Ψ(p)), for every p in P* is 
r.αg*s.C. 
 
Proof: Let p ∈ P* and A* O(S*, Ψ(p)). Then there exist, U* ∈ O(P*), W* ∈O(S*) with (p, Ψ(p)) ∈ U* x W* ⊆ 
A*. As Ψ is r.αg*s.C, so G* ∈ O(P*,p) with Int[Ψ(G*)] ⊂ cl(W*). Put B* = U* ∩ G*, so B* ∈αg*s-O(P*,p). 
Also, Int[g*(B*)] ⊆Int(U* x Ψ(G*)) ⊆ U* x cl(W*) ⊆ cl(A*). Thus, the graph g* is r.αg*s.C. 
 
Definition 2.11: A subset K of a space P* is said to be  

(i) αg*s-compactrelative to P* [11] if every cover of K by αg*s-open sets has a finite subcover.  
(ii) A space P* is said to be αg*s-compact [11] if P* is αg*s-compact relative to P*. 
(iii) rarely almost compact [12] relative to P* if for every cover of K* by open sets, there exists a finite 

subfamily whose rarely union sets cover K*.  
(iv) A space P* is said to be rarely almost compact [12] if the it is rarely almost compact relative to P*. 

 
Lemma 2.12: If Ψ is continuous and one-to-one, then Ψ is preserves rare sets. 
 
Theorem 2.13: If Ψ: P* → S* be r. αg*s.C and Ψ*: S* → K* is a continuous injection, then Ψ* o Ψ: P* → K* is 
r.αg*s.C. 
 
Proof: Let p ∈P* and (Ψ* o Ψ)(p) ∈V*, where V* ∈O(K*). As Ψ* is continuous, we have W* = Ψ*(Ψ(V)) 
∈O(S*) containing Ψ(p) such that Ψ*(W*) ⊂ V*. Since Ψ is r.αg*s.C, there exists a rare set Rαg*s with W* 
∩cl(Rαg*s) = φ and U* ∈O(P*,p) such that Ψ(U*) ⊂ W* ∪Rαg*s.  
 
It follows from Lemma 2.12, Ψ(Rαg*s) is a rare set in K*. Since Rαg*s is a subset of S* − W* and Ψ is injective, 
cl(Ψ(Rαg*s )) ∩ V* = φ. This implies that (Ψ*o Ψ)(U*) ⊂ V* ∪Ψ(Rαg*s). Thus, Ψ* o Ψ is r.αg*s.C. 
 
Definition 2.14[6]: A space P* is called rarely separated if for every pair of distinct points p, q ∈P*, there exist 
U*x, U*y∈ O(P*) and rare sets R*U*x, R*U*y with U*x∩ cl(R*U*x ) = φ and U*y∩ cl(R*U*y ) = φwith (U*x∪ R*U*x ) 
∩ (U*y∪ R*U*y ) = φ. 
 
Definition 2.15[11]: A space P* is said to be αg*s-T2 if for any distinct pair of points p, q ∈P*, there exist 
disjoint αg*s-open sets U* and V* in P* containing p and q respectively. 
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Theorem 2.15: Let Ψ be r.αg*s.C injection such that S* is rarely separated, then P* is αg*s-T2. 
 
Proof: Let p, q ∈P* with p ≠q. Then Ψ(p) ≠Ψ(q) as Ψ is injective. Thus there exist G*x∈O(S*, Ψ(p)), U*y∈ 
O(S*, Ψ(q)) and rare sets R*U*x and R*U*y with U*x∩ Cl(R*U*x) = φ and U*y∩ Cl(R*U*y) = φ with (U*x∪ R*U*x ) 
∩ (U*y∩ R*U*y ) = φ. Thus, Int-αg*s[Ψ−1(U*x∪ R*U)] ∩ Int-αg*s[Ψ−1(U*y∪ R*U)] = φ.  
 
