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ABSTRACT 
In this paper, we introduce and study the new weaker forms of separation axioms called αg*s-Ti (I = 0, 1, 2) and 
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1. INTRODUCTION 
 
General Topology plays an important role in many fields of applied sciences as well as branches of mathematics. 
More importantly, generalized closed sets suggest some new separation axioms which have been found to be very 
useful in the study of certain objects of digital topology. 
 
Maheshwari and Prasad [7] introduced the new class of spaces called s-normal spaces using semi open sets. Further, it 
was studied by Noiri and Popa [6], Dorsett [2] and Arya [1]. Using the concept of g-closed sets, Munshi [8] introduced 
g-regular and g-normal spaces in topological spaces. In 2017, αg*s-closed sets were introduced by T.D. Rayanagoudar 
[9] and studied the concepts of and αg*s-continuous functions in topological spaces. 
 
In this paper, we introduce a new weaker forms of separation axioms called αg*s-T0, αg*s-T1, αg*s-T2 spaces and 
αg*s-regular and αg*s-normal spaces in topological spaces. Further, some characterizations of these spaces are also 
obtained. 

 
2. PRELIMINARY 
 
Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always de-note topological spaces on which no 
separation axioms are assumed unless explicitly stated. 
 
Definition 2.1: [9] A subset A of a topological space X is said to be a αg*s-closed set if αcl(A) ⊆ U whenever A ⊆ U 
and U is gs-open in X. 
 
The family of all αg*s-closed subsets of X is denoted by αg*sC(X). 
 
Definition 2.2: [9] The intersection of all αg*s-closed sets containing a set A of X is called αg*s-closure of A and is 
denoted by αg*s-cl(A). 
 
A set A is αg*s-closed if and only if αg*s-cl(A) = A. 
 
Definition 2.3: [9] The union of all αg*s-open sets containing a set A of X is called αg*s-interior of A and it is denoted 
by αg*s-int(A). 
 
A set A is called αg*s-open if and only if αg*s-int(A) = A. 
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Definition 2.4: A function f: X→Y is called a 
(i) αg*s-continuous [9] if f−1(V) is αg*s-closed in X for every closed set V in Y. 
(ii) αg*s-irresolute [9] if f−1(V) is αg*s-closed in X for every αg*s-closed set V in Y. 
(iii) αg*s-open[9] if f(V) is αg*s-open in Y for every open set V in X. 
(iv) pre αg*s-open [9] if f(V) is αg*s-open set in Y for every αg*s-open set V in X. 
 
3. αg*s -SEPARATION AXIOMS 
 
This section contains a new weaker forms of separation axioms such as αg*s-T0 spaces, αg*s-T1 spaces and αg*s-T2 
spaces and some of their properties. 
 
Definition 3.1: A space X is said to be αg*s-T0space if for each pair of distinct points, there exists a αg*s-open set 
containing one point but not other. 
 
Theorem 3.1: A space X is αg*s-T0 if and only if αg*s-closures of distinct points are distinct. 
 
Proof:  Let x, y ∈ X with x ≠ y where X be αg*s-T0 space. Then we have to prove that αg*s-cl({x}) ≠ αg*s-cl({y}). As 
X is αg*s-T0, there exists a αg*s-open set G such that x ∈ G but y ∉ G and also x ∉X – G and y ∈ X – G, where X – G 
is αg*s-closed in X. Since αg*s-cl({y}) is the intersection of all αg*s-closed sets which contain y.  
Hence y∈αg*s-cl({y}). But x∉αg*s-cl({y}) as x ∉X – G.  Thus αg*s-cl({x}) ≠ αg*s-cl({y}). 
 
Conversely, suppose for any pair of distinct points x, y ∈ X, αg*s-cl({x}) ≠ αg*s- cl({y}). Then, there exist at least one 
point z∈X such that z ∈ αg*s-cl({x}) but z∉αg*s-cl({y}). We claim that x∉αg*s-cl({y}). If  x∈αg*s-cl({y}),  then  
αg*s-cl({x}) ⊆αg*s-cl({y}),  so  z ∈ αg*s-cl({y})  which  is  contradiction.  Hence x∉αg*s-cl({y}) implies that        
x∈X - αg*s-cl({y}), which is αg*s-open set in X containing x but not y. Hence X is αg*s-T0-space. 
 
