International Journal of Mathematical Archive-14(9), 2023, 8-12 \$MAAvailable online through www.ijma.info ISSN 2229-5046

On Distance Divisor Symmetric n-Sigraphs

JEPHRY RODRIGUES K
Department of Mathematics,
Dr. P. Dayananda Pai-P. Satisha Pai Govt. First Grade College
Car Street, Mangalore-575 001, India.

K. B. MAHESH*
Department of Mathematics, Dr. P. Dayananda Pai-P. Satisha Pai Govt. First Grade College
Car Street, Mangalore-575 001, India.

R. KEMPARAJU

Department of Mathematics, Government First Grade College, T. Narasipura-571 124, India.
(Received On: 25-08-23; Revised \& Accepted On: 07-09-23)

Abstract

$\boldsymbol{A}_{n \text { n-tuple }\left(a_{1}, a_{2}, \ldots, a_{n}\right) \text { is symmetric, if } a_{k}=a_{n-k+1}, 1 \leq k \leq n \text {. Let } H_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq, ~\right.}^{\text {a }}$ $k \leq n$ be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G$, $\sigma)\left(S_{n}=(G, \mu)\right.$), where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}\left(\mu: V \rightarrow H_{n}\right)$ is a function. In this paper, we introduced a new notion distance divisor symmetric n-sigraph of a symmetric n-sigraph and its properties are obtained. Also, we obtained the structural characterization of distance divisor symmetric n-signed graphs.

Keywords: Symmetric n-sigraphs, Symmetric n-marked graphs, Balance, Switching, Distance divisor symmetric n-sigraphs, Complementation.

AMS 2020 subject classification: 05C22.

1. INTRODUCTION

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [1]. We consider only finite, simple graphs free from self-loops.

Let $n \geq 1$ be an integer. An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}\right.$, $\left.a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. Note that H_{n} is a group under coordinate wise multiplication, and the order of H_{n} is 2^{m}, where $m=\left\lceil\frac{n}{2}\right\rceil$.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)\left(S_{n}=(G, \mu)\right)$, where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}\left(\mu: V \rightarrow H_{n}\right)$ is a function.

In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n-tuple / symmetric n-sigraph / symmetric n-marked graph.

An n-tuple ($a_{1}, a_{2}, \ldots, a_{n}$) is the identity n-tuple, if $a_{k}=+$, for $1 \leq k \leq n$, otherwise it is a non-identity n-tuple. In an n-sigraph $S_{n}=(G, \sigma)$ an edge labelled with the identity n-tuple is called an identity edge, otherwise it is a non-identity edge.

Corresponding Author: K. B. Mahesh*
Department of Mathematics, Dr. P. Dayananda Pai-P. Satisha Pai Govt. First Grade College Car Street, Mangalore - 575 001, India.

Further, in an n-sigraph $S_{n}=(G, \sigma)$, for any $A \subseteq E(G)$ the n-tuple $\sigma(A)$ is the product of the n-tuples on the edges of A.
In [7], the authors defined two notions of balance in n-sigraph $S_{n}=(G, \sigma)$ as follows (See also R. Rangarajan and P. S. K. Reddy [3]):

Definition: Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then,
(i) S_{n} is identity balanced (or i-balanced), if product of n-tuples on each cycle of S_{n} is the identity n-tuple, and
(ii) S_{n} is balanced, if every cycle in S_{n} contains an even number of non-identity edges.

Note: An i-balanced n-sigraph need not be balanced and conversely.
The following characterization of i-balanced n-sigraphs is obtained in [7].
Theorem 1.1: (E. Sampathkumar et al. [7]) An n-sigraph $S_{n}=(G, \sigma)$ is i-balanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge $u v$ is equal to the product of the n-tuples of u and v.

Let $S_{n}=(G, \sigma)$ be an n-sigraph. Consider the n-marking μ on vertices of S_{n} defined as follows: each vertex $v \in V, \mu(v)$ is the n-tuple which is the product of the n-tuples on the edges incident with v. Complement of S_{n} is an n-sigraph $\overline{S_{n}}=\left(\bar{G}, \sigma^{c}\right)$, where for any edge $\mathrm{e}=u v \in \bar{G}, \sigma^{c}(u v)=\mu(u) \mu(v)$. Clearly, $\overline{S_{n}}$ is defined here is an i-balanced n-sigraph due to Theorem 1.1.

