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ABSTRACT 

In this study, we introduce the reverse elliptic Sombor and modified reverse elliptic Sombor indices and their 

corresponding exponentials of a graph. Also we compute these newly defined elliptic Sombor indices for two families of 

dendrimer nanostars. We establish some mathematical properties of reverse elliptic Sombor index. 
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1. INTRODUCTION 

 

Let G = (V(G), E(G)) be a finite, simple connected graph.. The degree dG(v) is the number of vertices adjacent to v. Let 

(G) denote the maximum degree among the vertices of G. The reverse vertex degree of a vertex v in G is defined as  

cv = (G) – dG(v)+1. The reverse edge connecting the reverse vertices u and v will be denoted by uv. We refer [1] for 

undefined term and notation. 

 

A molecular graph is a graph whose vertices correspond to the atoms and the edges to the bonds. Chemical graph 

theory has an important effect on the development of the Chemical Sciences. A single number that can be used to 

characterize some property of the graph of molecular is called a topological index. Numerous topological indices have 

been considered in Theoretical Chemistry see [2, 3].  

 

The reverse elliptic Sombor index [4] of a graph G is defined as 

   
 

   
 

2 2 .u v u v

uv E G

RES G c c c c


    

Recently, some elliptic Sombor indices were studied in [5, 6]. 

 

We define the reverse elliptic Sombor exponential of a graph G as              
 

   

 

2 2

, .u v u vc c c c

uv E G

RES G x x
 



   

We put forward the modified reverse elliptic Sombor index of a graph G and it is defined as 

     

  
2 2

1
.m

uv E G
u v u v

RES G
c c c c


 

  

 We define the modified reverse elliptic Sombor exponential of a graph G as              
 

   

 

2 2

1

, .u v u vc c c cm

uv E G

RES G x x
 



   

In this paper, we determine the elliptic Sombor indices and their corresponding exponentials of some families of 

benzenoid systems. 

 

Recently, some Sombor indices were studied in [7-26]. 

 

We mention below some topological indices which are needed in this paper. 
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The second reverse Zagreb index [27] is defined as 

 
 

2 .u v

uv E G

CM G c c


   

The first and second reverse hyper Zagreb indices [28] are defined as 

   
 

2

1 ,u v

uv E G

HCM G c c


   

   
 

2

2 .u v

uv E G

HCM G c c


   

The F-reverse index [29] is defined as 

   
 

2 2 .u v

uv E G

FC G c c


   

We put forward the alpha reverse Gourava index of a graph G  and it is defined as 

 
 

2 2( ) .u v u v

uv E G

RGO G c c c c


   

In this paper, we determine the reverse elliptic Sombor and modified reverse elliptic Sombor indices and their 

exponentials of two families of dendrimer nanostars. Also we establish some mathematical properties of reverse elliptic 

Sombor index. 

 

2. MATHEMATICAL PROPERTIES 

 

Proposion1: Let P be a path with n≥3 vertices. Then    6 5 2 2 3 .RES P n    

 

Proposion 2: Let G be a regular graph with m edges. Then   2 2 .RES G m  

 

Proof: If G is r-regular, then ∆ = dG(u) = r for each vertex u in G. Thus cv =  r  r + 1 = 1. Thus 

   
 

2 21 1 1 1 2. 2 .
uv E G

RES G m


     

 

Proposion 3: If G is not regular with m edges, then  

  28 2 2 2 .m RES G m D   

 

Proof: If G is not regular, then ∆≥2 and put ∆=D, so that D≥2. Then for each vertex u in G, 

  cv = D– dG(v)+1≥2. 

 

Also dG(v)≥1, so that cv = D – dG(v)+1≤D. Thus 

   
 

 2 2 2 22 2 2 2 8 2 .u v u v

uv E G

RES G c c c c m m


        

   
 

2 2 2 2 2( ) 2 2 .u v u v

uv E G

RES G c c c c m D D D D m D


        


Theorem 1: Let G be a simple connected graph. Then  

   
1

1

2
RES G HCM G  

with equality if G is regular. 