Theorem 3.2: Every subspace of a αg*s-T0 space is αg*s-T0 space. 
 
Proof: Let y1, y2 be two distinct points of Y and so y1 and y2 are also distinct points of X. As X is αg*s-T0 space, there 
exists a αg*s-open set G such that y1∈G, y2∉ G. Then G ∩Y is αg*s-open set in Y which contains y1 and does not 
contains y2. Hence Y is αg*s-T0 space. 
 
Definition 3.2: [9] A mapping f: X→Y is said to be pre αg*s-open map if the image of every αg*s-open set of X is 
αg*s-open in Y. 
 
Lemma 3.1: The property of a space being αg*s-T0 space is preserved under bijective and pre αg*s-open. 
 
Proof: Let X be a αg*s-T0-space and f: X → Y be bijective, pre αg*s-open. Lety1, y2∈ Y with y1 ≠ y2. Since f is 
bijective, there exist x1, x2 ∈ X such that f(x1) = y1 and f(x2) = y2.  Also, as X is αg*s-T0, there exists a αg*s-open set G 
such that x1∈ G but x2∉ G.  Then f(G) is αg*s-open set  containing  f(x1)  but not containing f(x2) as X is αg*s-open. 
Thus, there exist a αg*s-open set f(G) in Y  such  that  y1∈ f(G)  and  y2∉  f(G).  Thus Y is αg*s-T0 space. 
 
Theorem 3.3: If f: X → Y is bijective, pre αg*s-open and X is αg*s-T0 space, then Y is also αg*s-T0 space. 
 
Proof: Let y1 and y2 be two distinct points of Y. Then there exists x1 and x2 of X such that f(x1) = y1 and f(x2) = y2. 
Since X is αg*s-T0, there exists αg*s –open set G such that x1∈ G and x2∉ G. Therefore, y1 = f(x1) ∈ f(G),  y2  =  f(x2)  
∉ f(G). Then f(G) is αg*s-open in Y. Thus, there exists a αg*s-open set f(G) in Y such  that  y1∈ f(G)  and  y2∉  f(G).  
Thus Y is αg*s-T0 space. 
 
Definition 3.3: A space X is said to be a αg*s-T1 if for each pair of distinct points x, y in X, there exist a pair of       
αg*s-open sets, one containing x but not y and the other containing y but not x. 
 
Remark 3.1: Every T1-space is αg*s-T1-space. 
 
Theorem 3.4: A space X is αg*s-T1 if and only if every singleton subset{x} of X is αg*s-closed in X. 
 
Proof: Let x, y be two distinct points of X such that {x} and {y} are αg*s-closed. Then {x}c and {y}c are αg*s-open in 
X such that y ∈{x}c but x ≠{x}c and x ∈{y}c but y≠{y}c. Hence X is αg*s-T1-space. 
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Conversely, let x be any arbitrary point of X. If y ∈ {x}c, then y ≠ x. Now the space being αg*s-T1 and y different from 
x, there must exists a αg*s-open set Gy such that y ∈Gy but x ∉Gy. Thus, for each y∈{x}c, there exists a αg*s-open set 
Gy such that y∈Gy⊆{x}c. Therefore ∪{y:y≠x}⊆{Gy:y≠x}⊆{x}c which implies that{x}c⊆∪{Gy:y≠x}⊆{x}c. Therefore 
{x}c =∪{Gy :y≠x}. Since Gy is αg*s-open and the union of αg*s-open set is again αg*s-open, so {x}c is αg*s-open in 
X. Hence {x} is αg*s-closed in X. 
 
Theorem 3.5:  Let f: X→Y be bijective and αg*s-open. If X is αg*s-T1 space and Tαg*s-space then Y is αg*s-T1-space. 
 
Proof: Let y1 and y2 be any two distinct points of Y. As f is bijective, there exist distinct points x1 and x2 of X such that 
y1 = f (x1) and y2 = f (x2). Then, there exist αg*s-open  sets  G  and  H  such  that  x1∈ G,  x2∉G  and  x1∉ H,  x2∈H. 
 