In [7], the authors also have defined switching and cycle isomorphism of an n-sigraph $S_{n}=(G, \sigma)$ as follows: (See also [2, 4-6, 9-19])

Let $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ be two n-sigraphs. Then S_{n} and S_{n}^{\prime} are said to be isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that if $u v$ is an edge in S_{n} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ then $\phi(u) \phi(v)$ is an edge in S_{n}^{\prime} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Given an n-marking μ of an n-sigraph $S_{n}=(G, \sigma)$, switching S_{n} with respect to μ is the operation of changing the n-tuple of every edge $u v$ of S_{n} by $\mu(u) \sigma(u v) \mu(v)$. Then-sigraph obtained in this way is denoted by $\mathrm{S}_{\mu}\left(S_{n}\right)$ and is called the μ-switched n-sigraph or just switched n-sigraph.

Further, an n-sigraph S_{n} switches to n-sigraph S_{n}^{\prime} (or that they are switching equivalent to each other), written as $S_{n} \sim S_{n}^{\prime}$, whenever there exists an n-marking of S_{n} such that $S_{\mu}\left(S_{n}\right) \cong S_{n}^{\prime}$.

Two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ are said to be cycle isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that the n-tuple $\sigma(C)$ of every cycle C in S_{n} equals to the n-tuple $\sigma(\Phi(C))$ in S_{n}^{\prime}.

We make use of the following known result (see [7]).
Theorem 1.2: (E. Sampathkumar et al. [7]) Given a graph G, any two n-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

2. Distance Divisor \boldsymbol{n}-Sigraph of an \boldsymbol{n}-Sigraph

Let $G=(V, E) \$$ be a graph with $|V|=p$ and $|E|=q$. The shortest path P in G is said to be distance divisor path, if $l(P) \mid q$, where $l(P)$ denotes the length path P.

Let $G=(V, E)$ be a graph with $|V|=p$ and $|E|=q$. The distance divisor graph $D D(G)$ of $G=(V, E)$ is a graph with $\mathrm{V}(D D(G))=V(G)$ and any two vertices u and v in $D D(G)$ are joined by an edge if there exists a distance divisor path between them in G. This concept were introduced by Saravanakumar and Nagarajan [20].

Motivated by the existing definition of complement of an n-sigraph, we extend the notion of distance divisor graphs to n-sigraphs as follows: The distance divisor n-sigraph $D D\left(S_{n}\right)$ of an n-sigraph $S_{n}=(G, \sigma)$ is an n-sigraph whose underlying graph is $D D(G)$ and the n-tuple of any edge $u v$ is $D D\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}. Further, an n-sigraph $S_{n}=(G, \sigma)$ is called distance divisor n-sigraph, if $S_{n} \cong D D\left(S_{n}^{\prime}\right)$ for some n-sigraph S_{n}^{\prime}. The following result indicates the limitations of the notion $D D\left(S_{n}\right)$ as introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden to be detour radial n-sigraphs.

Theorem 2.1: For any n-sigraph $S_{n}=(G, \sigma)$, its distance divisor n-sigraph $D D\left(S_{n}\right)$ is i-balanced.
Proof: Since the n-tuple of any edge $u v$ in $D D\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}, by Theorem 1.1, $D D\left(S_{n}\right)$ is i-balanced.

For any positive integer k, the $k^{t h}$ iterated distance divisor n-sigraph, $D D^{k}\left(S_{n}\right)$ of S_{n} is defined as follows:

$$
D D^{0}\left(S_{n}\right)=S_{n}, D D^{k}\left(S_{n}\right)=D D\left(D D^{k-1}\left(S_{n}\right)\right)
$$

Corollary 2.2: For any n-sigraph $S_{n}=(G, \sigma)$ and for any positive integer $k, D D^{k}\left(S_{n}\right)$ is i-balanced.
The following result characterizes n-sigraphs which are distance divisor n-sigraphs.
Theorem 2.3: An n-sigraph $S_{n}=(G, \sigma)$ is a distance divisor n-sigraph if, and only if, S_{n} is i-balanced n-sigraph and its underlying graph G is a distance divisor graph.

Proof: Suppose that S_{n} is i-balanced and G is a distance divisor graph. Then there exists a graph H such that $D D(H) \cong G$. Since S_{n} is i-balanced, by Theorem 1.1, there exists a marking ζ of G such that each edge $e=u v$ in S_{n} satisfies $\sigma(u v)=\zeta(u) \zeta(v)$. Now consider the n-sigraph $S_{n}{ }^{\prime}=\left(H, \sigma^{\prime}\right)$, where for any edge e in $H, \sigma^{\prime}(e)$ is the n-marking of the corresponding vertex in G. Then clearly, $D D\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence S_{n} is a distance divisor n-sigraph.

Conversely, suppose that $S_{n}=(G, \sigma)$ is a distance divisor n-sigraph. Then there exists an n-sigraph $S_{n}{ }^{\prime}=\left(H, \sigma{ }^{\prime}\right)$ such that $D R\left(S_{n}{ }^{\prime}\right) \cong S_{n}$. Hence G is the distance divisor graph of H and by Theorem 2.1, S_{n} is i-balanced.

