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ABSTRACT 
An n-tuple (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is symmetric, if 𝑎𝑎𝑘𝑘 = 𝑎𝑎𝑛𝑛−𝑘𝑘+1, 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛. Let 𝐻𝐻𝑛𝑛 = �(𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛): 𝑎𝑎𝑘𝑘 ∈ {+,−},  𝑎𝑎𝑘𝑘 = 𝑎𝑎𝑛𝑛−𝑘𝑘+1,  1 ≤
𝑘𝑘≤𝑛𝑛 be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair Sn = (G, 
σ) (Sn = (G, µ)), where G = (V, E) is a graph called the underlying graph of Sn and σ: E → H n (µ: V → H n) is a 
function. In this paper, we introduced a new notion distance divisor symmetric n-sigraph of a symmetric n-sigraph and 
its properties are obtained. Also, we obtained the structural characterization of distance divisor symmetric n-signed 
graphs.  
 
Keywords: Symmetric n-sigraphs, Symmetric n-marked graphs, Balance, Switching, Distance divisor symmetric           
n-sigraphs, Complementation.  
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1. INTRODUCTION 
 
Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [1]. We 
consider only finite, simple graphs free from self-loops. 

 
Let n ≥ 1 be an integer. An n-tuple (a1, a2,... ,an) is symmetric, if ak= an−k+1,1 ≤ k ≤ n. Let Hn= {(a1,a2,...,an) : ak∈ {+,−}, 
ak= an−k+1,1 ≤ k ≤ n} be the set of all symmetric n-tuples. Note that Hn is a group under coordinate wise multiplication, 
and the order of Hn is 2m, where 𝑚𝑚 = �𝑛𝑛

2
�. 

 
A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair Sn = (G,σ) (Sn = (G,µ)), where G = (V,E) is a 
graph called the underlying graph of Sn and σ : E → Hn (µ : V → Hn) is a function. 
 
In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n-tuple / symmetric n-sigraph / 
symmetric n-marked graph. 
 
An n-tuple (a1, a2, ... ,an) is the identity n-tuple, if ak= +, for 1 ≤ k ≤ n, otherwise it is a non-identity n-tuple. In an          
n-sigraph Sn = (G, σ) an edge labelled with the identity n-tuple is called an identity edge, otherwise it is a non-identity 
edge. 
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Further, in an n-sigraph Sn = (G, σ), for any A ⊆ E(G) the n-tuple σ(A) is the product of the n-tuples on the edges of A. 
 
In [7], the authors defined two notions of balance in n-sigraph Sn = (G, σ) as follows (See also R. Rangarajan and P. S. 
K. Reddy [3]): 

 
Definition: Let Sn = (G, σ) be an n-sigraph. Then, 

(i) Sn is identity balanced (or i-balanced), if product of n-tuples on each cycle of Sn is the identity n-tuple, and 
(ii) Sn is balanced, if every cycle in Sn contains an even number of non-identity edges. 

 
Note: An i-balanced n-sigraph need not be balanced and conversely. 
 
The following characterization of i-balanced n-sigraphs is obtained in [7]. 
 
Theorem 1.1: (E. Sampathkumar et al. [7]) An n-sigraph Sn = (G, σ) is i-balanced if, and only if, it is possible to 
assign n-tuples to its vertices such that the n-tuple of each edge 𝑢𝑢𝑢𝑢 is equal to the product of the n-tuples of 𝑢𝑢 and 𝑣𝑣. 
 
Let Sn = (G, σ) be an n-sigraph. Consider the n-marking µ on vertices of Sn defined as follows: each vertex 𝑣𝑣∈V, µ(𝑣𝑣) is 
the n-tuple which is the product of the n-tuples on the edges incident with 𝑣𝑣. Complement of Sn is an n-sigraph 
 𝑆𝑆𝑛𝑛����=(𝐺̅𝐺,𝜎𝜎𝑐𝑐 ), where for any edge e = 𝑢𝑢𝑢𝑢∊ 𝐺̅𝐺, 𝜎𝜎𝑐𝑐(𝑢𝑢𝑢𝑢) = μ(𝑢𝑢)𝜇𝜇(𝑣𝑣). Clearly, 𝑆𝑆𝑛𝑛��� is defined here is an i-balanced n-sigraph 
due to Theorem 1.1. 
 