Therefore y1= f (x1)∈f (G)  but y2 = f (x2) ∉ f (G) and y2 = f (x2) ∈ f (H) and y1 = f (x1) ∉ f (H). As X is Tαg*s-space,    
G and H are open sets in X.  
 
As f is αg*s-open, f(G) and f(H) are αg*s-open subsets in Y. Thus there exist αg*s-open sets such that y1∈f(G) but     
y2∉ f (G) and y2∈f (H) but y1∉ f (H). Hence Y is αg*s-T1-space. 
 
Theorem 3.6: Let f: X→Y be αg*s-irresolute and injective. If Y is αg*s-T1 then X is αg*s-T1. 
 
Proof: Let x, y∈Y such that x ≠ y.  Then there exist pair of αg*s-open sets U and V in Y such that f(x) ∈ U, f(y)∈V 
and f(x) ∉ V, f(y) ∉ U. Then x ∈ f−1(U), y∈ f−1(V) and x ∉ f−1(V), y ∉ f−1(U) as f is αg*s-irresolute.  Hence X is            
αg*s-T1 space. 
 
Theorem 3.7: If f: X→Y is αg*s-continuous, injective and Y is T1-space then X is αg*s-T1. 
 
Proof: For any two distinct points x1 and x2 in X there exist disjoint points y1 and y2 of Y such that f(x1) = y1 and      
f(x2) = y2. As Y is T1-space, there exist open sets U and V in Y such that y1∈ U, y2∉ U and y1∉V, y2∈ V. That is       
x1∈ f−1(U), x1∉ f−1(V) and x2∈ f−1(V), x2∉f−1(U). Again, since f is αg*s-continuous, f−1(U) and f−1(V) are αg*s-open 
sets in X. Thus for two distinct points x1 and x2 of X, there exists a αg*s-open sets f−1(U) and f−1(V) such that             
x1∈f−1(U), x1∉ f−1(V) and  x2∈f−1(V), x2∉f−1(U). Therefore X is αg*s-T1 space. 
 
Definition 3.4: A space X is said to be αg*s-T2 if for each pair of distinct points x, y of X, there exist disjoint         
αg*s-open sets U and V such that x ∈ U and y ∈ V. 
 
Remark 3.2: It is clear that every αg*s-T2 space is αg*s-T1 space. 
 
Theorem 3.8: A space X is αg*s-T2 space if and only if the intersection of all αg*s-closed neighborhood of each point 
of X is singleton set.  
 
Proof: Let x and y be any two distinct points of X. As X is αg*s-T2, there exist αg*s-open sets G and H such that x∈G, 
y∈H and G∩H = φ. Since G∩H = φ, x∈G⊆X – H, so X – H is αg*s-closed neighborhood of x which does not contain 
y. Thus y does not belong to the intersection of all αg*s-closed neighborhood of x. Since y is arbitrary, the intersection 
of all αg*s-closed neighborhood of x is the singleton{x}. 
 
Conversely, let {x} be the intersection of all αg*s-closed neighborhood of an arbitrary point x ∈ X and y be a point of 
X different from x. Since y does not belong to the intersection, there exists αg*s-closed neighborhood N of x, such that 
y∉N. Since N is αg*s-neighborhood of x, there exists a αg*s-open set G such that x∈G⊆N. Thus G and X–N are     
αg*s-open sets such that x∈G, y∈X–N and G∩ (X–N) = φ. Hence X is αg*s-T2 space. 
 
Theorem 3.9: If f: X→Y is an injective, αg*s-irresolute and Y is αg*s-T2 then X is αg*s-T2. 
 