Thus, we have p ∈Ψ−1(U*x) ⊂ Int-αg*s[Ψ−1(U*x∪ R*U)] and q ∈Ψ−1(U*y) ⊂ Int-αg*s[Ψ−1(U*y∪ R*U)]. As Int-
αg*s[Ψ−1(U*x∩ R*U)] and Int-αg*s[Ψ−1(U*y∩ R*U)] are two disjoint αg*s-open sets and hence P* an αg*s-T2 
space. 
 
Theorem 2.16: Let P* be any space with A* ⊂P* and Ψ: P* → (A*, τA*) be r.αg*s.C retraction of P* onto A*. If 
P* is Hausdorff, then A* is a closed. 
 
Proof: On the contrary A* is not closed. Then, there exists a point p ∈ Cl(A*) – A*. As Ψ is a retraction 
function, Ψ(p) ≠ p. Moreover, P* is Hausdorff, there exist disjoint H* ∈O(P*, p), W* ∈ O(P*, Ψ(p)).  
 
Now, for the open set W*, there exists a rare set R*αg*s in the subspace A* and U* ∈O(P*, p) with Cl(R*αg*s) ∩ 
W* = φ, U* ⊂ H* and Ψ(U*) ⊂ W* ∪ R*αg*s. As U* ∩ A* ∈αg*s-O(A*), there is a point a ∈ U* ∩ A* such that 
a ∉ R*αg*s. So, Ψ(a) = a ∉W* ∪ R*αg*s, then Ψ is not r.αg*s.C which is a contradiction. Thus, A* must be closed. 
 
3. Almost αg*s-Continuous Functions 
 
In this section we introduced almost αg*s-continuous functions in topological spaces and study some of their 
basic properties. 
 
Definition 3.1: A function Ψ: P* → S* is said to be almost αg*s-continuous (a.αg*s.C) if for each r ∈ R* and 
V*∈O(S*,Ψ(r)), there exists U* ∈αg*s-O(P*, r) such that Ψ(U*) ⊆ int(Cl(V*)). 
 
Example 3.2: Let P* = {a, b, c} with τ = σ = {P*, φ, {a}, {b}, {a, b}}.  
Then define the function Ψ: P* → P* as Ψ(a) = b, Ψ(b) = b and Ψ(c) = a. Then Ψ is a.αg*s.C. 
 
Theorem 3.3: For a functionΨ, the following statements are equivalent: 

(i) Ψ is a.αg*s.C. 
(ii) for every V* ∈ RO(S*), Ψ−1(V*) ∈αg*s-O(R*). 
(iii) for every F* ∈ RC(S*), Ψ−1(F*) ∈αg*s-C(R*). 
(iv) If A* ⊂P*, Ψ(αg*s-Cl(A*)) ⊆Clδ(Ψ(A*)). 
(v) If B* ⊂ S*, αg*s-Cl(Ψ−1(B*)) ⊂Ψ−1(Clδ(B*)). 
(vi) for every F* ∈δC(S*), Ψ−1(F*) ∈αg*s-C(R*). 
(vii) for every V* ∈δO(S*), Ψ−1(V*) ∈αg*s-O(R*). 

 
Proof: (i) ⇒ (ii) Suppose V* ∈ RO(S*) and r ∈Ψ−1(V*). Then Ψ(r) ∈ V*. As V* ∈ O(P*) and Ξ is a.αg*s.C, so 
U* ∈αg*s-O(P*, r) withΨ(U*) ⊂ int(cl(V*)) = V*. Thus, r ∈ U* ⊂Ψ−1(Ψ(U*)) ⊂Ψ−1(V*) and so, Ψ−1(V*) 
∈αg*s-O(R*). 
 
(ii) ⇒ (v): Let B* ⊂ S*. Then Ψ−1(B*) ⊂S*. By (iv), Ψ(αg*s-cl(Ψ−1(B*))) ⊂clδ(Ψ(Ψ−1(B*))) ⊂cl(δ(B*)) and so, 
αg*s-cl(Ψ−1(B*)) ⊂Ψ−1(Ψ(αg*s-cl(Ψ−1(B*)))) ⊂Ψ−1(Clδ(B*)). 
 