In [7], the authors also have defined switching and cycle isomorphism of an n-sigraph Sn = (G, σ) as follows: (See also 
[2, 4-6, 9–19]) 
 
Let Sn = (G, σ) and 𝑆𝑆𝑛𝑛′ = (𝐺𝐺 ′,𝜎𝜎 ′) be two n-sigraphs. Then Sn and 𝑆𝑆𝑛𝑛′  are said to be isomorphic, if there exists an 
isomorphism ϕ : G → 𝐺𝐺 ′such that if uv is an edge in Sn with label (a1, a2,... ,an) then ϕ(u)ϕ(v) is an edge in 𝑆𝑆𝑛𝑛′  with label 
(a1, a2,... ,an). 

 
Given an n-marking µ of an n-sigraph Sn = (G, σ), switching Sn with respect to µ is the operation of changing the n-tuple 
of every edge uv of Sn by µ(u)σ(uv)µ(v). Then-sigraph obtained in this way is denoted by Sµ(Sn) and is called the            
µ-switched n-sigraph or just switched n-sigraph. 

 
Further, an n-sigraph Sn switches to n-sigraph 𝑆𝑆𝑛𝑛′  (or that they are switching equivalent to each other), written as 𝑆𝑆𝑛𝑛~𝑆𝑆𝑛𝑛′ , 
whenever there exists an n-marking of Sn such that 𝑆𝑆𝜇𝜇 (𝑆𝑆𝑛𝑛)≌𝑆𝑆𝑛𝑛′ . 
 
Two n-sigraphs Sn = (G, σ) and 𝑆𝑆𝑛𝑛′ = (𝐺𝐺 ′,𝜎𝜎 ′) are said to be cycle isomorphic, if there exists an isomorphism ϕ: G →𝐺𝐺′ 
such that the n-tuple σ(C) of every cycle C in Sn equals to the n-tuple 𝛔𝛔(Փ  (C)) in 𝑆𝑆𝑛𝑛′ . 

 
We make use of the following known result (see [7]). 
 
Theorem 1.2: (E. Sampathkumar et al. [7]) Given a graph G, any two n-sigraphs with G as underlying graph are 
switching equivalent if, and only if, they are cycle isomorphic. 
 
2. Distance Divisor n-Sigraph of an n-Sigraph 
 
Let G = (V,E)$ be a graph with |V|=p and |E|=q. The shortest path P in G is said to be distance divisor path, if l(P)|q, 
where l(P) denotes the length path P. 
 
Let G = (V, E) be a graph with |V| = p and |E| = q. The distance divisor graph DD(G) of G = (V, E) is a graph with 
V(DD(G)) = V(G) and any two vertices u and v in DD(G) are joined by an edge  if there exists a distance divisor path 
between them in G. This concept were introduced by Saravanakumar and Nagarajan [20]. 
 
Motivated by the existing definition of complement of an n-sigraph, we extend the notion of distance divisor graphs to 
n-sigraphs as follows: The distance divisor n-sigraph DD(Sn) of an n-sigraph Sn = (G, σ) is  an n-sigraph whose 
underlying graph is DD(G) and the n-tuple of any edge uv is DD(Sn) is 𝜇𝜇(𝑢𝑢)𝜇𝜇(𝑣𝑣), where 𝜇𝜇 is the canonical n-marking 
of Sn. Further, an n-sigraph Sn = (G, σ) is called distance divisor n-sigraph, if 𝑆𝑆𝑛𝑛 ≅ 𝐷𝐷𝐷𝐷(𝑆𝑆𝑛𝑛′ ) for some n-sigraph 𝑆𝑆𝑛𝑛′ .  The 
following result indicates the limitations of the notion DD(Sn) as introduced above, since the entire class of                    
i-unbalanced n-sigraphs is forbidden to be detour radial n-sigraphs. 
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Theorem 2.1: For any n-sigraph Sn = (G, σ), its distance divisor n-sigraph DD(Sn) is i-balanced. 
 
Proof: Since the n-tuple of any edge uv in DD(Sn) is 𝜇𝜇(𝑢𝑢)𝜇𝜇(𝑣𝑣), where 𝜇𝜇 is the canonical n-marking of Sn, by Theorem 
1.1, DD(Sn) is i-balanced.  
 
