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ABSTRACT 
In this work, we apply the Sumudu decomposition method to derive approximate analytical solutions in series form for the 
linear and non-linear fractional diffusion and wave equations within the Caputo fractional derivative. This technique is a 
hybrid of the Sumudu transform method and the Adomian decomposition technique. The procedure is user-friendly and 
reliable. Some illustrative examples are provided to demonstrate the validity and applicability of the proposed technique.   
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1. INTRODUCTION 
 
Fractional calculus is a fascinating discipline of mathematical analysis that studies derivatives and integrals of arbitrary 
orders. It has captivated the attention of scientists and engineers for a very long time, resulting in the development of 
numerous applications. In recent years, scientists and engineers have rediscovered fractional calculus and applied it to an 
increasing number of fields, such as chemical physics, electrochemistry of corrosion, mechanics, acoustics, control 
engineering and signal processing, etc. Fractional differential equations have received increasing attention from 
researchers due to their remarkable performance in solving real-world problems across various scientific and 
technological fields. Various numerical and analytical methods have been suggested for solving linear and non-linear 
fractional order differential equations, such as the Adomian decomposition method (ADM) [2,13,17], the Laplace 
decomposition method (LDM) [15], the iterative Laplace transform method (ILTM) [25,26], the modified homotopy 
perturbation method (MHPM)[14], the homotopy perturbation Sumudu transform method (HPSTM) [32], the Fractional 
Explicit Adams Method (FEAM) [33], the Sumudu transform iterative method (STIM) [4,5,7,27],  the Haar wavelet 
operational matrix method (HWOMM)[24], the homotopy analysis method [3], and the q-homotopy analysis transform 
method (q-HATM) [6], etc.  
 
In 1993, Watugala introduced the Sumudu transform method (STM) [28] to solve engineering problems. Weerakoon [30] 
used this method to solve partial differential equations. Later, Weerakoon [31] derived the formula for the inverse of this 
transform. Demiray et al. [11] utilized the STM technique to discover exact solutions for fractional differential equations. 
Recently, Kumar et al. [18] have discovered a new method for solving nonlinear equations by combining the Sumudu 
transform with the Adomian decomposition method, termed the Sumudu decomposition method (SDM).The Sumudu 
decomposition method has been proven successful in solving various types of differential equations such as fractional 
Bratu-type differential equations [20], fractional Delay differential equations [12], fractional Riccati equations [19], 
fractional integro-differential equations [1] as well as time-fractional PDEs and systems of time-fractional PDEs [16].  
 
In the present study, we will use the Sumudu decomposition method to solve the following linear and non-linear time-
fractional diffusion and wave equations as follows 
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(i). The linear time-fractional diffusion equation with the specified initial condition, is given by [13,14,15]
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(ii). The linear time-fractional wave equation with the specified initial conditions, is given by [13,14,15]
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(iii). The non-linear time-fractional wave equation with the specified initial conditions, is given by [13,14,15]
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             where 1 2( , , ..., ), ( , ) ,n ix x x x x t Cαψ= ∈ ( , )x tφ  is a source term, and ( , )tD x tα  denotes Caputo fractional 
derivative of order α given in equation (7).  
 
The main objective of this investigation is to expand the work of the SDM in order to derive approximate analytical solutions 
for the linear and non-linear fractional diffusion and wave equations with initial conditions. The SDM presents the solution in 
a quick convergent series, which may lead to a closed-form solution. This approach has the benefit of integrating two strong 
methods for acquiring accurate and approximate solutions to differential equations of fractional order. 
 
2.  BASIC DEFINITIONS AND NOTATIONS 
 
In this part, we give some important definitions and properties pertaining to the fractional calculus and Sumudu transform, 
which are further used in this paper. 
 
Definition 1: The Caputo fractional derivative of function ( , )u x t of order 0α > , is defined as [21, 23] 
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Here 
m

m
m

dD
dt

= and tIα  stands for the Riemann-Liouville fractional integral operator of order 0α > , defined as [21] 
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            Definition 2:  The Sumudu transform is defined over the set of functions    
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by the following formula [8,28] 
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One of the basic properties of the Sumudu transform is given as 
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The inverse Sumudu transform of αω is defined as 
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Definition 3: The Sumudu transform of Caputo fractional derivative of ( , )u x t of order 0α > , is defined as [11, 27]
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Definition 4: The Mittag-Leffler function ( )E zα with 0α >  is defined by the following series representation, valid in 
the whole complex plane [22]  
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  where (.)Γ  is the well-known Gamma function. 
 
3.  BASIC IDEA OF SUMUDU DECOMPOSITION METHOD 
 
In order to illustrate the key concept of this method [12], we consider the general fractional partial differential equation 
with initial conditions of the type 

( , ) ( , ) ( , ) ( , ), 1 , ,tD u x t R u x t N u x t g x t m m m Nα α+ + = − < ≤ ∈                                                                    (14)                           
( ) ( ,0) ( ), 0,1, 2,..., 1 ,k

ku x h x k m= = −                                                                                                               (15) 
 where ( , )tD u x tα  is the Caputo fractional derivative of order , 1 , ,m m m Nα α− < ≤ ∈  defined by equation (7),    
R  is a linear operator and may include other fractional derivatives of  order less than α , N  is a non-linear operator which  
may include other fractional derivatives of order less than α and ( ),g x t  is a known function.   
 
