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ABSTRACT 
The aim of this paper is to introduce and study two new classes of spaces,namely Semi weakly generalized-normal and 
Semi weakly generalized- regular spaces and obtained their properties by utilizing Semi weakly generalized-closed 
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1. INTRODUCTION 
 
S.S. Benchalli, T.D. Rayanagoudar and P.G. Patil introduced the concept of g*-closed setsa nd S.S. Benchalli, T.D. 
Rayanagoudar and P.G. Patiland Shik John studied the concept of g*- preregular, g*- pre normal and obtained their 
properties by utilizing g*-closed sets. The notation of closed set is fundamental in the study of topological spaces. In 
1970, Levine  introduced the concept of generalized closed sets in the topological space by comparing the closure of 
subset with its open supersets. The  investigation  on   generalization of   closed   set has lead to significant contribution   
to  the   theory of separation axiom, covering properties   and   generalization of continuity. T. Kong, R. Kopperman 
and P. Meyer  shown some of the properties of generalized closed set have been found to be useful in computer science 
and digital topology. Caw, Ganster and Reilly  and   has shown that generalization of closed set is also useful to 
characterize certain classes of topological spaces and there variations, for example the class of extremely disconnected 
spaces and the class of submaximal spaces. In 1990, S.P. Arya  and T.M. Nour define generalized semi-open sets, 
generalized semi closed sets and use them to obtain some cauterization of s-normal spaces.  
 
In 1993,N. PalaniInappan and K. Chandrasekhara Rao  introduced regular generalized closed (briefly rg-closed) sets 
and study there properties relative to union, intersection and subspaces. In 2000, A. Pushpalatha  introduce new class  
of closed set called weakly closed (briefly w-closed) sets and study there properties.In 2007, S.S. Benchalli and         
R.S. Wali  introduced the new class of the set called regular w-closed (briefly rw-closed) sets in topological spaces. In 
this this paper is to introduce and study two new classes of spaces,namely Semi weakly generalized-normal and Semi 
weakly generalized- regular spaces and obtained their properties by utilizing Semi weakly generalized-closed sets.  
 
2. PRELIMINARIES 
 
Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological space on which no 
separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), Ac, and 𝛼𝛼-Cl(A), 
denote the Closure of A, Interior of A and Compliment of A and 
𝛼𝛼-closure of A in X respectively. 
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Definition 2.1: A subset A of a topological space (X, τ) is called 

(i) W-closed set[ 12] if cl(A) ⊆ U whenever A⊆ U and U is semi-open in X. 
(ii) Generalized closed set(briefly g-closed) [7] if cl(A) ⊆ U whenever A ⊆ U and U is open in X. 
(iii) Semi weakly Generalized closed set(briefly swg-closed) [11] if cl(int(A)⊆U whenever A ⊆ U and U is Semi-

open in X. 
 
Definition 2.2: A topological space X is said to be a 

(1) g-regular [10], if for each g-closed set F of X and each point x ∉F,there exists disjoint open sets U and V such 
that F⊆U and x 𝜖𝜖 V . 

(2) 𝛼𝛼 - regular [4], if for each 𝛼𝛼 - closed set F of X and each point x ∉ F, there existsdisjoint  𝛼𝛼 -  open sets U and 
V such that F ⊆V and x 𝜖𝜖 U. 

(3) w-regular [12], if for each closed set F of X and each point x ∉ F, there existsdisjoint w-open sets U and V 
such that F⊆U and x𝜖𝜖V. 

 
Definition 2.3: A topological space X is said to be a 

(1) g - normal [10], if for any pair of disjoint g-closed sets A and B, there existsdisjoint open sets U and V such 
that A⊆U and B⊆V . 

(2) 𝛼𝛼-normal [4], if for any pair of disjoint 𝛼𝛼 − closed sets A and B, there exists dis-joint 𝛼𝛼-open sets U and V 
such that A⊆U and B⊆V. 

(3) w-normal [12], if for any pair of disjoint  w - closed sets A and B, there existsdisjoint open sets U and V such 
that A⊆ U and  
B⊆V. 

 
Definition 2.4: [2] A topological space X is called TSemi weakly generalized - space if every Semi weakly generalized-closed 
setin it is closed set. 
 
Definition 2.5:A map f: (X, τ) → (Y, τ) is said to be  

(i) Semi weakly generalized-continuous map[11]if f -1(V) is a Semi weakly generalized-closed set of (X, τ) for 
every closed set V of (Y, τ). 

 
(ii) Semi weakly generalized-irresolute map[11] if f -1(V)is a Semi weakly generalized-closed set of (X, τ) for 

every Semi weakly generalized-closed set V of (Y, τ). 
 