Consider a graph $G=(V, E)$ with $|V|=p$ and $|E|=q$. Let $k_{1}, k_{2}, \ldots, k_{\tau}$ denote the positive divisors of q with $k_{1}=1, k_{2}=2, \ldots, k_{\tau}=q$ and $k_{1}<k_{2}<\ldots<k_{\tau}$. In [20], the authors characterizes the graphs such that G and $D D(G)$ are isomorphic.

Theorem 2.4: Let $G=(V, E)$ be a graph with $|V|=p$ and $|E|=q$, where q is a composite number. Then G and $D D(G)$ are isomorphic if and only if the diameter of G is less than or equal to $k_{2}-1$.

In view of the above, we have the following result:
Theorem 2.5: For any n-sigraph $S_{n}=(G, \sigma)$ with $|V|=p$ and $|E|=q$, where q is a composite number. Then S_{n} and $D D\left(S_{n}\right)$ are cycle isomorphic if and only if S_{n} is i-balanced and the diameter of G is less than or equal to $k_{2}-1$.

Proof: Suppose $D D\left(S_{n}\right) \sim S_{n}$. This implies, $D D(G) \cong G$ and hence by Theorem 2.4, we see that the diameter of G is less than or equal to $k_{2}-1$. Now, if S_{n} is any n-sigraph with the diameter of G is less than or equal to $k_{2}-1$. Then $D D\left(S_{n}\right)$ is i-balanced and hence if S_{n} is i-unbalanced and its distance divisor n-sigraph $D D\left(S_{n}\right)$ being i-balanced cannot be switching equivalent to S_{n} in accordance with Theorem 1.2. Therefore, S_{n} must be i-balanced.

Conversely, suppose that S_{n} is i-balanced n-sigraph with the underlying graph G satisfies the conditions of Theorem 2.4. Then, since $D D\left(S_{n}\right)$ is i-balanced as per Theorem 2.1 and since $D D(G) \cong G$ by Theorem 2.4, the result follows from Theorem 1.2 again.

Theorem 2.6: For any two n-sigraphs S_{n} and S_{n} 'with the same underlying graph, their distance divisor n-sigraphs are switching equivalent.

Proof: Suppose $S_{n}=(G, \sigma)$ and $\left.S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)\right)$ be two n-sigraphs with $G \cong G^{\prime}$. By Theorem 2.1, $D D\left(S_{n}\right)$ and $D D\left(S_{n}{ }^{\prime}\right)$ are i-balanced and hence, the result follows from Theorem 1.2.

For any $m \in H_{n}$, the m-complement of $a=\left(a_{1}, a_{2}, . ., a_{n}\right)$ is: $a^{m}=a m$. For any $M \subseteq H_{n}$, and $m \in H_{n}$, the m-complement of M is $M^{m}=\left\{a^{m}: a \in M\right\}$.

For any $m \in H_{n}$, the m-complement of an n-sigraph $S_{n}=(G, \sigma)$, written $\left(S_{n}{ }^{m}\right)$, is the same graph but with each edge label $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ replaced by a^{m}.

For an n-sigraph $S_{n}=(G, \sigma)$, the $D D\left(S_{n}\right)$ is i-balanced. We now examine, the condition under which m-complement of $D D\left(S_{n}\right)$ is i-balanced, where for any $m \in H_{n}$.

Theorem 2.7: Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then, for any $m \in H_{n}$, if $D D(G)$ is bipartite then $\left(D D\left(S_{n}\right)\right)^{m}$ is i-balanced.
Proof: Since, by Theorem 2.1, $D D\left(S_{n}\right)$ is i-balanced, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $D D\left(S_{n}\right)$ whose $k^{\text {th }}$ co-ordinate are - is even. Also, since $D D(G)$ is bipartite, all cycles have even length; thus, for each k, $1 \leq k \leq n$, the number of n-tuples on any cycle C in $D D\left(S_{n}\right)$ whose $k^{\text {th }}$ co-ordinate are + is also even. This implies that the same thing is true in any m-complement, where for any $m \in H_{n}$. Hence $\left(D D\left(S_{n}\right)\right)^{t}$ is i-balanced.

Theorem 2.6 provides easy solutions to other n-sigraph switching equivalence relations, which are given in the following results.

Corollary 2.8: For any two n-sigraphs S_{n} and $S_{n}{ }^{\prime}$ with the same underlying graph, $D D\left(S_{n}\right)$ and $D D\left(\left(S_{n}{ }^{\prime}\right)^{m}\right)$ are switching equivalent.