(v) ⇒ (vi): Let F* ∈ δ-C(S*), then αg*s-cl(Ψ−1(F*)) ⊂Ψ−1(Clδ(F*)) = Ψ−1(F*). 
So, αg*s-cl(Ψ−1(F*)) = Ψ−1(F*) and hence Ψ−1(F*) ∈αg*s-C(P*). 
 
(vi) ⇒ (vii): Let V* ∈ δ-O(S*), then S* - V* ∈ δ-C(S*). By hypothesis, Ψ−1(S* - V*) ∈αg*s-C(R*). Since 
Ψ−1(S* - V*)= P* - Ψ−1(V*), we have P* - Ψ−1(V*) ∈αg*s-C(P*). Thus, Ψ−1(V*) ∈αg*s-O(P*). 
 
(vi) ⇒ (i): Let r ∈P* and V* ∈O(S*) whereΨ(r) ∈ V*. Let us put W* = int(cl(V*)) and U* = Ψ−1(W*). As 
cl(V*) is a closed in S*, so W* = int(cl(V*)) ∈ δ-O(S*) and from (vii), U* = Ψ−1(W*) ∈αg*s-O(P*). Now, Ψ(r) 
∈ V* = int(V*) ⊂ int(cl(V*)) = W*, and so r ∈Ψ−1(W*)= U*,Ψ(U*)= Ψ(Ψ−1(W*)) ⊂ W* = int(cl(V*)). 
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Proposition 3.4: Every a.αg*s.C is w.αg*s.C. 
 
Proof: Let r ∈P* and V* ∈O(S*) withΨ(r) ∈ V*. As Ψ is a.αg*s.C, there exists U* ∈αg*s-O(P*) with r ∈ U* 
and Ψ(U*) ⊂ int(cl(V*)) ⊂ Cl(V*). Hence, Ψ is w.αg*s.C. 
 
Example 3.5: Let P* = {a, b, c, d} and τ = {P*,φ, {a}, {a, b}, {c, d}, {a, c, d}} and σ = {S*, φ, {b}, {b, d}, {b, c, 
d}}. Here αg*s-closed sets of P* are: P*, φ, {c}, {d}, {c, d}, {a, b}, {a, b, c}, {a, b, d}}.  
 
Let us consider the identity functionsΨ: P* → S*. Then Ψ is almost αg*s-continuous but not αg*s-continuous. 
Since the set {b} is open in P*, but there does not esists αg*s-open set U* in P* containing the point b, that is       
b ∈Ψ(U*) ⊆ {b}. 
 
Theorem 3.6: For a function Ψ, the following statements are equivalent: 

(i) Ψ is a.αg*s.C, 
(ii) for each r ∈P* and V* ∈ O(S*) containing Ψ(r), there exists U* ∈αg*s-O(P*, r) withΨ(U*) ⊂sCl(V*), 
(iii) for each r ∈P* and V* ∈ RO(S*) containing Ψ(r), there exists U* ∈αg*s-O(P*, r) withΨ(U*) ⊂ V*. 
(iv) for each r ∈P* and V* ∈ δ-O(S*) containing Ψ(r), there exists U* ∈αg*s-O(P*, r) withΨ(U*) ⊂ V*. 

 
Theorem 3.7: For a function Ψ, the following statements are equivalent: 

(i) Ψ is a.αg*s.C, 
(ii) Ψ−1(int(cl(V*))) ∈αg*s-O(P*), for every V* ∈O(S*). 
(iii) for every F* ∈ C(S*), Ψ−1(cl(int(F*))) ∈αg*s-C(P*). 