 

Proof: By the Jensen inequality, for a concave function f(x),  

1 1
( )i if x f x

n n

       

with equality for a strict concave function if  x1  = x2  = …= xn.    Choosing   f(x) = √x , we obtain 

 2 2

2 2

u vu v
c cc c 

  

thus                          
22 2 1

.
2

u v u v u vc c c c c c     

Hence                      
  

22 2 1
.

2
u v u v u v

uv E G uv E G

c c c c c c
 

      
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Thus                         
1

1

2
RES G HCM G  

with equality if G is regular. 

 

Corollary 1.1: Let G be a simple connected graph. Then  

   2

1
( ) 2 ( )

2
RES G FC G CM G   

with equality if G is regular. 

 

Proof: We have 

   
  

22 2 1

2
u v u v u v

uv E G uv E G

c c c c c c
 

      

                                                                        
 

 2 2

2

1 1
2 ( ) 2 ( ) .

2 2
u v u v

uv E G

c c c c FC G CM G


      

 

Theorem 2: Let G be a simple connected graph. Then  

    1 22 ( ) 2 ( ) .RES G HCM G RGO G HCM G    

Proof: It is known that for 1≤x ≤ y , 

   
2 2

,
2

x y
f x y x y xy


     

is decreasing for each y. Thus    , , 0.f x y f y y   Hence 

2 2

2

x y
x y xy


    

or                        

2 2

.
2

x y
x y xy


                                     

Put x=
uc  and y=

vc , we get 

 
2 2

2

u v

u v u v

c c
c c c c


    

     
22 21

2
u v u v u v u v u vc c c c c c c c c c       

which implies  

   
  

 
 

22 21

2
u v u v u v u v u v

uv E G uv E G uv E G

c c c c c c c c c c
  

         

                                                                               
 

 
 

2 2

u v u v u v

uv E G uv E G

c c c c c c
 

      

                                                                               
 

 
 

2 2 2 2 2( ) 2u v u v u v u v

uv E G uv E G

c c c c c c c c
 

        

Thus        
1 2

1
( ) 2 ( ).

2
RES G HCM G RGO G HCM G    

 

Theorem 3: Let G be a simple connected graph. Then  

   
1 .RES G HCM G  

 

Proof: It is known that for 1≤x ≤ y , 

2 2x y x y    

   22 2x y x y x y     

Setting x= uc  and y= vc , we get 

   
22 2

u v u v u vc c c c c c     
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Thus                      
  

22 2 .u v u v u v

uv E G uv E G

c c c c c c
 

      

 Hence                   
1 .RES G HCM G  

 

Theorem 4: Let G be a simple connected graph with n vertices. Then  

 
1( ) ( ).RES G HCM G FC G  

 

Proof: By the Cauchy-Schwarz inequality,   

    
2

2 2

i i i ia b a b    

with equality holds if and only if 
i ia b , i= 1, 2,…,n, for some real number  . 

 

Using this to RES, we obtain  

   
 

 
 

 
 

 
2

2 22 2 2 2( ) u v u v u v u v

uv E G uv E G uv E G

RES G c c c c c c c c
  

                
    

                                                 =
1( ) ( )HCM G FC G  

gives the desired result. 

 

3. RESULTS FOR DENDIMER NANOSTARS D1[n] 

 

In this section, we consider a family of dendrimer nanostars with n growth stages, denoted by D1[n], where n0. The 

molecular graph of D1[4] with 4 growth stages is depicted in Figure 1.  

 
Figure-1: The molecular graph of D1[4]. 

  

Let G be the molecular graph of dendrimer nanostar D1[n]. From Figure 1, it is easy to see that the vertices of 

dendrimter nanostar D1[n] are either of degree 1, 2 or 3. Therefore (G) = 3 and cu = 4 – dG(u). We obtain that G has 

2
n+4

 – 9 vertices and 18 × 2
n
 – 11 edges. Also by calculation, we partition the edge set E(D1[n]) into three sets as 

follows:   

E1 = {uv  E(G) | dG(u) = 1, dG(v) = 3}  |E1| = 1. 

