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ABSTRACT 
An n-tuple (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is symmetric, if 𝑎𝑎𝑘𝑘 = 𝑎𝑎𝑛𝑛−𝑘𝑘+1, 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛. Let 𝐻𝐻𝑛𝑛 = �(𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛): 𝑎𝑎𝑘𝑘 ∈ {+,−},  𝑎𝑎𝑘𝑘 =
𝑎𝑎𝑛𝑛−𝑘𝑘+1,  1≤𝑘𝑘≤𝑛𝑛 be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an 
ordered pair Sn = (G, σ) (Sn = (G, µ)), where G = (V, E) is a graph called the underlying graph of Sn and                       
σ : E → Hn (µ : V → Hn) is a function. In this paper, we introduced a new notion detour radial symmetric n-sigraph of 
a symmetric n-sigraph and its properties are obtained. Also, we obtained the structural characterization of detour 
radial symmetric n-signed graphs.  
 
Keywords: Symmetric n-sigraphs, Symmetric n-marked graphs, Balance, Switching, Detour radial symmetric               
n-sigraphs, Complementation.  
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1. INTRODUCTION 
 
Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [1]. We 
consider only finite, simple graphs free from self-loops. 
 
Let n ≥ 1 be an integer. An n-tuple (a1, a2,... ,an) is symmetric, if ak= an−k+1,1 ≤ k ≤ n. Let Hn= {(a1,a2,...,an) : ak∈ {+,−}, 
ak = an−k+1,1 ≤ k ≤ n} be the set of all symmetric n-tuples. Note that Hn is a group under coordinate wise multiplication, 
and the order of Hn is 2m, where 𝑚𝑚 = �𝑛𝑛

2
�. 

 
A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair Sn = (G,σ) (Sn = (G,µ)), where G = (V,E) is a 
graph called the underlying graph of Sn and σ : E → Hn (µ : V → Hn) is a function. 
 
In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n-tuple/symmetric                          
n-sigraph / symmetric n-marked graph. 
 
An n-tuple (a1, a2, ... ,an) is the identity n-tuple, if ak= +, for 1 ≤ k ≤ n, otherwise it is a non-identity n-tuple. In an n-
sigraph Sn = (G, σ) an edge labelled with the identity n-tuple is called an identity edge, otherwise it is a non-identity 
edge. 
Further, in an n-sigraph Sn = (G, σ), for any A ⊆ E(G) the n-tuple σ(A) is the product of the n-tuples on the edges of A. 
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In [7], the authors defined two notions of balance in n-sigraph Sn = (G, σ) as follows (See also R. Rangarajan and           
P. S. K. Reddy [3]): 
 
Definition: Let Sn = (G, σ) be an n-sigraph. Then, 

(i) Sn is identity balanced (or i-balanced), if product of n-tuples on each cycle of Sn is the identity n-tuple, and 
(ii) Sn is balanced, if every cycle in Sn contains an even number of non-identity edges. 

 
Note: An i-balanced n-sigraph need not be balanced and conversely. 
 
The following characterization of i-balanced n-sigraphs is obtained in [7]. 
 
Theorem 1.1: (E. Sampathkumar et al. [7]) An n-sigraph Sn = (G, σ) is i-balanced if, and only if, it is possible to assign 
n-tuples to its vertices such that the n-tuple of each edge 𝑢𝑢𝑢𝑢 is equal to the product of the n-tuples of 𝑢𝑢 and 𝑢𝑢. 
 
Let Sn = (G, σ) be an n-sigraph. Consider the n-marking µ on vertices of Sn defined as follows: each vertex 𝑢𝑢∈V , µ(𝑢𝑢) is 
the n-tuple which is the product of the n-tuples on the edges incident with 𝑢𝑢. Complement of Sn is an n-sigraph 
 𝑆𝑆𝑛𝑛����=(�̅�𝐺,𝜎𝜎𝑐𝑐 ), where for any edge e = 𝑢𝑢𝑢𝑢∊ �̅�𝐺, 𝜎𝜎𝑐𝑐(𝑢𝑢𝑢𝑢) = μ(𝑢𝑢)𝜇𝜇(𝑢𝑢). Clearly, 𝑆𝑆𝑛𝑛��� is defined here is an i-balanced n-sigraph 
due to Theorem 1.1. 
 