For any positive integer k, the kth iterated distance divisor n-sigraph, DDk(Sn) of Sn is defined as follows: 

DD0(Sn) = Sn, DDk(Sn) = DD(DDk−1(Sn)). 
 
Corollary 2.2: For any n-sigraph Sn = (G, σ) and for any positive integer k, DDk(Sn) is i-balanced. 
 
The following result characterizes n-sigraphs which are distance divisor n-sigraphs. 
 
Theorem 2.3: An n-sigraph Sn = (G, σ) is a distance divisor n-sigraph if, and only if, Sn is i-balanced n-sigraph and its 
underlying graph G is a distance divisor graph. 
 
Proof: Suppose that Sn is i-balanced and G is a distance divisor graph. Then there exists a graph 𝐻𝐻 such that          
DD(H) ≌G. Since Sn is i-balanced, by Theorem 1.1, there exists a marking ζ of G such that each edge e = uv in Sn 

satisfies σ(uv) = ζ(u)ζ(v). Now consider the n-sigraph 𝑆𝑆𝑛𝑛 ′ = (𝐻𝐻,𝜎𝜎 ′), where for any edge e in 𝐻𝐻, 𝜎𝜎 ′(e) is the n-marking 
of the corresponding vertex in G. Then clearly, DD(𝑆𝑆𝑛𝑛 ′)  ≌  𝑆𝑆𝑛𝑛 . Hence Sn is a distance divisor n-sigraph. 
 
Conversely, suppose that Sn = (G, σ) is a distance divisor n-sigraph. Then there exists an n-sigraph𝑆𝑆𝑛𝑛 ′ = (𝐻𝐻,𝜎𝜎 ′) such 
that DR(𝑆𝑆𝑛𝑛 ′)  ≌  𝑆𝑆𝑛𝑛  . Hence G is the distance divisor graph of 𝐻𝐻 and by Theorem 2.1, Sn is i-balanced. 
 
Consider a graph G = (V, E) with |V| = p and |E| = q. Let 𝑘𝑘1, 𝑘𝑘2, … , 𝑘𝑘𝜏𝜏  denote the positive divisors of q with                     
𝑘𝑘1 = 1, 𝑘𝑘2 = 2, … , 𝑘𝑘𝜏𝜏 = 𝑞𝑞 and 𝑘𝑘1 < 𝑘𝑘2 <  … < 𝑘𝑘𝜏𝜏 . In [20], the authors characterizes the graphs such that G and DD(G) 
are isomorphic. 
 
Theorem 2.4: Let G = (V, E) be a graph with |V| = p and |E| = q, where q is a composite number. Then G and DD(G) 
are isomorphic if and only if the diameter of G is less than or equal to k2-1. 
 
In view of the above, we have the following result: 
 
Theorem 2.5: For any n-sigraph Sn = (G, σ) with |V| = p and |E| = q, where q is a composite number. Then Sn and 
DD(Sn) are cycle isomorphic if and only if Sn is i-balanced and the diameter of G is less than or equal to k2-1. 
 
Proof: Suppose 𝐷𝐷𝐷𝐷(𝑆𝑆𝑛𝑛)~𝑆𝑆𝑛𝑛 . This implies, 𝐷𝐷𝐷𝐷(𝐺𝐺) ≅ 𝐺𝐺 and hence by Theorem 2.4, we see that the diameter of G is 
less than or equal to k2-1. Now, if Sn is any n-sigraph with the diameter of G is less than or equal to k2-1.  Then DD(Sn) 
is i-balanced and hence if Sn is i-unbalanced and its distance divisor n-sigraph DD(Sn) being i-balanced cannot be 
switching equivalent to Sn in accordance with Theorem 1.2. Therefore, Sn must be i-balanced. 
 
Conversely, suppose that Sn is i-balanced n-sigraph with the underlying graph G satisfies the conditions of Theorem 
2.4. Then, since DD(Sn) is i-balanced as per Theorem 2.1 and since 𝐷𝐷𝐷𝐷(𝐺𝐺) ≅ 𝐺𝐺  by Theorem 2.4, the result follows 
from Theorem 1.2 again. 
 
Theorem 2.6: For any two n-sigraphs Sn and 𝑆𝑆𝑛𝑛 ′with the same underlying graph, their distance divisor n-sigraphs are 
switching equivalent. 
 