E2 = {uv  E(G) | dG(u) = dG(v) = 2}  |E2| = 6 × 2
n
 – 2. 

E3 = {uv  E(G) | dG(u) = 2, dG(v) = 3}  |E3| = 12 × 2
n
 – 10. 

 

Thus there are three types of reverse edges as follows: 

CE1 = {uv  E(G) | cu = 3, cv = 1}                 |CE1| = 1. 

CE2 = {uv  E(G) |  cu = cv = 2}                 |CE2| = 6 × 2
n
 – 2. 

CE3 = {uv  E(G) |  cu = 2,  cv = 1}                              |CE3| = 12 × 2
n
 – 10. 

 

Theorem 5: The reverse elliptic Sombor index of a dendrimer nanostar D1[n] is given by 

   48 2 36 2 2 4 10 16 2 30 5.nRES G       

 

Proof: We have 

   
 

2 2

u v u v

uv E G

RES G c c c c


    

                                                     2 2 2 2 2 21 3 1 3 1 6  2 – 2 2 2 2 2 12  2 –10 2 1 2 1n n                     

                                             48 2 36 5 2 4 10 16 2 30 5.n      
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Theorem 6: The reverse elliptic Sombor exponential of a dendrimer nanostar D1[n] is given by 

     4 10 8 2 3 5, 1 6  2 – 2 12  2 –10 .n nRES G x x x x      

 

Proof: We have 

   

 

2 2

, u v u vc c c c

uv E G

RES G x x
 



   

                    

         2 2 2 2 2 23 1 3 1 2 2 2 2 2 1 2 11 6  2 – 2 12  2 –10n nx x x           

                    

   4 10 8 2 3 51 6  2 – 2 12  2 –10 .n nx x x    

  
Theorem 7: The modified reverse elliptic Sombor index of a dendrimer nanostar D1[n] is  

  3  2 4  2 1 1 10
.

4 2 5 4 10 4 2 3 5

n n
m RES G

 
      

Proof: We have 

 

  
2 2

1m

uv E G
u v u v

RES G
c c c c


 

  

                   
     2 2 2 2 2 2

1 6  2 – 2 12  2 –10

3 1 3 1 2 2 2 2 2 1 2 1

n n 
  

     
 

                   
3  2 4  2 1 1 10

.
4 2 5 4 10 4 2 3 5

n n 
      

                         

Theorem 8: The modified reverse elliptic Sombor exponential of a dendrimer nanostar D1[n] is given by 

     
1 11

4 10 3 58 2, 1 6  2 – 2 12  2 –10 .m n nRES G x x x x      

Proof: We have 

   

 

2 2

1

, u v u vc c c cm

uv E G

RES G x x
 



   

                      

         2 2 2 2 2 2

1 1 1

3 1 3 1 2 2 2 2 2 1 2 11 6  2 – 2 12  2 –10n nx x x           

                      

   
1 11

4 10 3 58 21 6  2 – 2 12  2 –10 .n nx x x      

                  

4.  RESULTS FOR DENDIMER NANOSTARS D3[n] 

 

In this section, we consider of dendrimer nanostars with n growth stages, denoted by D3[n], where n0. The molecular 

structure of D3[n] with 3 growth stages is shown in Figure 2.  

 

 
Figure-2: The molecular structure of D3[3] 

 

Let G be the graph of a dendrimer nanostar D3[n]. From Figure 2, it is easy to see that the vertices of dendrimter 

nanostar D3[n] are either of degree 1, 2 or 3. Therefore (G) = 3 and cu = 4 – dG(u). By algebraic method, we obtain 

that G has 24 × 2
n
 – 20 vertices and 24 × 2

n+1
 – 24 edges. Also by algebraic method, we obtain that the edge set 

E(D3[n]) can be divided into four partitions:  

E1 = {uv  E(G) | dG(u) = 1, dG(v) = 3}  |E1| = 3×2
n
. 