 
Proof: (i)⇒(ii): Let V* ∈ O(P*). We have to show that Ψ−1(int(cl(V*))) ∈αg*s-O(P*).  
Let r ∈Ψ−1(int(cl(V*))). Then Ψ(r) ∈ int(cl(V*)) and int(cl(V*)) which is a regular open in S*. As Ψ is a.αg*s.C, 
so U* ∈αg*s-O(P*, r) with Ψ(U*) ⊂ int(cl(V*)), that is r ∈ U* ⊂Ψ−1(int(cl(V*))). In consequence, 
Ψ−1(int(cl(V*))) ∈αg*s-O(P*).  
 
(ii) ⇒ (iii): Let F* ∈ C(S*). Then S* - F* ∈O(S*). From (ii), Ψ−1(int(cl(S* - F*)))) ∈αg*s-O(P*) and 
Ψ−1(int(cl(S* - *F))) = Ψ−1(int(S* - int(F*))) = Ψ−1(S* - cl(int(F*))) =P* - Ψ−1(int(cl(F*))). HenceΨ−1(int(cl(F*))) 
∈αg*s-C(P*). 
 
(iii) ⇒ (i): Let F* ∈RC(S*). Then, F* ∈C(S*). From (iii), Ψ−1(cl(int(F*))) ∈αg*s-C(P*). As F* ∈ RC(S*), then 
Ψ−1(cl(int(F*))) = Ξ−1(F*). Therefore, Ψ−1(F*) ∈αg*s-C(P*). By Theorem 3.3, Ψ is a.αg*s.C. 
 
Theorem 3.8: Let Ψ be a.αg*s.C and V* ∈ O(S*). If r ∈αg*s-cl((Ψ−1(V*)) - (Ψ−1(V*), then Ψ(r) ∈αg*s-cl(V*). 
 
Proof: Let r ∈P* with r ∈αg*s-cl((Ψ−1(V*)) - (Ψ−1(V*). Suppose Ψ(r) ∉αg*s-cl(V*). Then, H* ∈αg*s-O(S*) 
containing Ψ(r) where H* ∩ V* = φ. So, cl(H*) ∩ V* = φ, and so int(cl(H*)) ∩ V* = φ and int(cl(H*)) is a 
regular open in R*. As Ψ is a.αg*s.C, U* ∈αg*s-O(P*, r) with Ψ(U*) ⊂ int(cl(H*)). Hence, Ψ(U*) ∩ V* = φ. 
 
However, since r ∈αg*s-cl((Ψ−1(V*), U* ∩ (Ψ−1(V*) = φholds for every U* ∈αg*s-O(P*, r), so Ψ(U*) ∩ V* ≠φ, 
we have a contradiction. Then it follows that Ψ(r) ∈αg*s-cl(V*). 
 
Definition 3.9: Let P* be a space. A filter base ∧* is said to be: 
(i) αg*s-convergent to a point r in P*, if for every U* ∈αg*s-O(P*, r), there exists B* ∈ Λ* with B* ⊂ U*. 
(ii) r*-convergent [12] to a point r in P* if for every U* ∈ RO-(P*, r), there exists B* ∈ Λ* such that B* ⊂ U*. 
 
Theorem 3.10: If Ψ is a.αg*s.C, then for each r ∈P* and filter base Λ* in P* isαg*s-converging to r, the filter 
base Ψ(Λ*) is r*-convergent to Ψ(r). 
 
Proof: Let r ∈R* and Λ* be any filter base in P*, which isαg*s-converging to r. By Theorem 3.6, for any V* 
∈RO-(S*) containing Ψ(r), there exists U* ∈αg*s-O(P*, r) with Ψ(U*) ⊂ V*.  
 
As Λ* is αg*s-converging to r, there exists B* ∈ Λ* with B* ⊂ U*, that is Ψ(B*) ⊂V*. Hence the filter base 
Ψ(Λ*) is r*-convergent to Ψ(r). 
 
Definition 3.11: A net (rλ) is said to be αg*s-convergent to a point r, if for every V* ∈αg*s-O(P*, r), there exists 
an index λ0 such that for λ ≥ λ 0, rλ∈ V*. 
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Theorem 3.12: If Ψ is a.αg*s.C, then for each point r ∈P* and each net (rλ) which is αg*s-convergent to r, then 
the net Ψ((rλ )) is r*-convergent to Ξ(r). 
 