Applying the Sumudu transform on both sides of equation (14), we have   
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By using the equation (12), we get 
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On taking inverse Sumudu transform on equation (17), we have 
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Furthermore, we apply the Adomian decomposition method (ADM) [2], which represents a solution ( , )u x t  in components 
of infinite series 
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and the non-linear term is decomposed as follows 
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where nA  are the Adomian polynomials given by 
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Substituting equations (19), (20) and (21) into equation (18), we get 
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Using the Adomian technique, we determine the formal recurrence relations in the elegant form as follows as  
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Therefore, the approximate analytical solution of equations (14) and (15) in truncated series form is provided by  
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In general, the solutions in the preceding series converge quickly. The classical approach to convergence of this type of series 
was described already by Cherruault and Adomian [9] and Cherruault et al. [10]. 
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4. ILLUSTRATIVE EXAMPLES  
 
In this section, to give a clear overview of this method, we present some illustrative examples to demonstrate the 
accuracy and easy implementation of this methodology. 
 
Example 1: Consider the following linear fractional diffusion equation [13,14,15] 
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with the initial condition 
( )1 2 3( ,0) exp ,u x x x x= − − −                                                                                                                   (27) 

where 1 2 3( , , )x x x x=  and ( , )tD u x tα is the Caputo fractional derivative of order α given by equation (7).  
 
Taking the Sumudu transform of the above equation (26) and making use of the result given by equation (27), we have 
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Applying inverse Sumudu transform to the equation (28), we obtain 
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Substituting the results from equations (19) to (21) in the equation (29) and making use of the results given by the 
equations (23) to (24), we determine the components of the SDM solution as follows 
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and so on. The other components can be determined in the same manner.  
 
Thus, the series form of approximate analytical solution can be obtained as 
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The same result was obtained by Jafari et al. [15] using LDM, Jafari and Momani [14] using modified HPM, and Jafari 
and Daftardar-Gejji [13] using ADM.  
 
If we put 1 ,α = in equation (34), we have 
 ( )1 2 3( , ) exp .tu x t x x x e−= − − −                                                                                                                          (35)          
 
Example 2: Consider the following linear fractional wave equation [13, 14, 15] 
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where 1 2( , )x x x=  and ( , )tD u x tα is the Caputo fractional derivative of order α given by equation (7).  
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Taking the Sumudu transform of the above equation (36) and making use of the results given by equation (37), we have 
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Applying inverse Sumudu transform to the equation (38), we obtain 
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Substituting the results from equations (19) to (21) in the equation (39) and making use of the results given by the 
equations (23) to (24), we determine the components of the SDM solution as follows 
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and so on. The other components can be determined in the same manner. 
 
Thus, the series form of approximate analytical solution can be obtained as 
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The same result was obtained by Jafari et al. [15] using LDM, Jafari and Momani [14] using modified HPM, and Jafari 
and Daftardar-Gejji [13] using ADM. 
 
If we put 2,α = in equation (44), we have 
 ( ) ( )1 2( , ) sin sin cos 2 .=u x t x x t                                                                                                                          (45) 
This result was earlier achieved by Wazwaz [29] using the ADM approach. 
 
Example 3: Consider the following non-linear fractional wave equation [13, 14, 15]   
 3( , ) 0, 0 1, 0, 1 2,t xxD u x t au u u x tα β γ α+ + + = < < > < ≤                                                                        (46) 
with initial conditions 
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 is the Caputo fractional derivative 

of orderα given by equation (7).   
 
Taking the Sumudu transform of the above equation (46) and making use of the results given by equation (47), we have 
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Applying inverse Sumudu transform to the equation (48), we obtain 
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Substituting the results from equations (19) to (21) in the equation (49) and making use of the results given by the 
equations (23) to (24), we determine the components of the SDM solution as follows 
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
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                                      (53) 

and so on. The other components can be determined in the same manner. 
 
Thus, the series form of approximate analytical solution can be obtained as 
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The same result was obtained by Jafari et al. [15] using the method of LDM and Jafari and Momani [14] using modified 
HPM.  
 
If we put 2,α = in equation (54), we have 

 ( ) ( ), tan ( ) .u x t B K x ct= +                                                                                                                               (55) 
This result was earlier achieved by Kaya and El-Sayed [17] using the ADM approach. 
 
5. CONCLUSION 
 
In this paper, we have determined the approximate analytical solutions of the linear and non-linear fractional diffusion and 
wave equations with initial conditions by using the Sumudu decomposition method (SDM). The time-fractional derivative 
described here in the Caputo sense. The solution was provided by the proposed algorithm in a series form that converges 
rapidly to the exact solution, if it exists. Based on the obtained results, it is clear that the SDM produces quite accurate 
solutions using only a few iterations. This study concludes that SDM can be applied to other fractional-order differential 
equations due to its efficiency and adaptability, as can be seen in the illustrative examples.   
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