3. SEMI WEAKLY GENERALIZED  SEPARATION AXIOMS IN REGULAR SPACES 
 
In this section, we introduce a new class of spaces called Semi weakly generalized-regular spaces using Semi weakly 
generalized-closed sets and obtain some of their characterizations. 
 
Definition 3.1: A topological space X is said to be Semi weakly generalized-regular if for each Semi weakly 
generalized closed set F and a point x∉F, there exists disjoint open sets G and H such that F⊆G and x 𝜖𝜖H. 
 
We have the following interrelationship between Semi weakly generalized-regularity and regularity. 
 
Theorem 3.2: Every Semi weakly generalized-regular space is regular. 
 
Proof: Let X be a Semi weakly generalized-regular space. Let F be any closed set in X and a point x∉Xsuch that x∉F. 
By [2], F is Semi weakly generalized-closed and x ∉F. Since X is a Semi weakly generalized-regular space, there exists 
a pair of disjoint open sets G and H such that F ⊆ G and x 𝜖𝜖H. Hence X is a regular space. 
 
Remark 3.3: If X is a regular space and TSemi weakly generalizedspace, then X is Semi weakly generalized regular we have 
the following characterization. 
 
Theorem 3.4: The following statements are equivalent for a topological space X 

(i) X is a Semi weakly generalized regular space 
(ii) For each x𝜖𝜖X and each Semi weakly generalized-open neighbourhood U of x there exists an open 

neighbourhood N of x such that cl(N)⊆U. 
 
Proof: (i) implies (ii): Suppose X is a Semi weakly generalized regular space. Let U be any Semi weakly generalized 
neighbourhood of x. Then there exists Semi weakly generalized open set G such that x 𝜖𝜖 G ⊆U. Now X – G is Semi 
weakly generalized closed set and x∉X - G. Since X is Semi weakly generalized regular, there exist open sets M and N 
such that X-G⊆M, x 𝜖𝜖 N and M∩N = 𝜑𝜑 and so N ⊆X-M. Nowcl(N) ⊆ cl(X -M) = X - M and X - M ⊆M. This implies   
X – M ⊆ U. Therefore cl(N)⊆U. 
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(ii) implies (i): Let F be any Semi weakly generalized closed set in X and x 𝜖𝜖 X -F and X - F is a Semi weakly 
generalized-open and so X - F is a Semi weakly generalized-neighbourhood of x. By hypothesis, there exists an open 
neighbourhood N of x such that x 𝜖𝜖N and cl(N)⊆X-F. This implies F⊆X-cl(N) is an open set containing F and             
N ∩ f(X - cl(N) = 𝜑𝜑. Hence X is Semi weakly generalized- regular space. 
 
We have another characterization of Semi weakly generalized-regularity in the following. 
 
Theorem 3.5: A topological space X is Semi weakly generalized-regular if and only if for each Semi weakly 
generalized-closedset F of X and each x𝜖𝜖X-F there exist open sets G and H of X such that x 𝜖𝜖 G, F⊆H and               
cl(G) ∩ cl(H) = ∅. 
 
Proof: Suppose X is Semi weakly generalized-regular space. Let F be a Semi weakly generalized-closed set in X with 
x ∉F.Then there exists open sets M and H of X such that x 𝜖𝜖 M, F ⊆ H and M∩H =∅.This implies M∩cl(H) = ∅. As X  
is Semi weakly generalized-regular, there exist open sets U and V such that x 𝜖𝜖 U, cl(H)⊆V and U∩V = ∅. so       
cl(U)∩V = ∅. Let G = M ∩U, then G and H are open sets of X such that x𝜖𝜖G, F ⊆ H and cl(H) ∩cl(H) = ∅. 
 
Conversely, if for each Semi weakly generalized-closed set F of X and each x 𝜖𝜖 X -F there exists opensets G and H 
such that x 𝜖𝜖 G, F⊆H and cl(H)∩cl(H)=∅.This implies x 𝜖𝜖 G, F ⊆ H and G ∩ H = ∅. Hence X is Semi weakly 
generalized- regular. 
 
Now we prove that Semi weakly generalized- regularity is a heriditary property. 
 
Theorem 3.6: Every subspace of a Semi weakly generalized-regular space is Semi weakly generalized-regular. 
 