Proof: The proof is similar to that of Theorem 3.9. 
 
Theorem 3.13: If Ψ is a.αg*s.C injective and S* is r-T1, then P* is αg*s-T1. 
 
Proof: Suppose S* is r-T1. For any distinct points r and s in P*, Ψ(r) ≠Ψ(s). There exist V*, W* ∈O(R*) with 
Ψ(r) ∈ V*, Ψ(s) ∉ V*, Ψ(r) ∉ W* and Ψ(s) ∈ W*. As Ψ is a.αg*s.C, Ψ−1(V*), Ψ−1(W*) ∈αg*s-O(P*) with        
r ∈Ψ−1(V*), s ∉Ψ−1(V*), r ∉Ψ−1(W*) and s ∈Ψ−1(W*), which shows that P* is αg*s-T1. 
 
Theorem 3.14: If Ψ is a.αg*s.C injective and S* is r-T2, then P* is αg*s-T2. 
 
Proof: For any pair of distinct points r and s in P*. Thenby the injectivity of Ψ, Ψ(r) ≠Ψ(s). There exist disjoint 
U*, V* ∈ RO-(P*) such that Ψ(r) ∈ U* and Ψ(s) ∈ V*. As Ψ is a.αg*s.C, Ψ−1(U*) ∈ αg*s-O(P*, r) and    
Ψ−1(V*) ∈αg*s-O(P*, s). Thus, Ψ−1(U*) ∩Ψ−1(V*)=φ, as U* ∩ V* = φ. SoP* is αg*s-T2. 
 
Definition 3.15: A function Ψ is said to be: 

(i) αg*s-irresolute [11] if Ψ−1(V*) is αg*s-open in R* for every αg*s-open set V* of S*. 
(ii) faintly αg*s-continuous (briefly f.αg*s.C) if for each point r ∈ R* and each θ-open set V* of S* 

containing Ψ(r), there exists U* ∈αg*s-O(R*, r) such that Ψ(U*) ⊂ V*. 
 
Theorem 3.16: A function Ψ is f.αg*s.C if and only if Ψ−1(V*) ∈αg*s-O(P*) for every V* ∈ θ-O(S*). 
 
Proof: Suppose Ψ is f.αg*s.C. Let V* ∈ θ-O(S*) and r ∈Ψ−1(V*). As Ψ(r) ∈V* and Ψ is f.αg*s.C, so U* ∈αg*s-
O(P*, r) withΨ(U*) ⊂ V*. Then r ∈ U* ⊂Ψ−1(V*). Thus Ψ−1(V*) is αg*s-open in P*. 
 
Conversely, let r ∈P* and V* ∈ θ-O(S*) containing Ψ(r). From hypothesis, Ψ−1(V*) ∈αg*s-O(P*, r). Take U* = 
Ψ−1(V*), then Ψ(U*) ⊂ V*. This shows that Ψ is f.αg*s.C. 
 
Definition 3.17: A topological space P* is said to be almost regular [10] if for any F* ∈ RC(P*) and any point      
r ∈P* - F*, there exist disjoint U*, V* ∈ O(P*) such that r ∈ U* and F* ⊂ V*. 
 
Theorem 3.18: If Ψ is a w.αg*s.C and S* is almost regular, then Ψ is a.αg*s.C. 
 
Proof: Let r ∈ P* and V* ∈O(S*, Ψ(r)). By almost regularity of S*, there exists G* ∈ RO(S*) with Ψ(r) ∈ G* ⊂ 
Cl(G*) ⊂int(Cl(V*)) . As Ψ is w.αg*s.C, there exists U* ∈αg*s-O(R*, r) withΨ(U*) ⊂ cl(G*) ⊂ int(cl(V*)). 
Thus, Ψ is a.αg*s.C. 
 
Definition 3.19[11]: A αg*s-frontier of a A* is denoted by αg*s-Fr(A*), is defined by αg*s-Fr(A*)=αg*s- cl(A*) 
∩αg*s-cl(P* - A*). 
 
