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ABSTRACT 

In this study, we introduce the modified F-index and modified first and second hyper Zagreb indices of a graph. We 

obtain novel upper and lower bounds on the modified F-index of graphs using some graph parameters. Also we present 

several relations on modified F-index with some other topological indices.  
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1. INTRODUCTION 

 

Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The degree d(u) of a vertex u is the 

number of vertices adjacent to u. For definitions and notations, we refer the book [1]. 

 

In Chemistry, topological indices have been found to be useful in discrimination, chemical documentation, structure 

property relationships, structure activity relationships and pharmaceutical drug design. There has been considerable 

interest in the general problem of determining topological indices. Graph indices have their applications in various 

disciplines of Science and Technology. For more information about graph indices, see [2].  

 

The first and second hyper Zagreb indices [3] of a graph G are defined as 
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The first and second hyper Zagreb indices of a graph G are defined as 
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The modified second Zagreb index [4] of a graph G is defined as            
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The first Banhatti-Sombor index of a graph G was introduced by Kulli [5] and is defined as            
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The modified Sombor index of a graph G was introduced by Kulli and Gutman [6], which is defined as            
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The harmonic index [7] of a graph G is defined as            
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The Randic index [8] and reciprocal Randic index [9] of a graph G are defined as            
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The sum connectivity index [10] of a graph G is defined as            
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The Albertson index [11] of a graph G is defined as            
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The atom bond connectivity index [12] of a graph G is defined as            
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The geometric-arithmetic index [13] of a graph G is defined as            
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The symmetric division deg index [14] of a graph G is defined as            
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The inverse sum deg index [15] of a graph G is defined as            
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We propose the first and second modified hyper Zagreb indices of a graph G and defined as
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The F-index [16] of a graph G is defined as 
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We introduce the modified F-index of a graph G and defined it as 
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In this paper, we establish several relations between the modified F-index and some other graph indices.  

 

2. BOUNDS ON MODIFIED F-INDEX OF GRAPHS 

 

In the following theorem, we establish upper and lower bounds on  m F G  on some graph parameters. 
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Theorem 1: Let G be connected graph of order n, size m with the maximum degree ∆ and minimum degree 𝛿. Then 

 
2 22 2

mm m
F G


 


 

with equality if and only if G is regular. 

 

Proof: Since  
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with equality if and only if G is regular. 

 

Corollary 1.1: Let G be connected graph of order n, size m with the maximum degree ∆ and minimum degree 𝛿. Then 
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with equality if and only if G is regular.  
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Then by Theorem 1, we obtain that 
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We now give a relation between modified F-index  m F G  and modified second Zagreb index 
2

* ( )M G . 

 

Theorem 2: Let G be connected graph of order n, size m with the maximum degree ∆ and minimum degree 𝛿. Then 

 
2 2

* *

2 2

1
( ) ( ).

2

mM G F G M G





 

 
 

with equality (left and right) if and only if G is regular. 
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It follows that    
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Also we have 
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with equality if and only if G is regular. 

 

We now give a relation between modified F-index  m F G  and the modified second hyper Zagreb index 
2

* ( ).HM G . 
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Theorem 3: Let G be connected graph of order n, size m with the maximum degree ∆ and minimum degree 𝛿. Then 
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with equality if and only if G is regular.  

       

 

 

Similarly, establish the corresponding upper bound. 

 

We now present a relation between the modified F-index  m F G  and the modified Sombor index  m SO G . 

 

Theorem 4: Let G be a connected graph with m edges. Then 
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In the following, we obtain the lower and upper bounds of the modified F-index  m F G  with the modified Sombor 

index  m SO G . 

 
Theorem 5: Let G be connected graph of order n, size m with the maximum degree ∆ and minimum degree 𝛿. Then 
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with equality if and only if G is regular.  

 

Similarly, we establish the corresponding upper bound. 

 

Corollary A [17]: Let G be any graph. Then  
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and the bound is tight if and only if G has regular connected components. 
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In the following, we give an upper bound on the modified F-index in terms of the first Banhatti-Sombor index. 
 

Theorem 6: Let G be a connected graph. Then  
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with equality if and only if G is regular.  

 

Proof: Combining Corollary A with Theorem 5, we get the desired result. 

 

Corollary 6.1: Let G be a connected graph with n vertices and m edges with the minimum degree 𝛿.. Then 
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obtain the desired result. 

 

Corollary 6.2: Let G be a connected graph with n vertices and m edges with the maximum degree ∆ and minimum 

degree 𝛿. Then 
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Corollary 6.3: Let G be a connected graph with n vertices and m edges with the maximum degree ∆ and minimum 

degree 𝛿. Then 
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with equality if and only if G is a regular graph [18]. Combine with 

Theorem 6, we obtain the desired result. 

 

Corollary 6.4: Let G be a connected graph with the maximum degree ∆. Then 
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Corollary 6.5: Let G be a connected graph with the maximum degree ∆. Then 
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Combine with Theorem 6, we obtain the desired result. 

 

Corollary 6.6: Let G be a connected graph with the maximum degree ∆. Then 
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Corollary 6.7: Let G be a connected graph with the maximum degree ∆. Then 
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Corollary 6.8: Let G be a connected graph with the maximum degree ∆. Then 
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desired result. 