E2 = {uv  E(G) | dG(u) = dG(v) = 2}  |E2| = 12×2
n 
– 6. 

E3 = {uv  E(G) | dG(u) = 2, dG(v) = 3}  |E3| = 24×2
n 
– 12. 

E4 = {uv  E(G) | dG(u) = dG(v) = 3}  |E4| = 9×2
n 
– 6. 
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Thus there are four types of reverse edges as follows: 

CE1 = {uv  E(G) |  cu = 3, cv = 1}                |CE1| = 3×2
n
. 

CE2 = {uv  E(G) |  cu = cv = 2}                |CE2| = 12×2
n 
– 6. 

CE3 = {uv  E(G) | cu = 2,  cv = 1}                |CE3| = 24×2
n 
– 12. 

CE4 = {uv  E(G) |  cu =  cv = 1}                |CE4| = 9×2
n 
– 6. 

 

Theorem 9: The reverse elliptic Sombor index of a dendrimer nanostar D3[n] is given by 

   12 10 114 2 72 5 2 60 2 36 5.nRES G       

Proof: We have 

   
 

2 2

u v u v

uv E G

RES G c c c c


    

                
     2 2 2 23  2 3 1 3 1 12  2 – 6 2 2 2 2n n              

                     
       2 2 2 224  2 –12 2 1 2 1 9  2 – 6 1 1 1 1n n               

                
 12 10 114 2 72 5 2 60 2 36 5.n      

 

Theorem 10: The reverse elliptic Sombor exponential of a dendrimer nanostar D3[n] is given by 

       4 10 8 2 3 5 2 2, 3 2 12 2 – 6 24  2 –12 9  2 – 6 .n n n nRES G x x x x x         

Proof: We have 

   

 

2 2

, u v u vc c c c

uv E G

RES G x x
 



   

     2 2 2 23 1 3 1 2 2 2 23 2 12 2 – 6 n nx x      

 

    

       2 2 2 22 1 2 1 1 1 1 124  2 –12 9  2 – 6n nx x        

     4 10 8 2 3 5 2 23 2 12 2 – 6 24  2 –12 9  2 – 6 .n n n nx x x x       

  

Theorem 11: The modified reverse elliptic Sombor index of a dendrimer nanostar D3[n] is  

  3 12 8 3 4 3
2 .

4 10 2 2 5 4 2 5 2

m nRES G
        

 

Proof: We have 

 

  
2 2

1m

uv E G
u v u v

RES G
c c c c


 

  

 
       2 2 2 2 2 2 2 2

3  2 12  2 – 6 24  2 –12 9  2 – 6

3 1 3 1 2 2 2 2 2 1 2 1 1 1 1 1

n n n n   
   

       
 

 
3 12 8 3 4 3

2 .
4 10 2 2 5 4 2 5 2

n 
      
 

 

 

Theorem 12: The modified reverse elliptic Sombor exponential of a dendrimer nanostar D3[n] is given by 

       
1 11 1

4 10 3 58 2 2 2, 3 2 12  2 – 6 24  2 –12 9  2 – 6 .m n n n nRES G x x x x x         

Proof: We have 

   

 

2 2

1

, u v u vc c c cm

uv E G

RES G x x
 



   

                       

             2 2 2 2 2 2 2

1 1 1 1

3 1 3 1 2 2 2 2 2 1 2 1 1 1 1 13 2 12  2 – 6 24  2 –12 9  2 – 6n n n nx x x x                

                       

     
1 11 1

4 10 3 58 2 2 23 2 12  2 – 6 24  2 –12 9  2 – 6 .n n n nx x x x       

  

5.  CONCLUSION 

 

We have introduced the reverse elliptic Sombor and modified reverse elliptic Sombor indices and their exponentials of 

a graph. Furthermore the reverse elliptic Sombor and modified reverse elliptic Sombor indices and their exponentials 

for two families of dendrimer nanostars are determined. Also some mathematical properties of reverse elliptic Sombor 

index are obtained. 
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