Proof: Let x1 and x2 be any two distinct points in X. Since f is injective, x1 = x2 implies f(x1) = f(x2). Let y1 = f(x1),      
y2 = f(x2), so x1 = f−1(y1), x2 = f−1(y2). Then y1, y2∈Y such that y1 = y2. As Y is αg*s-T2, there exist αg*s-open sets G 
and H such that y1∈G, y2∈H and G∩H = φ. Then f−1(G) and f−1(H) are αg*s-open sets of X as f is αg*s-irresolute. Now 
f−1(G)∩f−1(H) = f−1(G∩H) = f−1(φ) = φ. y1∈G implies f−1(y1)∈f−1(G),that is x1∈f−1(G), y2∈H implies f−1(y2)∈f−1(H), 
that is x2∈f−1(H). Thus, for every pair of distinct points x1 and x2 of X, there exist disjoint αg*s-open sets f−1(G) and 
f−1(H) such that x1∈ f−1(G), x2∈ f−1(H). Hence X is αg*s-T2 space. 
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Theorem 3.10: If f: X→Y is αg*s-continuous, injective and Y is T2 then X is αg*s-T2 space. 
 
Proof: For any two distinct points x1 and x2 of X, there exist disjoint points y1 and y2 of Y such that y1 = f(x1) and        
y2 = f(x2). As Y is T2, there exist disjoint open sets U and V in Y such that y1∈U and y2∈V, that is x1∈f−1(U) and 
x2∈f−1(V). Again, as f is αg*s-continuous, f−1(U) and f−1(V) are αg*s-open sets in X.  
 
Further f−1(U)∩f−1(V) =  f−1(U∩V) = f−1(φ) = φ.  Thus, for two disjoint points x1 and x2 of X, there exist disjoint     
αg*s-open sets f−1(U) and f−1(V) such that x1∈f−1(U) and x2∈f−1(V). Thus X is αg*s-T2 space. 
 
4. αg*s-NORMAL SPACES 
 
Definition 4.1: A space X is said to be αg*s-normal if for any pair of disjoint αg*s-closed sets A and B in X, there exist 
disjoint open sets U and V in X such that A ⊆U, B⊆V. 
 
Remark 4.1: If X is normal and Tαg*s-space then X is αg*s-normal. 
 
Theorem 4.1: The following are equivalent for any space X: 
(a) X is normal 
(b) for any disjoint closed sets A and B, there exist disjoint αg*s-open sets U and V such that A⊆U and B ⊆ V 

(c) for any closed set A and any open set V containing A, there exists a αg*s-open set U in X such that  
A ⊆ U ⊆ cl(U) ⊆ V. 

 
Proof:  (a)→(b): It follows from [9]. 
(b) →(c): Let A be a closed set and V be an open set containing A. Then A and X-V are disjoint closed sets. Then there 
exist αg*s-open sets U and W such that A⊆U and X-V⊆W. Since X-V is closed, X-V is αg*s-closed [9]. Then we have 
X-V ⊆int(W) and U∩int(W) = φ and so, cl(U)∩int(W) = φ. And hence A ⊆ U ⊆ cl(U) ⊆ X-int(W) ⊆ V. 
 
(c)→(a): Let A, B be disjoint closed sets in X. Then A ⊆ X-B and X-B is open. Then there exists a αg*s-open set G of 
X such that A⊆G⊆cl(G)⊆X-B. Then A is αg*s-closed by [9]. Thus, A⊆int(G). Let us put U = int(int(G)) and                
V = int(int(X- int(G))). Then U and V are disjoint open sets of X such that A ⊆ U and B ⊆ V. Therefore X is normal. 
 
Theorem 4.2: The following statements are equivalent for a topological space X: 
(a) X is αg*s-normal 
(b) for each closed set A and for each open set U containing A, there exists a αg*s- open set V containing A such that 

αg*s–cl(V) ⊆ U. 
(c) for each pair of disjoint closed sets A and B there exists a αg*s-open set U containing A such that  
        αg*s− cl(U ) ∩ B = φ. 
 
Proof: (a) → (b): Let A be closed set and U be an open set containing A. Then A ∩ (X - U) = φ and therefore disjoint 
closed sets in X. Since X is αg*s-normal, there exist disjoint αg*s-open sets V and W such that A ⊆ U, X - U ⊆W, that 
is X -W ⊆U. Now V ∩ W = φ, implies V⊆X - W.  Thus αg*-cl(V ) ⊆αg*s -cl(X - W) = X - W, as X - W is αg*s-closed 
set. Thus, A ⊆ V  ⊆αg*s -cl(V ) ⊆X - W ⊂ U,that is A ⊆ V ⊆αg*s - cl(V ) ⊆U. 
 