Proof: Suppose Sn = (G, σ) and  𝑆𝑆𝑛𝑛 ′ = (𝐺𝐺 ′,𝜎𝜎 ′)) be two n-sigraphs with G≌𝐺𝐺 ′. By Theorem 2.1, DD(Sn) and DD(𝑆𝑆𝑛𝑛 ′) are 
i-balanced and hence, the result follows from Theorem 1.2. 
 
For any m ∈ Hn, the m-complement of a = (a1, a2,.., an) is: am = am. For any M ⊆ Hn, and m ∈ Hn, the m-complement of 
M is Mm = {am : a ∈ M}. 
 
For any m ∈ Hn, the m-complement of an n-sigraph Sn = (G, σ), written (𝑆𝑆𝑛𝑛𝑚𝑚 ), is the same graph but with each edge 
label a = (a1, a2,... ,an) replaced by am. 
 
For an n-sigraph Sn = (G, σ), the DD(Sn) is i-balanced. We now examine, the condition under which m-complement of 
DD(Sn) is i-balanced, where for any m ∈ Hn. 
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Theorem 2.7: Let Sn = (G, σ) be an n-sigraph. Then, for any m ∈ Hn, if DD(G) is bipartite then (DD(Sn))m is i-balanced. 
 
Proof: Since, by Theorem 2.1, DD(Sn) is i-balanced, for each k, 1 ≤ k ≤ n, the number of n-tuples on any cycle C in 
DD(Sn) whose kth co-ordinate are − is even. Also, since DD(G) is bipartite, all cycles have even length; thus, for each k, 
1 ≤ k ≤ n, the number of n-tuples on any cycle C in DD(Sn) whose kth co-ordinate are + is also even. This implies that 
the same thing is true in any m-complement, where for any m∈Hn. Hence (DD(Sn))t  is i-balanced. 
 
Theorem 2.6 provides easy solutions to other n-sigraph switching equivalence relations, which are given in the 
following results. 
 
Corollary 2.8: For any two n-sigraphs Sn and  𝑆𝑆𝑛𝑛 ′ with the same underlying graph, DD(Sn) and DD((𝑆𝑆𝑛𝑛 ′)𝑚𝑚 ) are 
switching equivalent. 
 
Corollary 2.9: For any two n-sigraphs Sn and  𝑆𝑆𝑛𝑛 ′ with the same underlying graph, DD((Sn)m) and 𝐷𝐷𝐷𝐷(𝑆𝑆𝑛𝑛 ′) are 
switching equivalent. 
 
Corollary 2.10: For any two n-sigraphs Sn and   𝑆𝑆𝑛𝑛 ′ with the same underlying graph, DD((Sn)m) and DD((𝑆𝑆𝑛𝑛 ′)𝑚𝑚 ) are 
switching equivalent. 
 
Corollary 2.11: For any two n-sigraphs Sn = (G, σ) and 𝑆𝑆𝑛𝑛 ′ = (𝐺𝐺 ′,𝜎𝜎 ′) with the G≌𝐺𝐺 ′and G, 𝐺𝐺 ′are bipartite, (DD(Sn))m 

and DD(𝑆𝑆𝑛𝑛 ′) are switching equivalent. 
 
Corollary 2.12: For any two n-sigraphs Sn = (G, σ) and 𝑆𝑆𝑛𝑛 ′ = (𝐺𝐺 ′,𝜎𝜎 ′) with the G ≌𝐺𝐺 ′and G, 𝐺𝐺 ′are bipartite, DD(Sn) 
and DD((𝑆𝑆𝑛𝑛 ′)𝑚𝑚 ) are switching equivalent. 
 
Corollary 2.13: For any two n-sigraphs  𝑆𝑆𝑛𝑛 = (𝐺𝐺,𝜎𝜎) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑛𝑛

′ = (𝐺𝐺 ′,𝜎𝜎 ′) with the G≌𝐺𝐺 ′and 𝐺𝐺,𝐺𝐺 ′are bipartite, 
(DD(S1))m and (DD(S2))m are switching equivalent. 
 
3. CONCLUSION 
 
We have introduced a new notion for n-signed graphs called distance divisor n-sigraph of an n-signed graph. We have 
proved some results and presented the structural characterization of distance divisor n-signed graph. There is no 
structural characterization of distance divisor graph, but we have obtained the structural characterization of distance 
divisor n-signed graph. 
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