In [7], the authors also have defined switching and cycle isomorphism of an n-sigraph Sn = (G, σ) as follows: (See also 
[2, 4-6, 9–19]) 
 
Let Sn = (G, σ) and 𝑆𝑆𝑛𝑛′ = (𝐺𝐺 ′,𝜎𝜎 ′) be two n-sigraphs. Then Sn and 𝑆𝑆𝑛𝑛′  are said to be isomorphic, if there exists an 
isomorphism ϕ : G → 𝐺𝐺 ′such that if uv is an edge in Sn with label (a1, a2,... ,an) then ϕ(u)ϕ(v) is an edge in 𝑆𝑆𝑛𝑛′ with label 
(a1, a2,... ,an). 
 
Given an n-marking µ of an n-sigraph Sn = (G, σ), switching Sn with respect to µ is the operation of changing the n-tuple 
of every edge uv of Sn by µ(u)σ(uv)µ(v). Then-sigraph obtained in this way is denoted by Sµ(Sn) and is called the          
µ-switched n-sigraph or just switched n-sigraph. 
 
Further, an n-sigraph Sn switches to n-sigraph 𝑆𝑆𝑛𝑛′  (or that they are switching equivalent to each other), written as 𝑆𝑆𝑛𝑛~𝑆𝑆𝑛𝑛′ , 
whenever there exists an n-marking of Sn such that 𝑆𝑆𝜇𝜇 (𝑆𝑆𝑛𝑛)≌𝑆𝑆𝑛𝑛′ . 
 
Two n-sigraphs Sn = (G,σ) and 𝑆𝑆𝑛𝑛′ = (𝐺𝐺 ′,𝜎𝜎 ′) are said to be cycle isomorphic, if there exists an isomorphism ϕ : G →𝐺𝐺′ 
such that the n-tuple σ(C) of every cycle C in Sn equals to the n-tuple 𝛔𝛔(Փ(C)) in 𝑆𝑆𝑛𝑛′ . 
 
We make use of the following known result (see [7]). 
 
Theorem 1.2: (E. Sampathkumar et al. [7]) Given a graph G, any two n-sigraphs with G as underlying graph are 
switching equivalent if, and only if, they are cycle isomorphic. 
 
2. Detour Radial n-Sigraph of an n-Sigraph 
 
Let G=(V, E) be a connected graph. For any two vertices 𝑢𝑢, 𝑢𝑢 ∈ 𝑉𝑉(𝐺𝐺), the detour distance D(u, v) is the length of the 
longest u-v path in G. The eccentricity e(u) of a vertex u is the distance to a vertex farthest from u. The radius r(G) of G 
is defined by 𝑟𝑟(𝐺𝐺) = min{𝑒𝑒(𝑢𝑢):𝑢𝑢 ∈ 𝐺𝐺}. 
 
For any vertex u in G, the detour eccentricity De(u) of u is the detour distance to a vertex 
farthest from u. The detour radius Dr(G) of G is defined by Dr(G)= min{De(u): u∈ G}. The   diameter d(G) of G is 
defined by 𝑑𝑑(𝐺𝐺) = max{𝑒𝑒(𝑢𝑢):𝑢𝑢 ∈ 𝐺𝐺} and the detour diameter Dd(G) of G is max {𝐷𝐷𝑒𝑒(𝑢𝑢):𝑢𝑢 ∈ 𝐺𝐺}. 
 
The detour radial graph DR(G) of G=(V, E) is a graph with V(DR(G))=V(G) and any two vertices u and v in DR(G) are 
joined by an edge if and only if D(u, v)=Dr(G). This concept was introduced by Ganeshwari and Pethanachi Selvam [1]. 
 
Motivated by the existing definition of complement of an n-sigraph, we extend the notion of detour radial graphs to       
n-sigraphs as follows: The detour radial n-sigraph DR(Sn) of an n-sigraph Sn = (G, σ) is  an n-sigraph whose underlying 
graph is DR(G) and the n-tuple of any edge uv is DR(Sn) is 𝜇𝜇(𝑢𝑢)𝜇𝜇(𝑢𝑢), where 𝜇𝜇 is the canonical n-marking of Sn.  
 