Proof: Let X be a Semi weakly generalized- regular space. Let Y be a subspace of X. Let x 𝜖𝜖 Y and F bea Semi weakly 
generalized-closed set in Y such that x ∉ F. Then there is a closed set and so Semi weakly generalized-closedset A of X 
with F = Y ∩ A and x ∉ A. Therefore we have x 𝜖𝜖 X, A is Semi weakly generalized– closed in X such that x ∉ A. Since 
X is Semi weakly generalized- regular, there exist open sets G and H suchthat x 𝜖𝜖 G, A⊆H and G∩H = 𝜑𝜑. Note that     
Y∩G and Y∩H are open sets in Y .Also x 𝜖𝜖 G and x 𝜖𝜖Y, which implies x𝜖𝜖Y∩G and A ⊆ H implies Y∩ G⊆Y ∩H, F⊆Y 
∩H. Also (Y ∩G)∩ (Y ∩ H) = 𝜑𝜑. Hence Y is Semi weakly generalized-regular space. 
 
We have yet another characterization of Semi weakly generalized-regularity in the following. 
 
Theorem 3.7: The following statements about a topological space X are equivalent: 

(i) X is Semi weakly generalized-regular 
(ii) For each x 𝜖𝜖 X and each Semi weakly generalized-open set U in X such that x 𝜖𝜖 U there exists anopen set V in 

X such that x 𝜖𝜖  V⊆cl(V)⊆U. 
(iii) For each point x 𝜖𝜖 X and for each Semi weakly generalized-closed set A with x ∉ A, there exists anopen set V 

containing x such that cl(V)∩A = 𝜑𝜑. 
 
Proof: (i) implies (ii): Follows from Theorem 3.5. 
 
(ii) implies (iii): Suppose (ii) holds. Let x 𝜖𝜖 X and A be an Semi weakly generalized-closed set of X suchthat x ∉ A. 
Then X - A is a Semi weakly generalized-open set with x 𝜖𝜖 X - A. By hypothesis, thereexists an open set V such that    
x 𝜖𝜖 V ⊆ cl(V ) ⊆ X - A. That is x𝜖𝜖 V, V⊆ cl(A) and cl(A) ⊆ X - A. So x  𝜖𝜖V and cl(V) ∩ A = 𝜑𝜑. 
 
(iii) implies (i): Let x 𝜖𝜖 X and U be an Semi weakly generalized-open set in X such that x 𝜖𝜖 U. Then X - U is an Semi 
weakly generalizedclosed set and x∉ X - U. Then by hypothesis, there exists an openset V containing x such that      
cl(A) ∩ (X -U) = Á. Therefore x 𝜖𝜖V, cl(V) ⊆ U so x 𝜖𝜖 V⊆ cl(V) ⊆ U. 
 
The invariance of Semi weakly generalized-regularity is given in the following. 
 
Theorem 3.8: Let f: X→ Y be a bijective, Semi weakly generalized-irresolute and open map from a Semi weakly 
generalized- regular space X into a topological space Y, then Y is Semi weakly generalized-regular. 
 
Proof: Let y 𝜖𝜖 Y and F be a Semi weakly generalizedclosed set in Y with y ∉ F. Since F is Semi weakly generalized- 
irresolute, f- 1(F) is Semi weakly generalized-closed set in X. Let f(x) = y so that x = f-1 (y) and x ∉ f- 1(F). Again X is 
Semi weakly generalized-regular space, there exist open sets U and V such that x 𝜖𝜖 U and f- 1(F) ⊆ G, U ∩ V = 𝜑𝜑. Since 
f is open and bijective, we have y  f(U), F ⊆ f(V ) and f(U) ∩ f(V) = f(U∩V ) = f(𝜑𝜑) = 𝜑𝜑. Hence Y is Semi weakly 
generalized-regular space. 
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Theorem 3.9: Let f : X→ Y be a bijective, Semi weakly generalized-closed and open map from a topological space X 
into a Semi weakly generalized-regular space Y. If X is TSemi weakly generalized space, then X is Semi weakly 
generalized-regular. 
 
Proof: Let x 𝜖𝜖 X and F be an Semi weakly generalized-closed set in X with x ∉ F. Since X is TSemi weakly generalized space, 
F is closed in X. Then f(F) is Semi weakly generalizedclosed set with f(x) ∉ f(F) in Y, since f is Semi weakly 
generalized- closed. As Y is Semi weakly generalized-regular, there exist open sets U and V such that x 𝜖𝜖 U and        
f(x) 𝜖𝜖 U and f(F) ⊆V. Therefore x 𝜖𝜖 f- 1(U) and F  ⊆ f- 1(V). Hence X is Semi weakly generalized-regular space. 
 
Theorem 3.10: If f : X→ Y is w-irresolute, continuous injection and Y is Semi weakly generalized-regular space, then 
X is Semi weakly generalized - regular. 
 