 

Corollary 6.9: Let G be a connected graph with the maximum degree ∆. Then 
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We now give an upper bound on the modified F-index in terms of the Sombor index. 
 

Theorem 7: Let G be a connected graph. Then  
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We establish an upper bound on the modified F-index in terms of the first Zagreb index. 
 

Theorem 8: Let G be a connected graph. Then  
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We now give a relationship between modified F-index, Albertson index and reciprocal Randic index. 
 

Theorem 9: Let G be a connected graph. Then  
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We now give a relationship between the modified F-index and F-index. 

 
Theorem 10: Let G be a connected graph. Then  
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In the next Theorem, we obtain an upper bound on the modified F-index in terms of the harmonic index. 

  

 

Theorem 11: Let G be connected graph with n vertices and m edges with the minimum degree 𝛿. Then 
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m m

uv E G

F G SO G

d u d v  

 


  

              
    

1 1 1
2 ( ).

22 uv E G

H G
d u d v  

 


  

Thus                       
1

( ).
2

m F G H G


  

Corollary 11.1: Let G be a connected graph with n vertices, m edges, minimum degree 𝛿. Then 

 
2

12

m m n
F G




  

with equality if and only if G is a cycle Cn. 
 

Proof: Since  
2

6

m n
H G


 with equality if and only if G is a path Pn or a cycle Cn. [19].Combine with Theorem 11, 

we obtain the desired result 
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Corollary 11.2: Let G be a connected graph with n vertices, m edges, minimum degree 𝛿. Then 

 
1

( )
2

m F G R G


  

with equality if and only if G is a cycle Cn. 
 

Proof: Since   ( )H G R G with equality if and only if G is a 
2m

n
-regular graph [20]. Combine with Theorem 11, 

we get the desired result 

 

Corollary 11.3: Let G be a connected graph with n vertices, m edges, minimum degree 𝛿. Then 

 
( ) 2 ( )

4

m ABC G R G
F G




  

with equality if and only if G is a path P2. 
 

Proof: Since  
1

( ) ( )
2

H G ABC G R G  with equality if and only if G is a path P2 [21]. Combine with Theorem 11, 

we obtain the desired result. 

 

Corollary 11.4: Let G be a connected graph with n vertices, m edges, minimum degree 𝛿. Then 

 
1

( )m F G X G
k

  

with equality if and only if G is a k-regular graph. 

 

Proof: Since  
2

( )H G X G
k

 with equality if and only if G is a k-regular graph [22]. Combine with Theorem 11, 

we get the desired result 

 

Corollary 11.5: Let G be a connected graph with n vertices, m edges, minimum degree 𝛿. Then 

 
( )

2 2 2

m ABC G
F G

k



 

with equality if and only if G is a k-regular graph. 

 

Proof: Since  
( )

2 2

ABC G
H G

k



with equality if and only if G is a k-regular graph   [22]. Combine with Theorem 11, 

we obtain the desired result. 

 

Corollary 11.6: Let G be a connected graph with n vertices, m edges, minimum degree 𝛿. Then 

 
2

( )

2

m GA G
F G


  

with equality if and only if G is a regular graph. 
 

Proof: Since  
( )

.
GA G

H G


 with equality if and only if G is a regular graph [23]. Combine with Theorem 11, we 

obtain the desired result. 

 

Corollary 11.7: Let G be a connected graph with n vertices, m edges, minimum degree 𝛿. Then 

 
2 2 2 2

3

2

( ) ( )

8 ( )

m GA G
F G

M G





 



 

with equality if and only if G is a regular graph. 

 

Proof: Since  
2 2 2 2

2

2

( ) ( )

4 ( )

GA G
H G

M G





 



with equality if and only if G is a regular graph [24]. Combine with 

Theorem 11, we obtain the desired result. 
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Corollary 11.8: Let G be a connected graph with n vertices, m edges, minimum degree 𝛿. Then 

 
( )

4

m ID G
F G




  

with equality if and only if G is a cycle Cn. 
 

Proof: Since  
( )

2

ID G
H G


 with equality if and only if G is a regular graph [25]. Combine with Theorem 11, we 

obtain the desired result 

 

Corollary 11.9: Let G be a connected graph with n vertices, m edges, minimum degree 𝛿. Then 

 

2

( ) ( )

2 ( )

m m ISI G
F G

M G



 

 



 

with equality if and only if G is a regular graph. 
 

Proof: Since  

2

( ) ( )

( )

m ISI G
H G

M G





 



with equality if and only if G is a regular graph [26]. Combine with Theorem 

11, we get the desired result. 

 

Corollary 11.10: Let G be a connected graph with n vertices, m edges, minimum degree 𝛿. Then 

 
3

( )m ISI G
F G


  

with equality if and only if G is a regular graph. 

 

Proof: Since  
2

2 ( )ISI G
H G


 with equality if and only if G is a regular graph [27]. Combine with Theorem 11, we 

obtain the desired result.     

 

In this study, we have obtained several bounds for modified F-index of graphs with given some parameters and some 

other graph indices. 
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