Further, an n-sigraph Sn = (G, σ) is called detour radial n-sigraph, if 𝑆𝑆𝑛𝑛 ≅ 𝐷𝐷𝐷𝐷(𝑆𝑆𝑛𝑛′ ) for some n-sigraph 𝑆𝑆𝑛𝑛′ .  The 
following result indicates the limitations of the notion DR(Sn) as introduced above, since the entire class of                    
i-unbalanced n-sigraphs is forbidden to be detour radial n-sigraphs. 
 
 



Jephry Rodrigues K, K. B. Mahesh* and P. Somashekar/ On Detour Radial Symmetric n-Sigraphs / IJMA- 14(8), August-2023. 

© 2023, IJMA. All Rights Reserved                                                                                                                                                                         10 

 
Theorem 2.1: For any n-sigraph Sn = (G, σ), its detour radial n-sigraph DR(Sn) is i-balanced. 
 
Proof: Since the n-tuple of any edge uv in DR(Sn) is 𝜇𝜇(𝑢𝑢)𝜇𝜇(𝑢𝑢), where 𝜇𝜇 is the canonical n-marking of Sn, by Theorem 
1.1, DR(Sn) is i-balanced.  
 
For any positive integer k, the kth iterated detour radial n-sigraph, DRk(Sn) of Sn is defined as follows: 

DR0(Sn) = Sn, DRk(Sn) = DR(DRk−1(Sn)). 
 
Corollary 2.2: For any n-sigraph Sn = (G, σ) and for any positive integer k, DRk(Sn) is i-balanced. 
 
The following result characterizes n-sigraphs which are detour radial n-sigraphs. 
 
Theorem 2.3: An n-sigraph Sn = (G, σ) is a detour radial n-sigraph if, and only if, Sn is i-balanced n-sigraph and its 
underlying graph G is a detour radial graph. 
 
Proof: Suppose that Sn is i-balanced and G is a detour radial graph. Then there exists a graph 𝐻𝐻 such that DR(H) ≌G. 
Since Sn is i-balanced, by Theorem 1.1, there exists a marking ζ of G such that each edge e = uv in Sn satisfies           
σ(uv) = ζ(u)ζ(v). Now consider the n-sigraph 𝑆𝑆𝑛𝑛 ′ = (𝐻𝐻,𝜎𝜎 ′), where for any edge e in 𝐻𝐻, 𝜎𝜎 ′(e) is the n-marking of the 
corresponding vertex in G. Then clearly, DR(𝑆𝑆𝑛𝑛 ′)  ≌  𝑆𝑆𝑛𝑛 . Hence Sn is a detour radial n-sigraph. 
 
Conversely, suppose that Sn = (G, σ) is a detour radial n-sigraph. Then there exists an n-sigraph𝑆𝑆𝑛𝑛 ′ = (𝐻𝐻,𝜎𝜎 ′) such that 
DR(𝑆𝑆𝑛𝑛 ′)  ≌  𝑆𝑆𝑛𝑛  . Hence G is the detour radial graph of 𝐻𝐻 and by Theorem 2.1, Sn is i-balanced. 
 
In [1], the authors characterizes the graphs G = (V, E) such that 𝐺𝐺 ≅ 𝐷𝐷𝐷𝐷(𝐺𝐺). 
 
Theorem 2.4: (Ganeshwari and Selvam [1]) 
Let G=(V, E) be a graph with atleast one cycle which covers all the vertices of G. Then G and the detour radial graph 
DR(G) are isomorphic if and only if G is isomorphic to either (i) Kn or (ii) Cn or (iii) Km,n with m=n.  
 
In view of the above result, we now characterize the n-sigraphs such that the detour radial n-sigraph and its 
corresponding n-sigraph are switching equivalent. 
 
Theorem 2.5: For any n-sigraph Sn = (G, σ) and its underlying graph G contains atleast one cycle which covers all the 
vertices. Then Sn and the detour radial n-sigraph DR(Sn) are cycle isomorphic if and only if the underlying of Sn 
satisfies the conditions of Theorem 2.4 and Sn is i-balanced.  
 
Proof: Suppose 𝐷𝐷𝐷𝐷(𝑆𝑆𝑛𝑛)~𝑆𝑆𝑛𝑛 . This implies, 𝐷𝐷𝐷𝐷(𝐺𝐺) ≅ 𝐺𝐺 and hence by Theorem 2.4, we see that the graph G satisfies 
the conditions in Theorem 2.4. Now, if Sn is any n-sigraph with underlying graph contains at least one Hamilton cycle 
and satisfies the conditions of Theorem 2.4.  Then DR(Sn) is i-balanced and hence if Sn is i-unbalanced and its  detour 
radial n-sigraph DR(Sn) being i-balanced cannot be switching equivalent to Sn in accordance with Theorem 1.2. 
Therefore, Sn must be i-balanced. 
 