(b) → (c): Let A and B be disjoint closed sets in X then A ⊂X - B where X - B is an open set containing A. Then, there 
exists a αg*s-open set U such that A ⊂U and αg*s -cl(U) ⊂ X - B, which implies αg*s - cl(U ) ∩ B = φ. 
 
(b) → (a): Let A and B be disjoint closed sets in X. Then there exists αg*s-open set U such that A ⊂ U and               
αg*s - cl(U) ∩ B = φ or B ⊂X -αg*s - cl(U). Now U and X -αg*s - cl(U) are disjoint αg*s-open sets of X such that       
A ⊂U  and B ⊂ X - αg*s-cl(U). Hence X is αg*s -normal. 
 
Theorem 4.3: If X is αg*s-normal and Y is αg*s-closed subset of X then the subspace Y is also αg*s-normal. 
 
Proof: Let A and B be any two disjoint αg*s-closed sets in Y. Then by [9], A and B are αg*s-closed sets in X. Since X 
is αg*s-normal, there exist disjoint open sets U and V in X such that A⊆U, B⊆V. Therefore U∩Y and V∩Y are 
disjoint open subsets of the subspace Y such that A⊆U∩Y and B⊆V∩Y. Hence the subspace Y is αg*s-normal. 
 
Theorem 4.4: If f: X→Y is pre αg*s-closed, continuous injective and Y is αg*s-normal then X is αg*s-normal. 
 
Proof: Let A and B be disjoint αg*s-closed sets in X. Since f is pre αg*s-closed, f(A) and f(B) are disjoint αg*s-closed 
sets in Y. As Y is αg*s-normal there exist disjoint open sets U and V such that f(A)⊆U, f(B)⊆V. Thus A⊆f−1(U), 
B⊆f−1(V)  and  f−1(U)∩f−1(V) = φ. Then, f−1(U) and f−1(V) are open sets in X as f is continuous. Hence X is αg*s-
normal. 
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Theorem 4.5: If f: X→Y is αg*s-irresolute, bijective, open map from a αg*s- normal space X on to a space Y then Y is 
αg*s-normal. 
 
Proof: Let A and B be two disjoint αg*s-closed sets in Y. As f is αg*s-irresolute and bijective, f −1(A) and f −1(B) are 
disjoint αg*s-closed sets in X. As X is αg*s- normal there exist disjoint open sets U and V such that f −1(A) ⊂U  and      
f −1(B) ⊂V , that is A ⊂ f (U ) and B ⊂ f (V).  Then f (U) and f (V) are open sets in Y and f (U) ∩ f (V) = φ. Thus Y is 
αg*s-normal. 
 
5. αg*s -REGULAR SPACES 
 
Definition 5.1: A space X is said to be αg*s-regular if for each αg*s –closed sets F and point x ∉ F there exists disjoint 
open sets U and V in X such that x ∈U and F ⊆V. 
 
Theorem 5.1: Every αg*s-regular T0 space is αg*s-T2. 
 
Proof: Let x and y be any two points in X such that x ≠ y. Let V be an open set which contains x but not y. Then X-V 
is a closed set containing y but not x. Then, there exist disjoint open sets U and W such that x ∈U and X-V ⊂ W, as       
y∈X-V, y∈W. Thus for x, y∈X with x ≠ y, there exist disjoint αg*s-open sets U and W such that x∈U and y∈W. 
Hence X is αg*s-T2 space. 
 
Theorem 5.2: The following properties are equivalent for a space X: 
(a) X is αg*s-regular space 
(b) for each point x∈X and each αg*s-open neighborhood A of X, there exist an open neighborhood V of X such that 

cl(V) ⊆ A. 
 