Proof: Let F be any closed set in X with x∉F. Since f is w-irresolute, f is Semi weakly generalized- closed set in Yand 
f(x) 𝜖𝜖 f(F). Since Y is Semi weakly generalized- regular, there exists open sets U and V such that f(x) 𝜖𝜖U and f(F) ⊆ V. 
Thus x 𝜖𝜖f- 1(U), F ⊆ f- 1(V ) and f-1 (U) ∩ f-1(V) = 𝜑𝜑. Hence X is Semi weakly generalized- regular space. 
 
4. SEMI WEAKLY GENERALIZED  SEPARATION AXIOMS IN NORMAL SPACES 
 
In this section, we introduce the concept of Semi weakly generalizednormal spaces and study some of their 
characterizations. 
 
Definition 4.1: A topological space X is said to be Semi weakly generalized-normal if for each pair ofdisjoint Semi 
weakly generalized- closed sets A and B in X, there exists a pair of disjoint open sets U and V in X such that A ⊆ U 
and B ⊆V  
 
We have the following interrelationship. 
 
Theorem 4.2: Every Semi weakly generalized-normal space is normal. 
 
Proof: Let X be a Semi weakly generalized-normal space. Let A and B be a pair of disjoint closed sets in X. Since A 
and B are Semi weakly generalized - closed sets in X. Since X is Semi weakly generalized-normal, there exists a pair of 
disjoint open sets G and H in X such that A ⊆ G and B ⊆ H. Hence X is normal. 
 
Remark 4.3: The converse need not be true in general as seen from the following example. 
 
Example 4.4: Let X = Y = {a, b, c, d}, τ ={X, ∅,{a},{c},{a, c},{b, c,d }} Then 
the space X is normal but not Semi weakly generalized - normal, since the pair of disjoint Semi weakly generalized - 
closed sets namely, A = {a, d}and B = {b, c}for which there do not exists disjoint open sets Gand H such that A ⊆ G 
and B ⊆ H. 
 
Remark 4.5: If X is normal and TSemi weakly generalized-space, then X is Semi weakly generalized-normal. 
 
Hereditary property of  Semi weakly generalized- normality is given in the following. 
 
Remark 4.6: A Semi weakly generalized- closed subspace of a Semi weakly generalized- normal space is Semi weakly 
generalized-normal. 
 
Theorem 4.7: The following statements for a topological space X are equivalent: 

(i) X is Semi weakly generalized- normal 
(ii) For each Semi weakly generalized - closed set A and each Semi weakly generalized - open set U such that 

A⊆U, there exists an open set V such that A⊆V⊆cl(V)⊆U 
(iii) For any Semi weakly generalized-closed sets A, B there exists an open set V such that A⊆V and cl(V)∩B = 𝜑𝜑. 
(iv) For each pair A, B of disjoint Semi weakly generalized-closed sets there exist open sets U and V suchthat       

A ⊆ U, B ⊆V and cl(U) ∩cl(V) = 𝜑𝜑. 
 
Proof: (i) implies (ii): Let A be a Semi weakly generalized-closed set and U be a Semi weakly generalized-open set 
such that A⊆U. Then A and X-U are disjoint Semi weakly generalized-closed sets in X. Since X is Semi weakly 
generalized-normal, thereexists a pair of disjoint open sets V and W in X such that A ⊆ V and X – U ⊆ W. Now             
X -W ⊆ X - (X - U), so X-W ⊆ U also V∩W = 𝜑𝜑.  implies V ⊆ X - W, socl(V) ⊆ cl(X-W) which implies cl(V)⊆X-W. 
Therefore cl(V) ⊆ X-W⊆ U. So cl(V) ⊆ U. Hence A ⊆ V ⊆ cl(V ) ⊆ U. 
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(ii) implies (iii): Let A and B be a pair of disjoint Semi weakly generalized closed sets in X. Now A∩B = 𝜑𝜑, so       
A⊆X-B, where A is Semi weakly generalized-closed and X-B is Semi weakly generalized-open. Then by (ii) 
thereexists an open set V such that A⊆V⊆cl(V)⊆X - B. Now cl(V) ⊆X - B implies cl(V) ∩ B = 𝜑𝜑. Thus A ⊆V and  
cl(V) ∩ B = 𝜑𝜑. 
 
(iii) implies (iv): Let A and B be a pair of disjoint Semi weakly generalized-closed sets in X. Then from (iii) there 
exists an open set U such that A⊆U and cl(U) ∩ B=𝜑𝜑. Since cl(V) is closed, soSemi weakly generalized-closed set. 
Therefore cl(V) and B are disjoint Semi weakly generalizedclosed sets in X. By hypothesis,there exists an open set V, 
such that B⊆V and cl(U) ∩cl(V) = 𝜑𝜑. 
 