Conversely, suppose that Sn is i-balanced n-sigraph with the underlying graph G satisfies the conditions of Theorem 
2.4. Then, since DR(Sn) is i-balanced as per Theorem 2.1 and since 𝐷𝐷𝐷𝐷(𝐺𝐺) ≅ 𝐺𝐺  by Theorem 2.4, the result follows 
from Theorem 1.2 again. 
 
Theorem 2.6: For any two n-sigraphs Sn and 𝑆𝑆𝑛𝑛 ′with the same underlying graph, their detour radial n-sigraphs are 
switching equivalent. 
 
Proof: Suppose Sn = (G, σ) and  𝑆𝑆𝑛𝑛 ′ = (𝐺𝐺 ′,𝜎𝜎 ′)) be two n-sigraphs with G≌𝐺𝐺 ′. By Theorem 2.1, DR(Sn) and DR(𝑆𝑆𝑛𝑛 ′) are 
i-balanced and hence, the result follows from Theorem 1.2. 
 
In [3], Harshavardhana et al. introduced the notion radial n-sigraph of an n-sigraph and proved some results. 
 
Theorem 2.7: For any n-sigraph Sn = (G, σ), its radial n-sigraph R(Sn) is i-balanced. 
 
In [1], the authors remarked that DR(G) and R(G) are isomorphic, if G is any cycle of odd length. We now characterize 
the n-sigraphs Sn such that 𝐷𝐷𝐷𝐷(𝑆𝑆𝑛𝑛)~𝐷𝐷(𝑆𝑆𝑛𝑛). 
 
Theorem 2.8: For any n-sigraph Sn = (G, σ), 𝐷𝐷𝐷𝐷(𝑆𝑆𝑛𝑛)~𝐷𝐷(𝑆𝑆𝑛𝑛) if, and only if, 𝐺𝐺 ≅ 𝐶𝐶𝑛𝑛 , where n is odd. 
 
Proof: Suppose 𝐷𝐷𝐷𝐷(𝑆𝑆𝑛𝑛)~𝐷𝐷(𝑆𝑆𝑛𝑛). This implies, 𝐷𝐷𝐷𝐷(𝐺𝐺) ≅ 𝐷𝐷(𝐺𝐺). Hence, G is any cycle of odd length.  
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Conversely, suppose that Sn is an n-sigraph whose underlying graph G is Cn. Then 𝐷𝐷𝐷𝐷(𝐺𝐺) ≅ 𝐷𝐷(𝐺𝐺). Since for any          
n-sigraph Sn, both DR(Sn) and R(Sn) are i-balanced, the result follows by Theorem 1.2. 
 
For any m ∈ Hn, the m-complement of a = (a1, a2,.., an) is: am = am. For any M ⊆ Hn, and m ∈ Hn, the m-complement of 
M is Mm = {am : a ∈ M}. 
 
For any m ∈ Hn, the m-complement of an n-sigraph Sn = (G, σ), written (𝑆𝑆𝑛𝑛𝑚𝑚 ), is the same graph but with each edge 
label a = (a1, a2,... ,an) replaced by am. 
 
For an n-sigraph Sn = (G, σ), the DR(Sn) is i-balanced. We now examine, the condition under which m-complement of 
DR(Sn) is i-balanced, where for any m ∈ Hn. 
 
Theorem 2.9: Let Sn = (G, σ) be an n-sigraph. Then, for any m ∈ Hn, if DR(G) is bipartite then (DR(Sn))m is i-balanced. 
 
Proof: Since, by Theorem 2.1, DR(Sn) is i-balanced, for each k, 1 ≤ k ≤ n, the number of n-tuples on any cycle C in 
DR(Sn) whose kth co-ordinate are − is even. Also, since DR(G) is bipartite, all cycles have even length; thus, for each     
k, 1 ≤ k ≤ n, the number of n-tuples on any cycle C in DR(Sn) whose kth co-ordinate are + is also even. This implies that 
the same thing is true in any m-complement, where for any m∈Hn. Hence (DR(Sn))t  is i-balanced. 
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