Theorem 3.20: The set of all points r ∈P* in which a function Ψ is not a.αg*s.C is identical with the union of 
αg*s-frontier of the inverse images of regular open sets containing Ψ(r). 
 
Proof: Suppose Ψ is not a.αg*s.C at r ∈ P*. Then there exists V* ∈ RO(S*) containing Ψ(r) such that U* ∩ (P* - 
Ψ−1(V*)) ≠φfor every U* ∈αg*s-O(P*, r). Therefore, r ∈αg*s-cl(P* - Ψ−1(V*)) = P* - αg*s-int(Ψ−1(V*)) and       
r ∈Ψ−1(V*). Thus, r ∈αg*s-Fr(Ψ−1(U*)).  
 
Conversely, suppose Ψ is a.αg*s.C at r ∈ P* and V* ∈ RO(S*) containing Ψ(r). Then there exists U* ∈αg*s-
O(P*, r) such that U* ⊂Ψ−1(V*), that is r ∈αg*s-int(Ψ−1(V*)). Thus, r ∈ P* - αg*sFr(Ψ−1(V*)). 
 
Theorem 3.21: If Ψ is a.αg*s.C, Ψ* is w.αg*s.C with S* is Hausdorff, then the set {r ∈ R*: Ψ(r)= Ψ*(r)} is 
αg*s-closed in R*. 
 
Proof: Let A* = {r ∈ P*: Ψ(r)= Ψ*(r)} and r ∈ P* - A*. Then Ψ(r) ≠ Ψ*(r). As S* is Hausdorff, there exist V*, 
W* ∈ O(S*) with Ψ(r) ∈ V*, Ψ*(r) ∈ W* and V* ∩ W* = φ. Hence int(cl(V*)) ∩ cl(W*) = φ. Since Ψ is 
a.αg*s.C, there exists G* ∈αg*s-O(P*, r) with Ψ(G*) ⊂ int(cl(V*)). As Ψ* is w.αg*s.C, there exists H* ∈αg*s-
O(P*) such that Ψ*(H*) ⊂cl(W*). Now put U* = G* ∩ H*, then U* ∈αg*s-O(P*, r) and Ψ(U*) ∩Ψ*(U*) ⊂ 
int(cl(V*)) ∩ cl(W*) = φ. Therefore, we obtain U* ∩ A* = ∅ and hence A* is αg*s-C(P*). 
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Theorem 3.22: Suppose the product of two αg*s-open sets is αg*s-open. If Ψ: (P1*, τ) → (S*, σ) is w .αg*s.C, 
Ψ2: (P*2, τ) → (S*, σ) is a.αg*s.C and S* is Hausdorff, then the set {(r1, r2) ∈P*1 x P*2 :Ψ1(r1)= Ψ2(r2)} is αg*s-
closed in P*1 x P*2. 
 
Proof: Let A* = {(r1, r2) ∈P*1 x P*2 :Ψ(r1) = P*(r2)}. If (r1, r2) ∈ (P*1 x P*2) – A*, then Ψ(r1) ≠Ψ(r2). As S* is 
Hausdorff, there exist disjoint open sets V*1 and V*2 in S* withΨ(r1) ∈ V*1 and Ψ(r2) ∈ V*2 and cl(V*1)∩ 
int(cl(V*2)) = φ. As Ψ1 (resp. Ψ2) is w.αg*s.C (resp. a.αg*s.C), there exists U*1∈αg*s-O(P*1, r1) such that 
Ψ(U*1) ⊂ cl(V*1) (resp. U*2∈αg*s-O(P*2, r2) with Ψ(αg*s-cl(U*1)) ⊂ int(cl(V*2))). Hence, (r1, r2) ∈ U*1 x U*2⊂ 
P*1 x P*2 – A*. Thus, (P*1 x P*2) – A* is αg*s-open and so A* is αg*s-closed in P*1 x P*2. 
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