Proof: (a)→(b): Suppose X is αg*s-open neighborhood of x. Then there exists a αg*s-open set G such that x∈G ⊆ A. 
Since X-G is αg*s-closed and x∉X-G. Then, there exist open sets U and V such that X-G ⊆U, x ∈V and U∩V=φ and 
so V⊆X-U. Now cl(V) ⊆ cl(X-U) = X-U and X-G ⊆ U implies X-U ⊆ G⊆A. Therefore cl(V) ⊆ A. 
 
(b)→(a): Let F be a closed set in X and x∉F. Then x ∈ X-F, where X-F is αg*s-open and so X-F is αg*s-neighborhood 
of X. From hypothesis, there exists open neighborhood V of X such that x∈V and cl(V) ⊆ X-F, which implies           
F⊆X-cl(V). Then X-cl(V) is an open set containing F and V∩ (X-cl(V))=φ. Therefore X is αg*s-regular. 
 
Theorem 5.3: If X is αg*s-regular and Y is an open and αg*s-closed subspace of X then the subspace Y is 
αg*s-regular. 
 
Proof: Let A be αg*s-closed subspace of Y and y∉ A. Then A is αg*s-closed in X. Since X is αg*s-regular, there 
exist open sets U and V in X such that y ∈ U and A⊆V. Therefore U∩Y and V∩Y are disjoint open sets of the 
subspace Y, such that y∈U∩Y and A ⊆ V∩Y. Hence the subspace Y is αg*s-regular. 
 
Theorem 5.4: If f: X→Y is bijective, αg*s-irresolute and open map. If X is αg*s-regular then Y is αg*s-regular. 
 
Proof:  Let F be αg*s-closed set of Y and y∉F. As f is αg*s-irresolute, f−1(F) is αg*s-closed in X. Consider f(x) = y, so 
x= f−1(y) and x∉f−1(F). Since X is αg*s-regular there exist open sets U and V such that x∈U and f−1(F)⊆V, U∩V= φ. 
Since f is open and bijective, we have y∈f(U), F⊆f(V) and f(U)∩f(V) = f(U ∩V) = f(φ) = φ. Hence Y is αg*s-regular. 
 
Theorem 5.5: Every subspace of a αg*s-regular space is αg*s-regular. 
 
Proof: Let X be αg*s-regular and Y be a subspace of X. Let x∈Y and F be a αg*s-closed set in Y such that x∉ F. 
Then there exists a αg*s-closed set A of X with F=Y∩A and x∉ A. Therefore, x∈X, where A is αg*s-closed in X such 
that x∉A. As X is αg*s-regular, there exist open sets G and H such that x ∈G, A ⊆ H and G ∩ H = φ. Note that , Y∩G 
and Y∩H are open sets in Y. Also x∈G and x∈Y, implies x∈Y∩G and A⊆H implies that Y∩G ⊆Y∩H, F⊆Y∩H. 
Further (Y∩G) ∩ (Y∩H) = φ. Thus Y is αg*s-regular. 
 
Theorem 5.6: Let f: X→Y be continuous, αg*s-closed, surjective and open map. If X is regular then Y is regular. 
 
Proof:  Let y∈Y and V be an open set containing y in Y. Let x be a point of X such that y = f(x). As X is regular and f 
is continuous, there exists open set U such that x∈U⊆cl(U) ⊆f−1(V). Hence y∈f(U)⊆f(cl(U)) ⊆V. Again, f is        
αg*s-closed map, then f(cl(U)) is αg*s-closed set contained in the open set V. Hence cl(f(cl(U)))⊆V. Therefore     
y∈f(U) ⊆ f(cl(U)) ⊆ cl(f(cl(U))) ⊆ V. This implies y∈ f(U) ⊆ cl(f(U)) ⊆V and f(U) is open. Hence Y is regular. 
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6. CONCLUSION 
 
The research in topology over last two decades has reached a high level in many directions. Topological methods are 
widely used in many other branches of modern mathematics such as differential equation, functional analysis, classical 
mechanics etc. Topology has become a powerful instrument of mathematical research and its language acquired 
universal importance. By researching generalizations of closed sets, some new separation axioms have been founded 
and they turn out to be useful in the study of digital topology. Therefore, αg*s-separation axioms defined by            
αg*s-closed sets will have many possibilities of applications in digital topology and computer graphics. 
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