Corollary 2.9: For any two n-sigraphs S_{n} and $S_{n}{ }^{\prime}$ with the same underlying graph, $D D\left(\left(S_{n}\right)^{m}\right)$ and $D D\left(S_{n}{ }^{\prime}\right)$ are switching equivalent.

Corollary 2.10: For any two n-sigraphs S_{n} and $S_{n}{ }^{\prime}$ with the same underlying graph, $D D\left(\left(S_{n}\right)^{m}\right)$ and $D D\left(\left(S_{n}\right)^{m}\right)$ are switching equivalent.

Corollary 2.11: For any two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma\right.$ ') with the $G \cong G^{\prime}$ and G, G^{\prime} are bipartite, $\left(D D\left(S_{n}\right)\right)^{m}$ and $D D\left(S_{n}{ }^{\prime}\right)$ are switching equivalent.

Corollary 2.12: For any two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma\right.$) with the $G \cong G^{\prime}$ and G, G^{\prime} are bipartite, $D D\left(S_{n}\right)$ and $D D\left(\left(S_{n}\right)^{m}\right)$ are switching equivalent.

Corollary 2.13: For any two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}{ }^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ with the $G \cong G^{\prime}$ and G, G^{\prime} are bipartite, $\left(D D\left(S_{1}\right)\right)^{m}$ and $\left(D D\left(S_{2}\right)\right)^{m}$ are switching equivalent.

3. CONCLUSION

We have introduced a new notion for n-signed graphs called distance divisor n-sigraph of an n-signed graph. We have proved some results and presented the structural characterization of distance divisor n-signed graph. There is no structural characterization of distance divisor graph, but we have obtained the structural characterization of distance divisor n-signed graph.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

REFERENCES

1. F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
2. V. Lokesha, P.S.K.Reddy and S. Vijay, The triangular line n-sigraph of a symmetric n-sigraph, Advn. Stud. Contemp. Math., 19(1) (2009), 123-129.
3. R. Rangarajan and P.S.K.Reddy, Notions of balance in symmetric nsigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008), 145-151.
4. R. Rangarajan, P.S.K.Reddy and M. S. Subramanya, Switching Equivalence in Symmetric n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85.
5. R. Rangarajan, P.S.K.Reddy and N. D. Soner, Switching equivalence in symmetric n-sigraphs-II, J. Orissa Math. Sco., 28 (1 \& 2) (2009), 1-12.
6. R. Rangarajan, P.S.K.Reddy and N. D. Soner, $m^{\text {th }}$ Power Symmetric n-Sigraphs, Italian Journal of Pure \& Applied Mathematics, 29(2012), 87-92.
7. E. Sampathkumar, P.S.K.Reddy, and M. S. Subramanya, Jump symmetric n-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.
8. E. Sampathkumar, P.S.K.Reddy, and M. S. Subramanya, The Line nsigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010), 953-958.
9. P.S.K.Reddy and B. Prashanth, Switching equivalence in symmetric nsigraphs-I, Advances and Applications in Discrete Mathematics, 4(1) (2009), 25-32.
10. P.S.K.Reddy, S. Vijay and B. Prashanth, The edge $C_{4} n$-sigraph of a symmetric n-sigraph, Int. Journal of Math. Sci. \&Engg. Appls., 3(2) (2009), 21-27.
11. P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010), 305-312.
12. P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.
13. P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. \&Engg. Appls., 5(1) (2011), 95-101.
14. P.S.K.Reddy, B. Prashanth and Kavita. S. Permi, A Note on Switching in Symmetric n-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 22-25.
15. P.S.K.Reddy, M. C. Geetha and K. R. Rajanna, Switching Equivalence in Symmetric n-Sigraphs-IV, Scientia Magna, 7(3) (2011), 34-38.
16. P.S.K.Reddy, K. M. Nagaraja and M. C. Geetha, The Line n-sigraph of a symmetric n-sigraph-IV, International J. Math. Combin., 1 (2012), 106-112.
17. P.S.K.Reddy, M. C. Geetha and K. R. Rajanna, Switching equivalence in symmetric n-sigraphs-V, International J. Math. Combin., 3 (2012), 58-63.
18. P.S.K.Reddy, K. M. Nagaraja and M. C. Geetha, The Line n-sigraph of a symmetric n-sigraph-V, Kyungpook Mathematical Journal, 54(1) (2014), 95-101.
19. P.S.K.Reddy, R. Rajendra and M. C. Geetha, Boundary n-Signed Graphs, Int. Journal of Math. Sci. \&Engg. Appls., 10(2) (2016), 161-168.
20. S. Saravanakumar and K. Nagarajan, Distance divisor graphs, International J. of Math. Sci. \& Engg. Appls., 7(4) (2013), 83-97.
[^0]
[^0]: Source of support: Nil, Conflict of interest: None Declared.
 [Copy right © 2023. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