(iv) implies (i): Let A and B be a pair of disjoint Semi weakly generalized-closed sets in X.Then from (iv) there exist an 
open sets U and V in X such that A⊆U, B⊆V and cl(U) ∩ cl(V) = 𝜑𝜑. So A ⊆ U, B⊆V and U∩V = 𝜑𝜑. Hence X is Semi 
weakly generalized-normal. 
 
Remark 4.8: Let X be a topological space. Then X is Semi weakly generalized-normal if and only if forany pair A, B 
of disjoint Semi weakly generalized-closed sets there exist open sets U and V of X such that A⊆U, B⊆V and           
cl(U) ∩cl(V) = 𝜑𝜑. 
 
Theorem 4.9: Let X be a topological space. Then the following are equivalent: 

(i) X is normal 
(ii) For any disjoint closed sets A and B, there exist disjoint Semi weakly generalized- open sets U and V such that 

A⊆U, B⊆V . 
(iii) For any closed set A and any open set V such that A⊆ V, there exists an Semi weakly generalized-open set U 

of X such that A⊆U ⊆ 𝛼𝛼cl(U) ⊆ V. 
 
Proof:  
(i) implies (ii): Suppose X is normal. Since every open set is Semi weakly generalized-open [2], (ii) follows. 
 
(ii) implies (iii): Suppose (ii) holds. Let A be a closed set and V be an open set containing A. Then A and X-V are 
disjoint closed sets. By (ii), there exist disjoint Semi weakly generalized- open sets U and W such that A⊆U and         
X-V ⊆ W, since X -V is closed, so Semi weakly generalized- closed. From [2], we have X -V⊆𝛼𝛼-int(W) and               
U ∩  𝛼𝛼-int(W) =𝜑𝜑.and so we have 𝛼𝛼-cl(U) ∩ 𝛼𝛼-int(W) = 𝜑𝜑. Hence A ⊆ U ⊆ 𝛼𝛼-cl(U) ⊆ X – 𝛼𝛼-int(W) ⊆ V. Thus           
A ⊆ U ⊆𝛼𝛼-cl(U) ⊆ V . 
 
(iii) implies (i): Let A and B be a pair of disjoint closed sets of X. Then A ⊆X - B and X -B is open. There exists a 
Semi weakly generalized- open set G of X such that A ⊆ G  ⊆𝛼𝛼-cl(G) ⊆X-B. Since A is closed, it is w - closed, we 
have A ⊆ 𝛼𝛼-int(G). Take U = int(cl(int(𝛼𝛼-int(G)))) and V = int(cl(int(X –𝛼𝛼-cl(G)))). Then U and V are disjoint open 
sets of X such that A ⊆ U and B ⊆ V. Hence X is normal. 
 
We have the following characterization of Semi weakly generalized- normality and Semi weakly generalized- 
normality. 
 
Theorem 4.10: Let X be a topological space. Then the following are equivalent: 

(i) X is 𝛼𝛼-normal. 
(ii) For any disjoint closed sets A and B, there exist disjoint Semi weakly generalized- open sets U and V such that 

A⊆U, B⊆V and U∩V=𝜑𝜑. 
 
Proof:  

(i) Implies (ii): Suppose X is 𝛼𝛼 - normal. Let A and B be a pair of disjoint closed sets of X. Since X is                   
𝛼𝛼-normal, there exist disjoint 𝛼𝛼 − open sets U and V such that A⊆U and B⊆V and U ∩ V = 𝜑𝜑. 

(ii) Implies (i): Let A and B be a pair of disjoint closed sets of X. Then by hypothesis there exist disjoint Semi 
weakly generalized - open sets U and V such that A⊆U and B ⊆ V and U ∩V = 𝜑𝜑. Sincefrom [2], A⊆𝛼𝛼-intU 
and B ⊆ 𝛼𝛼 − int(V) and 𝛼𝛼 –intU∩ 𝛼𝛼-intV = 𝜑𝜑. Hence X is 𝛼𝛼-normal. 

 
Remark 4.11: Let X bea 𝛼𝛼- normal, then the following hold good: 

(i) For each closed set A and every Semi weakly generalized- open set B such that A⊆B ther exists a αopen set U 
such that A⊆U⊆α-cl(U) ⊆ B. 

(ii) For every Semi weakly generalized-closed set A and every open set B containing A, there exist a α-open set U 
such that A⊆U⊆ α-cl(U) ⊆B. 
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